
An Extended Link Reversal Protocol in Dynamic Networks

Jie Wu and Fei Dai
Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL 33431

Abstract— We consider the problem of maintaining routing paths
between nodes in a dynamic network. Gafni and Bertsekas proposed a
link reversalapproach called the BG method that maintains a directed
acyclic graph (DAG) with a given destination as the sink node. By
virtue of built-in redundancy, an updating algorithm to establish a
new DAG is activated infrequently and it happens only when the last
outgoing link of a host in the DAG is destroyed due to the movement
of nodes. In this paper, we propose another updating approach that
tries to minimize the total number of reversed links and to maintain
routing information without using much extra overhead. The approach
maintains a reversed breadth-first tree. Nodes in the network are either
marked (inside the tree) or unmarked (outside the tree). When it
is too costly to maintain a minimum path for a marked node, the
branch rooted at the node is trimmed and the approach then gracefully
switches to the BG method. Several extensions are also discussed. A
simulation study is conducted to compare the performance of the
proposed approach with the existing one.1

1. INTRODUCTION

Consider a directed acyclic graph (DAG) with a special node
called a destination node, the DAG isdestination oriented
if for every node there exists a directed path originating at
this node and terminating at the destination node; otherwise,
it is called destination disoriented. A DAG is destination
disoriented if and only if there exists a node other than the
destination which is a sink node with no outgoing link. Gafni
and Bertsekas considered the following problem [3]: Given
a connected destination disoriented DAG, transform it to a
destination oriented DAG by reversing the directions of some
of its links.

An application of the above problem is routing in dynamic
networks which include ad hoc networks [4] and sensor net-
works [2]. Here we focus on a special type of dynamic network
where the network topology changes via node failure/recovery
and link switching-on/-off. When network topology changes
over time,a DAG for a given destination does not need to be
changed as long as each node has a downstream neighbor.
That is, the update of the DAG can be postponed until a host
loses its last outgoing link and, then, an updating algorithm is
invoked to make the DAG destination oriented again.

Gafni and Bertsekas [3] proposed two updating algorithms,
simply called the GB method, based on reversing the directions
of certain links in the DAG:full reversalandpartial reversal. It
has been proved in [3] that both algorithms terminate in a finite
number of steps and the resultant graph is still a destination

1This work was supported in part by NSF grant CCR 9900646 and grant
ANI 0073736. Email:{jie,fdai}@cse.fau.edu.

r

u

w

(a)

v

r

u

w

(b)

v

r

u

w

(c)

0

1

2

1

2

3 3

4

v

x x xy

z

y

z

y

z

Fig. 1. A destination oriented DAG with (a) an isolated branch rooted atw,
(b) DAG after partial link reversal, and (c) a spanning reversed breadth-first
tree (RBFT).

oriented DAG. The GB method has been adopted in the routing
protocol TORA [6] for ad hoc networks.

Although both updating algorithms in the GB method have
several elegant features, they do not maintain a path of mini-
mum number of hops (or simplyminimum path) for a node to
the destination. The GB method does provide a “watermark”
for each node and it is used to determine the orientation of each
link. A greedy routing approach can be adopted that selects
a neighbor with the lowest watermark at each routing step.
However, the watermark of each node does not reflect the
distance to the destination and, hence, the routing process is
unpredictable. In general, maintaining a minimum path for
each node in dynamic networks is a challenging problem. In
this paper, we propose another updating approach which tries
to maintain routing information in a given destination oriented
DAG without using much extra overhead. The destination
oriented DAG maintains areversed breadth-first tree(RBFT);
that is, it contains a minimum path from each node in the tree
to the destination (also called the root node) in the dynamic
network.

A related work in this field is to maintain aspanning
shortest path tree(SPT) in a given graph based on a different
graph model. When topology and/or link costs of the network
change, either the existing SPT is re-constructed or updated
[5]. However, such an update has to be invoked whenever there
is a change, making it too costly for practical use.

RBFT differs from SPT in two aspects: (1) RBFT is a
minimum tree (in terms of hop count) while SPT is a shortest
path tree. Hop count is a commonly used measure in ad hoc
networks. (2) SPT is a spanning tree while RBFT may or
may not be a spanning tree of the graph. In general, nodes in
the network are divided intomarkednodes (inside the RBFT)

marked nodes

unmakred nodes

root
1

2

c

Destination oriented DAG

Fig. 2. Marked and unmarked nodes in a destination oriented DAG.

and unmarkednodes (outside the RBFT). Alevel indicating
the distance to the root is associated with each marked node.
Unmarked nodes do not have distance information. Initially, all
nodes are marked nodes upon the construction of a spanning
RBFT and, hence, a destination oriented DAG is constructed
where the direction of a link is directed from a higher level
node to a lower level node (node id is used to break a tie
when two end nodes have the same level). Figure 1 (c) shows a
spanning RBFT. When a node loses its outgoing tree link (such
as nodeu in Figure 1 (c)), the proposed approach adjusts the
level of the node and those of its descendants. When it is too
costly to maintain a minimum path for a nodew by keeping
its level up-to-date, the branch rooted atw is trimmed; that is,
nodew and all its descendants are unmarked. The approach
is then gracefully switched to either full or partial reversal.
When a new node is added to the network, it can be marked
or unmarked depending on the marked/unmarked status of its
neighbors.

Figure 2 shows the general structure of marked and un-
marked nodes. The directions of links connecting marked
nodes are determined by RBFT. An unmarked node always
points to its marked neighbors (if any). The direction of a
link between two unmarked nodes is decided based on the
execution of the GB method. When an updating algorithm is
initiated at an unmarked node, the GB method is used. How-
ever, it will not affect the existing RBFT structure. When an
updating algorithm is initiated at a marked node, the proposed
approach is applied, but it may switch to the GB method
after a branch of an RBFT is trimmed. Therefore, the GB
method and our approach co-exist, and a destination oriented
DAG is always maintained. During the course of updating, the
marked node set shrinks while the unmarked node set grows.
Unmarked nodes can also be selectively remarked in a careful
way to avoid routing loop. If maintaining the minimum path
property for every node is required or the marked node set
becomes too small, the current destination oriented DAG is
flushed and a new spanning RBFT is constructed (and hence
the new DAG) through a global flooding.

Throughout the paper, we assume: (1) Each link is bi-
directional and the graph is connected, unweighted, and undi-
rected. (2) The graph structure is dynamic as a result of
link failure/recovery and/or node switching on/off (a frequent

operation in a sensor network). (3) Each node knows its
neighbors; that is, it always keeps its neighbor set up-to-date.
(4) There are sufficient routing requests in each interval of two
adjacent graph structural changes.

2. PRELIMINARIES

The GB Method. The GB method [3] includes two
algorithms: (1)Full reversal: At each iteration each node other
than the destination that has no outgoing link reverses the
directions of all its incoming links. (2)Partial reversal: Every
nodeu other than the destination keeps a list of its neighboring
nodesv that have reversed the direction of the corresponding
link (u, v)2. At each iteration each nodeu that has no outgoing
link reverses the directions of the links(u, v) for all v which
do not appear on its list, and empties the list. If no suchv
exists, nodeu reverses the directions of all incoming links
and empties the list.

Both reversals can be implemented by assigning “water-
mark” for each node and raising the watermark of a node based
on the above updating algorithms. The orientation of each
link is determined by the watermarks of two end nodes. The
destination always has the lowest watermark. Therefore, the
link reversal algorithms can be carried out by raising the wa-
termark of each sink node (other than destination) until there
is only one sink node left which is the destination. Although
both updating algorithms have several elegant features, they do
not maintain a minimum path for a node to the destination.
Besides, the total number of links reversed is not minimal.

For partial reversal, theisolated branch problemexists. Let
RT (w) be a set of nodes that are reachable to nodew. A
subgraph containingw is called anisolated branchif (1) w has
only one outgoing link and (2) any node inRT (w) connects
only nodes inRT (w). In Figure 1 (a), the branch rooted atw is
an isolated branch. When link(u, r) is broken, links(u, v) and
(u,w) are reversed in both full reversal and partial reversal.
In full reversal, the sequence of nodes that are involved in
reversal are:w → x → z → y. When a node is involved in
full reversal all its adjacent links reverse their directions. When
partial reversal is applied, adjacent links that are reversed in
the early iterations will not reverse their links again in the
current iteration. Each node has a list of adjacent nodes that
have reversed the directions of the corresponding links. For
example, at nodew due to the fact that there is no outgoing
link from w, w is revolved in the reversal and it will reverse
links (w, x) and (w, y), but not link (u,w) since it has been
reversed. Note that the above exemption (for link(u,w)) is
only good once. The subtle point is in resetting the list once
partial reversal is applied at the corresponding node. That is,
after the link reversal is applied at nodeu, nodeu erases its
memory of its past list. Consequently, the sequence of nodes
that are involved in reversals is:w → x → z → y → z →
x → w. The sequence of links that have been reversed in the
corresponding reversals is:{(w, x), (w, y)} → {(x, y), (x, z)}
→ {(y, z)} → {(w, y), (x, y), (y, z)} → {(x, z)} → {(w, x)}

2(u, v) represents an undirected link betweenu andv.

→ {(u,w)}. In this case, not only do all the links in the
isolated branch reverse their directionstwice (see Figure 1
(b)), but also all nodes (except nodey) apply partial reversal
twice!

Reversed Breadth-First Trees. In the GB method, a des-
tination oriented DAG is constructed from a given connected,
unweighted, and undirected graph by assigning a direction for
each link. One way to maintain the DAG is by generating a
reversed spanning tree rooted at the destination (root). Each
nodeu is assigned alevel L(u) such that for any link(u, v)
in the tree,L(u) > L(v) if and only if the link is directed
from u to v. Any link (u, v) not in the tree is directed from
u to v if and only if L(u) > L(v) or id(u) > id(v) when
L(u) = L(v), where each node has a distinct node id. The
orientation of its adjacent links can be directly derived by
comparing the levels of two end nodes. Basically,L(u) can be
considered a watermark for nodeu. Water always flows from
a higher mark to a lower mark. The destination has a lowest
watermark. However,L(u) does not provide useful routing
information such as the distance ofu to the destination.

In our approach, we tieL(u) to the distance betweenu and
the destination. We use the term level to represent a watermark
that is tied to the distance; otherwise, it is still called a
watermark. The destination-oriented DAG is constructed by
finding a spanningreversed breadth-first tree(RBFT) rooted
at the destination. A tree is called breadth-first if each node
at distanced from the root appears at depthd in the tree. In
fact, each node is connected to the root through a minimum
path (in terms of hop count). All the links in the networks
are classified intotree linksand non-tree links. If a tree link
is directed fromu to v, then u is called a child node ofv
(andv the parent node ofu). Let levelL be defined in such a
way thatL(u) = L(v) + 1 whereu is the child ofv. Clearly,
L(u) is precisely the distance ofu to the root. Figure 1 (c)
shows a DAG generated from a spanning RBFT. In Figure 1
(c) the number inside each node is the level of the node (i.e.,
the distance to the next node). Solid lines are tree-links and
dashed links are non tree-links. Note that not all DAGs can
be generated from a spanning RBFT. For example, Figure 1
(a) cannot be generated from any spanning RBFT.

Problems. We try to maintain an RBFT (not necessarily a
spanning one) for a given destination in a dynamic network.
Nodes in the RBFT are calledmarked nodeswith assigned
levels. Nodes outside the RBFT are calledunmarked nodes.
Still each unmarked node keeps its watermark used to deter-
mine the orientations of its adjacent links. The watermark of an
unmarked node is higher than that of a marked one. The des-
tination still has the lowest watermark. Two requirements are
given: (1) Destination Oriented DAG Requirement(DAGR):
The network as a whole (marked nodes and unmarked nodes)
should be maintained as a destination oriented DAG by as-
signing a direction for each link. (2)Level Requirement(LR):
The level associated with each marked nodeu corresponds to
the distance betweenu and the destination in the subnetwork
induced by marked nodes. In addition, the set of marked nodes

(which is dynamic) should be kept as large as possible so long
as no significant overhead is introduced in maintaining such a
set.

It is possible that we require a Strong Level Requirement
(SLR): The level associated with each marked nodeu corre-
sponds to the distance betweenu and the destination in the
whole network. Clearly, SLR covers LR. However, SLR is too
strong and is difficult to enforce. In the subsequent discussion,
we only consider LR. In [9], two weak level requirements
are discussed: Weak Level Requirement (WLR) and Upper-
Bounded Level Requirement (ULR).

The topology of a dynamic network can be changed by
three primitive operations:delete-a-link, add-a-link, andadd-
a-node. The delete-a-node can be considered as several delete-
a-link operations. Node switching on/off can be implemented
as add-a-node/delete-a-node. Although node movement (a typ-
ical operation in ad hoc wireless networks) is not considered
here, it can be viewed as a sequence of delete-a-node/delete-
a-link and add-a-node/add-a-link operations.

3. PROPOSEDAPPROACH

Basic Ideas. We first establish a spanning RBFT in the
network to meet both DAGR and LR. Then we try to maintain
DAGR and LR as invariants upon a sequence of delete-a-link,
add-a-link and add-a-node operations.

It is relatively easy to handle an add-a-node operation.
The new node can be marked or unmarked depending on the
marked/unmarked status of its neighbors. A safe and easy way
to ensure both DAGR and LR is put an unmarked status on
the new node and all adjacent nodes are directed away from
the node. However, the requirement for a large set of marked
nodes needs to mark the new node whenever possible. For an
add-a-link operation, the direction of the link is decided based
on the levels of two end nodes. The branch rooted at an end
node is trimmed if the levels of two end nodes differ by more
than 1.

The way to handle a delete-a-link operation is more in-
volved, especially when it is an outgoing link of a marked
node. When the deleted link is the outgoing link of an
unmarked node, the GB method is directly applied. Our
approach is applied when the deleted link is the outgoing
link of a marked node. Here we introduce some basic con-
cepts. A neighbor of a marked node can be classified into
marked/unmarkedand child node/non-child node. A discon-
nected branchrooted atu is a disconnected branch of an RBFT
as a result of the delete-a-link operation. That is, the link that
is deleted is the outgoing tree link ofu (see Figure 1 (c)).

A replacementv for node u’s parent node is a marked
neighbor that has the same level as the level ofu’s parent (i.e.,
L(v) = L(u) − 1). When replacement foru’s parent node is
found, since the level of nodeu remains unchanged, the levels
of its descendants remain the same. Asubstitutev for nodeu
is a non-child marked neighbor (but not a replacement) that
has the lowest level; that is,L(v) ≤ L(u)+1 based on the level
definition. Note that there are only two possibilities forv and
u: eitherL(v) = L(u) or L(v) = L(u)+1. When a substitute

.

.
.
.

w3 w4 w5 w6 w3 w4 w5 w6

..

v

w

w2w1

(b)

u

former parent link

marked node

remarked node

..

u

v

w

w2w1

(a)

replacement/substitute

Fig. 3. A disconnected branch rooted at nodeu: (a) before the updating
process (b) a former parent chain, a successful replacement/substitute atv,
and a multiple-child nodew.

for u’s parent node is used, since the level ofu increases, the
levels of its descendants also need to be adjusted.

The basic idea is to update the parent of each node in
a disconnected branch using replacement/substitute following
the branch down the tree. The updating process either com-
pletes successfully or switches to the GB method when it is
too costly to keep the level of a node in the branch up-to-
date. The updating process terminates successfully whenever a
replacement is found or all nodes in the branch have their sub-
stitutes. When a node cannot be updated by either replacement
or substitute, it is labelled asremarked, and the link to its child
node is reversed if it is a single-child node. All remarked nodes
are linearly chained throughformer parent links(which are
reverses of regular links). When a descendant is successfully
updated by a replacement/substitute, levels of nodes in the
former parent chain (if any) can be remarked by incrementing
the level by one from node to node until reaching nodeu.
When a descendant is successfully replaced/substituted, single-
child descendants can be at least substituted. It is rather
difficult to come up with a simple solution for the multiple-
child node case, since it has multiple branches. Each branch
of a multiple-child node will be trimmed unless a replacement
is found.

Figure 3 shows a disconnected branch rooted at nodeu.
Figure 3 (b) shows a former parent chain which is always
a “prefix” of the disconnected branch. A successful replace-
ment/substitute occurs at nodev, and levels of nodes in the
chain are remarked accordingly. If a replacement is found
at nodev, the updating process completes successfully. If it
is a substitute at nodev, the updating process continues at
descendants ofv. Nodew is a multiple-child node. Depending
on the frequency of various operations the set of marked
nodes reduces over the time. When the set becomes empty,
the proposed method is degraded to the BG method. In this
case, a global flooding is needed to construct a new spanning
RBFT and all nodes are remarked again.

RBFT Initialization. RBFT can be easily constructed in a
synchronous network. Level information is piggybacked with
a searchmessage which is passed level from level, one level
per round, from the destination node. In an asynchronous

network, messages travel at different speeds, so erroneous
parent designations may happen but they can be corrected as
follows: If nodeu initially identifies one of its neighbors, say
v, as its parent, and later obtains information from another
neighborw along a shorter path, nodeu can change its parent
designation tow. In this case, nodeu must inform its other
neighbors about its correction, so that they might also correct
theirs. The Dijkstra and Scholten’s diffusing algorithm [1] for
the termination-detection problem can be used so that each
node knows when to stop the process.

RBFT Update – add-a-node. To simplify the discussion,
we assume that all status such as marked/unmarked and levels
are stable when a delete-a-link, add-a-link, or add-a-node
operation is applied. A level of marked nodeu is stable if
it has a correct level. In fact, when marked nodeu is stable
|L(u)−L(v)| ≤ 1 for each marked neighborv of u. A network
is stable if all marked nodes have the correct levels. First of
all, let’s consider a safe and easy way to add a node which
ensures both DAGR and LR:
• safe-add: Unmark the new node and all adjacent links are

directed away from the node.
However, due to the requirement for a large set of marked

nodes, the new node needs to be marked whenever possible.
The following approach can be used:
• best-add: If levels of all marked nodes differ by no more

than 2 then levelL + 1 is assigned, whereL is the
minimum level of neighbors; otherwise, apply safe-add.

When the levels of marked neighbors differ by no more
than 2, the newly added node will not make a neighbor level
unstable. When the new node is assignedL + 1 (L is the
minimum level among them), its level is stable and levels of
all other nodes (including neighbors) are stable. Therefore,
the assignment is correct. Note that when the levels of marked
neighbors differ by more than 2, an unstable level occurs when
the new node is assignedL + 1. Note that stability can be
reached by iteratively adjusting levels of unstable neighbors.
This is an expensive process since the adjustment is not limited
to the one branch. Another option, as used in add-a-link, is
to trim branches rooted at unstable neighbors. However, this
approach will greatly reduce the size of the marked node set,
therefore, the safe-node procedure is adopted.

Consider adding a new node to Figure 1 which is adjacent
to nodesr, u, v andw. Since the levels of these nodes differ
by at most 2, the new node is assigned a level of 1. When a
new node is adjacent to noder and nodex, the new node is
unmarked and adjacent links are directed toward neighbors.

RBFT Update – add-a-link. When one of the end nodes of
the added link(u, v) is unmarked, the direction of the link is
determined by the watermarks/levels ofu and v. When both
end nodes are marked and their levels differ by no more than
1, its direction is decided by the levels and id’s ofu and v.
When the levels of two end nodes differ by more than 1, the
branch rooted at one end node will be trimmed. Note that the
adjustment approach can also be applied; however, this process
is too expensive since it is not limited to one branch.

add-a-link(u,v): /* upon adding link(u, v) */
1) If both u and v are marked nodes and their levels differ by

no more than 1, or, one is marked and the other is unmarked,
link (u, v) is added and its direction is decided by the levels
and ids ofu andv.

2) If both u and v are marked nodes but their levels differ by
more than 1, then the branch rooted at the end node with a
higher level is trimmed.

3) If both u andv are unmarked nodes, the direction of the link
is determined by the watermarks ofu andv.

delete-a-link(u): /* upon removal of an outgoing link of nodeu */
1) If u is unmarked, call the GB method which is either full or

partial reversal.
2) If u is marked, exit when the outgoing link is not a tree link;

otherwise, callupdate-level(u).

When a node trims its branch, it sends an unmark signal to
all its descendants (including remarked nodes in the former
parent chain). When a node receives an unmark signal it
changes its status to unmarked and forwards the signal to its
child nodes. In the example of Figure 1 (c), ifadd-a-link(r,w)
is called, the branch rooted atw will be trimmed. Note that
during the trimming process, when a marked node is unmarked
the directions of its adjacent links remain unchanged. In
Figure 1 (c), if add-a-link(v,x)is called, link (v, x) is added
and the direction of the link is pointed fromx to v. If add-a-
link(v,z) is called, link(v, z) is added but nodez is unmarked.

RBFT Update – delete-a-link. Operationdelete-a-link(u)
considers two cases: Whenu is marked and whenu is
unmarked. The GB method is used whenu is unmarked.
The rest of discussion focuses only on the case whenu is
marked. When adelete-a-link(v)removes an adjacent link of
nodeu, nothing else needs to be done if this link is not an
outgoing tree link; otherwise, nodeu as the initiator calls
update-level(u). Procedureupdate-level(v)is for either u or
a descendantv of u. Whenv is a multiple-child node without
a replacement,multiple-child-node(v)is called. Assume that
initially the former parent chain is empty.

When a node receives a network partition warning but
has an unmarked neighbor, it erases the warning signal and
stops; otherwise, it forwards the warning signal to its former
parent. When the node is the initiator and there is no adjacent
unmarked neighbor, a network partition is detected. Note that
the detection of a network partition is limited to only the
subgraph induced by the marked nodes.

In Figure 3 the 2-hop descendant set ofw is {w1, w2, w3,
w4, w5, w6}. Such a set is required to prevent a child node
(say w1) from selecting a descendant ofw (say w6) as its
replacement/substitute. At a multiple-child node, sayw in
Figure 3, if a replacement is found forw’s parent, nothing
else needs to be done; otherwise, the root of each branch (say
w1 in the figure) tries to find a replacement/substitute, the
corresponding branch is saved only if a replacement is found;
otherwise, the branch (excluding the rootw1) is trimmed.

update-level(v):
1) If a replacement exists, replacev’s parent, adjust the former

parent chain (if any), and exit.
2) If a substitute exists, substitutev’s parent and adjust the former

parent chain (if any).
a) If v is single-child node,v sends an update level signal

to its child node (if any), and exit.
b) If v is multiple-child node, callmultiple-child-node(v).

3) If neither replacement nor substitute exists, then
a) If v is a multiple-child node,v is remarked and call

multiple-child-node(v).
b) If v is a single-child node,v reverses the link(v, w)

wherew is the child node (v is called the former parent
node ofw), andv becomes a remarked node and then it
sends an update level signal tow.

c) If v has no child node,v sends a “network partition warn-
ing” signal to the initiatoru via the former parent chain.
When a node receives a “network partition warning” but
has an unmarked neighbor, it erases the warning signal
and stop; otherwise, it forwards the warning signal to its
former parent. When the node is the initiatoru and there
is no adjacent unmarked neighbor, a network partition is
detected.

RBFT Update – enlarge-the-set. If an unmarked node
has a marked neighbor, it can be marked again. This process
resembles adding a new node. When an unmarked nodeu has
a marked neighbor and the levels of marked neighbors differ
by no more than 2, and supposeL is the minimum level among
neighbors, nodeu can be remarked to levelL+1. This process
also needs to be controlled; otherwise, the remarking process
resembles a global flooding.

4. EXAMPLES AND PROPERTIES

Consider the example shown in Figure 4 (a). Assume that an
RBFT has been constructed and the level of each node is also
shown in Figure 4 (a). Suppose link(c, e) is removed, node
e finds a replacementb for c (since their levels are the same)
and nothing else needs to be done. When link(e, h) is broken,
nodeh cannot find a replacement. Sinceh is a multiple-child
node, it sends its 2-hop descendants set{k, l, n} to its child
nodesk and l, k finds its replacementg but l does not. Node
h adjusts its level based on the level ofk and the level ofl in
turn is based on that ofh. Node l trims its branch consisting
of noden only. When link(f, j) is removed,j cannot find a
replacement/substitute, nodesj and m form a former parent
chain. Nodem finds a replacementi andm adjusts the level
of j through the former parent chain.

When two new nodeso and p are added in Figure 4 (b),
since the levels ofo’s neighbors differ by more than 2, node
o is unmarked. The levels ofp’s neighbors differ by no more
than 2, so nodep is assigned a level of 3. During the enlarge-
the-set process, noden is remarked to 5 since the levels of its
neighbors differ by no more than 2.

In Figure 1 (c), when link(r, u) is removed, nodeu finds
a substitute nodev as its parent node, and the substitute for
w’s parent is still nodeu (but with a new level). Since node
w is a multiple-child node and neither nodey nor nodex

multiple-child-node(v):
1) Nodev forwards its 2-hop descendent set to its child nodes so

that each child knows its neighbors that are descendants ofv.
2) Each child node finds a replacement/substitute that is not in

the 2-hop descendent set forwarded fromv and sends back its
level to v if such a replacement/substitute is found.

3) If v is a remarked node and no adjustment is received from
its child nodes,v trims its branch (includingv), and exit;
otherwise,v adjusts its level based on the levels of all its
neighbors. Then for each child node, if a replacement is found,
nothing else needs to be done; otherwise,v adjusts its level
based on all its neighbors (excluding its child nodes) and trims
its corresponding branch (excluding itself).

has a replacement, nodez is trimmed. The adjusted levels for
nodesu, w, y and x are 3, 4, 5 and 5, respectively. Nodez
is re-assigned a level of 6 after the application of enlarge-the-
set. We say a node isaffectedby an adjustment if either its
adjacent tree links are changed or the direction of its adjacent
links are reversed. The following theorems show our major
results. The details of proofs can be found in [9].

Theorem 1: When the GB method is applied to an unmarked
node, only unmarked nodes are affected.

Clearly, both DAGR and LR requirements are ensured if
the GB method is applied to an unmarked node. Aboundary
node is an unmarked node with at least one adjacent marked
node. Clearly, a boundary node will not be affected by the
GB method since it has at least one outgoing link to a marked
node. Therefore, no marked node will be affected if the GB
method is applied to an unmarked node. DAGR is ensured by
the GB method. LR is also ensured since marked nodes are
unaffected.

Theorem 2: The proposed approach ensures both DAGR and
LR requirements when it is applied to a marked node.

The ways replacement and substitute are defined ensure the
LR requirement and the DAGR requirement within the marked
node set. When branches of an RBFT are trimmed, their
link directions remain unchanged. Therefore, DAGR is still
maintained within the unmarked node set. Based on Theorems
1 and 2, both DAGR and LR requirements are preserved in
the network (which includes marked and unmarked nodes).

The loop freedom is ensured if all operations (including
enlarge-the-set) occur in a sequential order and the next
operation occurs after the network is stabilized after the current
operation. Otherwise, routing loops will occur like in any
routing protocols where the distance information of a node is
dependant on the distance information stored in its neighbors.
The occurrences of loops depend on how fast various level
updates and trimming processes can be carried out. If the
propagation is relatively slow, a loop is likely to occur. For
example, the count-to-infinity problem may occur where a
node has raised its level several times before all its descendants
were able to update theirs. The node may end up selecting one
of its descendants as its parent node. The loop freedom can
be enforced in one of the following three ways: (1) Support
only replacementwith no substitute: loop freedom is ensured

00
a (root)

b

c

d e

f

g

h i

j

k
l

m

n

1

1

2

2 52

3

5 3

4

64

(b)

marked (tree link)

marked (non-tree link)

unmakred

3

o
p

a (root)

b

c

d e

f

g

h i

j

k
l

m

n

1

1

2

2 32

3

3 3

4

5

44

(a)

Fig. 4. An example.

if no node can raise its level and, hence, avoid the count-to-
infinity problem. (2) Support sequence numbers: Each level is
associated with a sequence number issued by the destination.
A replacement (substitute) operation can be issued if the corre-
sponding node has a higher or equal (higher) sequence number.
(3) Lock all descendants: A replacement/substitute operation
is performed after a confirmation is received from each child
node. This is an iterative process that also applies to each
child node. In this way, a replacement (substitute) operation
is performed only after all descendants have completed their
updates. This approach was first proposed in [7], [8].

5. PERFORMANCESTUDY

The performance and overhead of the proposed approach is
evaluated and compared with other approaches via simulation.
Four routing algorithms are evaluated, all of them based on
the idea of maintaining a destination oriented DAG, including
Gafni and Bertsekas’ full reversal (FR) and partial reversal
(PR) methods, the proposed method based on RBFT with
the constraint that only replacement is supported (RO), and
the proposed method without any constraint, supporting both
replacement and substitute (RS). For all four algorithms we
evaluate their performance in terms of the average length of
a routing path (in terms of hop count) and their message and
time costs. For the two RBFT-based algorithms (i.e., RO and
RS) we also evaluate their shrinking speeds of the RBFT,
which is useful in determining the interval between two calls
for global flooding.

Simulations are conducted using a discrete-event simulator.
To generate a random network,n nodes are randomly placed in
a confined100×100 area. A link is inserted between two nodes
if their distance is smaller than a given transmission ranger.
To achieve a given density,r is adjusted based on an average
node degreed to produce exactlynd/2 links in the network.
In the beginning of a simulation, one node is designated as
the destination, and a destination oriented DAG is established
by each algorithm. For FR and PR, the destination oriented
DAG is established by applying link reversal rules, and for
RO and RS, by a global flooding. Link faults are simulated by
removing randomly chosen links. Because network partition
cannot be properly handled by the GB methods, only links in
cycles can be removed. The maintenance operation triggered

TABLE I

PERFORMANCE AND OVERHEAD OF FOUR LINK REVERSAL ALGORITHMS.

Sparse Network Dense Network
Routing Len. Overhead Routing Len. Overhead

Algo. RND WM Step Msg RND WM Step Msg

FR 9.31 7.51 0.64 1.23 5.19 3.32 0.04 0.05
PR 9.20 7.44 0.66 1.46 5.19 3.32 0.04 0.05
RO 7.71 7.07 0.84 1.42 2.84 2.69 0.20 0.28
RS 7.39 7.02 1.05 2.06 2.72 2.68 0.27 0.39

by a link fault is simulated in a synchronized manner. Each
maintenance operation takes several steps. Control messages
are exchanged between neighbors, and each control message
takes exactly one step to be generated, sent and received by
neighbors. We assume that the interval between two link faults
are long enough so that every maintenance operation ends
before the starting of another one.

Two special cases are simulated to reveal the dynamic nature
of each algorithm. Case one is simulated on a relatively sparse
network with n = 100 and d = 6. After the destination
oriented DAG is established, 100 random link faults are gen-
erated and all four algorithms are separately simulated. In this
case, both the RBFT-based and non-RBFT-based algorithms
have similar costs; while the RBFT-based algorithms usually
provide shorter routing paths. Case two is simulated on a
relatively dense network withn = 100 and d = 18. This
time more random link faults (200 in total) are generated to
cancel out the higher redundancy offered in a dense network.
Because each node has more outgoing links and the average
distance from the destination is 2-3 hops, the cost of non-
RBFT-based algorithms is significantly lower than in the first
case. The RBFT-based algorithms have a relatively higher cost,
but provide significantly shorter routing paths than the non-
RBFT-based algorithms. The results of a single simulation
for each case is demonstrated in Figures 5-8. In addition, we
repeat each special case 100 times to produce the average
results shown in Table I.

First we compare the performance in terms of the average
length of a routing path. For the RBFT-based algorithms (i.e.,
RO and RS), marked nodes can find near optimal paths to the
destination by following the distance information embedded in
the RBFT. For the non-RBFT-based algorithms (i.e., FR and
PR), each node can choose a neighbor with the minimum wa-
termark as its next hop to the destination. However, watermark
does not provide precise distance information and, therefore,
may produce longer routing paths. Here we evaluate two
methods of choosing the next hop: random selection (RND)
or minimum-watermark-based selection (WM). These two
methods are also used by unmarked nodes in the RBFT-based
algorithms. According to Table I, when next hops of unmarked
nodes are randomly selected, the average routing distance of
the non-RBFT-based algorithms is about 20% longer than
the RBFT-based algorithms in relatively sparse networks and
about 80% longer in relatively dense networks. As shown in
Figure 5, the performance of the RBFT-based algorithms is
best at the beginning of the simulation and deteriorates as link

4.5

5

5.5

6

6.5

7

7.5

8

8.5

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 le
ng

th
 o

f a
 r

ou
tin

g
pa

th

Link fault sequence number

Average degree = 6

FR
PR
RO
RS

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 le
ng

th
 o

f a
 r

ou
tin

g
pa

th

Link fault sequence number

Average degree = 18

FR
PR
RO
RS

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 le
ng

th
 o

f a
 r

ou
tin

g
pa

th

Link fault sequence number

Average degree = 6

FR
PR
RO
RS

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 le
ng

th
 o

f a
 r

ou
tin

g
pa

th

Link fault sequence number

Average degree = 18

FR
PR
RO
RS

Fig. 5. Average length of a routing path in a relatively sparse network (the
left column) and a relatively dense network (the right column), where each
node selects its next hop randomly (the upper row) or based on the watermark
(the lower row).

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 s

te
ps

Link fault sequence number

Average degree = 6

FR
PR
RO
RS

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200

N
um

be
r

of
 s

te
ps

Link fault sequence number

Average degree = 18

FR
PR
RO
RS

Fig. 6. Total number of steps used to handle link faults in a relatively sparse
network (left) and a relatively dense network (right).

faults accumulate and the RBFT shrinks. When next hops are
selected based on watermarks, the non-RBFT-based algorithms
perform much better. However, their average routing distance
is still about 10% longer in the relatively sparse network
and about 30% longer in the relatively dense network. The
difference between the two RBFT-based algorithms, RO and
RS, are relatively small.

Then we compare the overheads in terms of the number of
control messages and steps. A RBFT has higher maintenance
cost than a normal destination oriented DAG for two reasons.
Firstly, the RBFT has higher frequency of maintenance oper-
ations. In a normal destination oriented DAG, no maintenance
is needed before a node loses all its outgoing links. In a
RBFT, more than one maintenance operation may be needed
before a node loses all its outgoing links. For example, a
node that originally has several replacements may switch its
parents for several times. Secondly, the RBFT has higher cost
per link change. In a normal destination oriented DAG, a
link reversal costs one step and one broadcast message. In
a RBFT, because each node maintains a list of its children
and grandchildren, a parent switch usually takes two steps and
three control messages, including a broadcast message sent by
the child, a message sent by the former parent to the former
grandparent and another message sent by the current parent
to the current grandparent. However, the RBFT can avoid

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 c

on
tr

ol
 m

es
sa

ge
s

Link fault sequence number

Average degree = 6

FR
PR
RO
RS

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160 180 200

N
um

be
r

of
 c

on
tr

ol
 m

es
sa

ge
s

Link fault sequence number

Average degree = 18

FR
PR
RO
RS

Fig. 7. Total number of control messages caused by link faults in a relatively
sparse network (left) and a relatively dense network (right).

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 m

ar
ke

d
no

de
s

(%
)

Link fault sequence number

Average degree = 6

RO
RS

50

55

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100 120 140 160 180 200

P
er

ce
nt

ag
e

of
 m

ar
ke

d
no

de
s

(%
)

Link fault sequence number

Average degree = 18

RO
RS

Fig. 8. Percentage of marked nodes in a relatively sparse (left) and a relatively
dense (right) network.

the high cost in some cases where the DAG is dramatically
changed and several links are reversed more than once. We
actually observed this situation in the first case study between
the 60th and the 70th link faults of the partial reversal (PR)
algorithm (see Figures 6 and 7).

According to Table I, the RBFT-based algorithms have
higher time costs (in steps) and message costs than the non-
RBFT-based algorithms. However, the maintenance costs of
the RBFT-based algorithms are still quite low and affordable
(less than 2 messages per link fault), and the cost of RO is
lower (less than 1.5 message per link fault). Figures 6 and
7 show that, in the relatively sparse network, maintenance
operations start from the very beginning of the simulation. In
the relatively dense network, there is almost no maintenance
cost for the first 40 (for RO and RS) and 90 (for FR and PR)
link faults. That explains why the maintenance cost is much
lower than that in the sparse network. In the dense network,
the chance that a faulty link is in the RBFT is lower, and is
significantly lower when a faulty link is the last outgoing link
of a node.

The RBFT-based algorithms also have the extra overhead of
periodical global flooding. The amortized cost of rebuilding
the RBFT is determined by the flooding frequency as well as
the cost of each flooding. In our case studies, establishing a
RBFT in the relatively sparse network takes 12 steps and 292
messages. It takes 7 steps and 282 messages in the relatively
dense network. Figure 8 shows that, in the relatively sparse
network, 85% (RS) and 45% (RO) nodes remain marked after
the first 100 link faults. In the relatively dense network, 95%
(RS) and 50% (RO) nodes remain marked after the first 200
link faults. If the rebuilding of the RBFT is triggered when
less than 50% nodes are marked, the amortized cost for the
replacement-only (RO) algorithm is 3 messages per link fault

in the sparse network and 1.5 messages per link fault in the
dense network. This cost is significantly higher than the regular
maintenance cost of the RBFT. Note that this cost is still much
lower than the SPT-based algorithm. Because in a RBFT-based
algorithm, all unmarked nodes can still reach the destination
by following the destination oriented DAG, it is acceptable
even if 50% nodes are unmarked. In a SPT-based algorithm
like DSDV, a node that is trimmed from the SPT loses its
connection to the destination until the next global flooding.
Therefore, flooding is much more frequent in those algorithms,
because it is unacceptable to have 50% nodes disconnected
from the destination. Similarly, the amortized cost of RS shall
be significantly lower than the SPT-based algorithms, as it can
maintain the RBFT much longer than RO.

6. CONCLUSIONS

We have proposed a new method of maintaining commu-
nication between nodes of a dynamic network. The idea is
based on Gafni and Bertsekas’ link reversal by maintaining a
DAG with destination as its sink node. Our approach is based
on augmenting the DAG with distance information captured
in a reversed breadth-first tree. This tree itself is dynamic
which may shrink (upon a delete operation) or grow (upon
a network flush through flooding). The proposed approach
can potentially be applied in ad hoc wireless networks. The
validity of the proposed approach has been backed up through
simulation. The simulation results show that the proposed
approach provides shorter loop-free paths than the original
GB method with lower overhead than that in the SPT-based
algorithm. In our future work, we will compare various trade-
offs more closely through simulation.

REFERENCES

[1] E. W. Dijkstra and C. S. Scholten. Termination detection for diffusing
computations.Information Processing Letters, 11(1):1–4, Aug. 1980.

[2] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century
challenges: Scalable coordination in sensor networks.Proc. of ACM
MOBICOM’99, pages 263–270, 1999.

[3] E. M. Gafni and D. P. Bertsekas. Distributed algorithms for generating
loop-free routes in neworks with frequently changing topology.IEEE
Transactions on Communications, 29(1):11–18, 1981.

[4] D. B. Johnson. Routing in ad hoc networks of mobile hosts.Proc. of
Workshop on Mobile Computing Systems and Applications, Dec. 1994.
158-163.

[5] P. Narvaez, K. Y. Siu, and H. Y. Tzeng. New dynamic algorithms for
shortest path tree computation.IEEE/ACM Transactions on Networking,
8(6):734–746, Dec. 2000.

[6] V. D. Park and M. S. Corson. A highly adaptive distributed routing
algorithm for mobile wireless networks.Proc. of IEEE INFOCOM, pages
1405–1413, 1997.

[7] J. Raju and J. J. Garcia-Luna-Aceves. A new approach to on-demand
loop-free multipath routing.Proceedings of the International Conference
on Computer Communications and Networks (IC3N), pages 522–527,
1999.

[8] S. Vutukury and J. J. Garcia-Luna-Aceves. MDVA: a distance-vector
multipath routing protocol.Proceedings of the IEEE INFOCOM, pages
557–564, 2001.

[9] J. Wu. An enhanced distributed solution for generating look-free routes
in dynamic networks. Technical Reports, FAU-CS-TR-01-03, Florida
Atlantic University, Jan. 2001.

