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Abstract

An important problem in wireless ad hoc and sensor networks is to select a few nodes to form a virtual backbone that supports routing and
other tasks such as area monitoring. Previous work in this area has focused on selecting a small virtual backbone for high efficiency. In this
paper, we propose the construction of a k-connected k-dominating set (k-CDS) as a backbone to balance efficiency and fault tolerance. Four
localized k-CDS construction protocols are proposed. The first protocol randomly selects virtual backbone nodes with a given probability pk ,
where pk depends on the value of k and network condition, such as network size and node density. The second one maintains a fixed backbone
node degree of Bk , where Bk also depends on the network condition. The third protocol is a deterministic approach. It extends Wu and Dai’s
coverage condition, which is originally designed for 1-CDS construction, to ensure the formation of a k-CDS. The last protocol is a hybrid
of probabilistic and deterministic approaches. It provides a generic framework that can convert many existing CDS algorithms into k-CDS
algorithms. These protocols are evaluated via a simulation study.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In wireless ad hoc and sensor networks (or simply wireless
networks), autonomous nodes form self-organized networks
without centralized control or infrastructure. These networks
can be modelled as unit disk graphs [10], where two nodes are
neighbors if they are within each other’s transmission range. To
support various network functions such as multi-hop commu-
nication and area monitoring, some wireless nodes are selected
to form a virtual backbone.

In many existing schemes [1,2,4,9,11,12,17,29,31,33,35],
virtual backbone nodes form a connected dominating set
(CDS) of the wireless network. A set of nodes is a dominating
set if all nodes in the network are either in this set or have a
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neighbor in this set. A dominating set is a CDS if the subgraph
induced from this dominating set is connected. For example,
both node sets {8} in Fig. 1(a) and {5, 6, 7, 8} in Fig. 1(b) are
CDSs in their corresponding networks. Applications of a CDS
in wireless networks include:

• Reducing routing overhead [35]. By removing all links be-
tween non-backbone nodes, the size and maintenance cost
of routing tables can be reduced. By using only backbone
nodes to forward broadcast packets, the excessive broadcast
redundancy can be avoided.

• Energy-efficient routing [9]. By putting non-backbone nodes
into periodical sleep mode, the energy consumption is greatly
reduced while network connectivity is still maintained by
backbone nodes.

• Area coverage [8]. In densely deployed sensor networks, the
node coverage of a CDS is a good approximation of area
coverage. That is, the deployment area is within the sensing
range of backbone nodes with high probability.

Previous studies in this area has focused on finding a min-
imal CDS for higher efficiency. However, recent studies
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Fig. 1. k-Connected k-dominating sets constructed by applying k-coverage
conditions with k = 1, 2, and 3. Virtual backbone nodes are represented by
double circles.

[3,6,18,22,23] suggested that it is equally important to main-
tain a certain degree of redundancy in the virtual backbone for
fault tolerance and routing flexibility. In wireless ad hoc net-
works, a node may fail due to accidental damage or energy de-
pletion; a wireless link may fade away during node movement.
In a wireless sensor network, it is desirable to have several sen-
sors monitor the same target and to let each sensor report via
different routes to avoid losing an important event.

We propose to construct a k-connected k-dominating set (or
simply k-CDS) as a backbone of wireless networks. A node
set is k-dominating if every node is either in the set or has k
neighbors in the set. A k-dominating set is a k-CDS if its induced
subgraph is k-vertex connected. A graph is k-vertex connected
if removing any k − 1 nodes from it does not cause a partition.
For example, backbone nodes 5, 6, 7, and 8 in Fig. 1(b) form a
2-CDS. Every non-backbone node has at least two neighboring
backbone nodes, and the subgraph consisting of all backbone
nodes is 2-vertex connected. Similarly, node set {2, 4, 5, 6, 7, 8}
in Fig. 1(c) is a 3-CDS. When any k − 1 nodes are removed
from a k-CDS, the remaining nodes still form a CDS (i.e., 1-
CDS). Therefore, a k-CDS as a virtual backbone can survive
failures of at least k − 1 nodes.

Four k-CDS construction protocols are proposed in this pa-
per. All those protocols are localized algorithms that rely only
on neighborhood information. In dynamic wireless networks, a
localized algorithm has many desirable properties such as low
cost and fast convergency. The first two protocols, called k-
Gossip and k-Grid, respectively, are probabilistic schemes that
construct a k-CDS with high probability. k-Gossip is a sim-
ple extension of an exiting probabilistic algorithm [17], where
each node becomes a backbone node with a given probabil-
ity pk . This algorithm has very low overhead, but the global
parameter pk that maintains a k-CDS with high probability
depends on network size and density. In addition, the random-
ized backbone node selection process usually produces a large
backbone. The k-Grid is inspired by two probabilistic topology
control schemes [7,26]; it reduces the k-CDS size via select-
ing Bk backbone nodes within the neighborhood of each node.
This protocol incurs a slight overhead of neighborhood density
estimation. Again, the global parameter Bk depends on net-
work size. The third protocol extends our early deterministic
CDS algorithm [33], where each node has a backbone status by

default and becomes a non-backbone node if a coverage condi-
tion is satisfied. The proposed k-coverage condition guarantees
that all backbone nodes form a k-CDS but has relatively high
computation overhead. We further introduce a hybrid paradigm
to extend many existing CDS algorithms for k-CDS formation.
In this scheme, a wireless network is randomly partitioned into
k subgraphs consisting of nodes with different colors (the prob-
abilistic part). A colored virtual backbone is constructed for
each subgraph using a traditional CDS algorithm (the deter-
ministic part). We prove that in dense wireless networks, the
union of all colored backbones is a k-CDS with high probabil-
ity. Simulation study is conducted to compare performances of
these protocols.

The remainder of this paper is organized as follows.
Section 2 reviews existing virtual backbone construction pro-
tocols, including both probabilistic and deterministic schemes,
and introduces the concept of k-CDS. In Section 3, we pro-
pose extensions of three virtual backbone protocols for k-CDS
construction. Section 4 presents the color-based k-CDS for-
mation paradigm. Section 5 gives simulation results, and
Section 6 concludes this paper.

2. Background and related work

In this section, we first introduce three existing localized
virtual backbone formation algorithms, two probabilistic and
one deterministic, that will be extended for k-CDS construction
in the next section. Then we review concepts of k-connectivity
and k-CDS, and algorithms that verify k-connectivity and form
a k-CDS.

2.1. Virtual backbone construction

A wireless network is usually modelled as a unit disk graph
[10] G = (V , E), where V is the set of wireless nodes and E
the set of wireless links. Each node in V is associated with a
coordination in 2-D or 3-D Euclidean space. A wireless link
(u, v) ∈ E if and only if the Euclidean distance between nodes
u and v is smaller than a uniform transmission range R. In real
wireless networks, the transmission range of each node may not
be a perfect disk. In this case, the network is a quasi-unit disk
graph [20], where a bidirectional link (u, v) definitely exists if
the distance between u and v is less than a certain value d < R,
and may or may not exist when the distance is larger than d
but smaller than R.

Many schemes have been proposed to construct a CDS as
a virtual backbone to support routing activities [1,2,4,9,11,12,
17,29,31,33,35] or maintain target coverage [27] in wireless
networks. A set V ′ ⊆ V is a CDS of network G, if all nodes in
V − V ′ are neighbors of (i.e., dominated by) a node in V ′ and,
in addition, the subgraph G[V ′] induced from V ′ is connected.
The problem of finding a minimum CDS is NP-complete. Cen-
tralized [12] and cluster-based [2,4] CDS algorithms provide
hard performance guarantees (i.e., upper bounds on CDS size)
in wireless networks. However, those schemes require either
global information or global coordination, which limit their ap-
plications to static or almost static networks [5]. In dynamic
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networks, most existing CDS formation algorithms are local-
ized; that is, the status of each node, backbone or non-backbone,
depends on its h-hop neighborhood information only with a
small h. By eliminating those long distance information propa-
gations in centralized or cluster-based schemes, a localized al-
gorithm can achieve fast convergence (O(1) rounds) with low
maintenance cost (O(1) messages per node).

Localized CDS algorithms are either probabilistic or deter-
ministic. A probabilistic scheme incurs very low overhead and
maintains a CDS with a high probability. A typical probabilistic
scheme is the gossip-based algorithm [17,15].

Gossip [17]: Each node has a backbone status with proba-
bility p.

The selection of backbone nodes in Gossip is purely random
without using any neighborhood information. Simulation re-
sults show that when p is larger than a threshold, these backbone
nodes form a CDS with very high probability. This threshold
depends on network size and density and is determined based
on experimental data. To maintain high success ratio (i.e, the
probability of constructing a CDS) under unpredictable network
conditions, the selection of p is usually conservative, which
produces a large backbone.

In wireless networks with a non-uniform node distribution,
grid-based [7,26] algorithms can be used to control backbone
node density. These schemes are originally proposed as topol-
ogy control schemes, but can be modified for virtual backbone
construction. The basic idea is that if every node has B back-
bone neighbors, then all backbone nodes form a CDS with high
probability. The value of B is also determined based on exper-
imental data.

Grid: Each node has at least B neighboring backbone neigh-
bors.

Deterministic algorithms [1,9,11,29,31,35] guarantee a CDS
in connected networks. They usually select fewer backbone
nodes than probabilistic schemes, because their selections are
“smarter” using 2-hop neighborhood information (or simply 2-
hop information). For each node v, its 2-hop information con-
sists of its neighbor set N(v) and neighbor sets N(u) of all
neighbors u ∈ N(v), and is collected via 2 rounds of “Hello”
exchanges among neighbors. The complete 2-hop information
of v is a subgraph of G, including v’s entire 2-hop neighbor
set, and all adjacent links of v’s 1-hop neighbors. Some algo-
rithms use v’s restricted 2-hop information, which is the sub-
graph G[N(v)] induced from v’s 1-hop neighbor set. One rea-
son to use restricted 2-hop information is that, in quasi-unit disk
graphs, a bidirectional link (u, w) between a 1-hop neighbor u
and a 2-hop neighbor w cannot be confirmed via 2 rounds of
“Hello” exchanges. Another reason is that applying a localized
algorithm on a smaller subgraph can reduce the computation
cost.

In [35], Wu and Li proposed a deterministic CDS al-
gorithm called marking process and two backbone node
pruning rules called Rules 1 and 2, which were later re-
placed by an enhanced rule called Rule k [11]. Stojmen-
ovic et al. [31] reduced the message cost of the marking
process using position information. Chen et al. [9] designed
a backbone formation protocol called Span, which is similar
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Fig. 2. Replacement paths between two neighbors u and w of node v. Gray
nodes have higher priorities than that of v.

to the combination of the marking process and Rules 1 and
2. Qayyum et al. [29] provided another backbone formation
scheme called MPR, and Adjih et al. [1] enhanced this scheme
to construct a smaller CDS. Wu and Dai [33] showed that all
above algorithms are special cases of the following coverage
condition.

Coverage condition [33]: Node v has a non-backbone status
if for any two neighbors u and w, a replacement path exists
that connects u and w via several intermediate nodes (if any)
with higher priorities than v.

When applying the coverage condition, each node tries to find
a replacement path between every pair of its neighbors. Fig. 2(a)
shows a sample replacement path (u, x1, x2, . . . , xm, w) that
connects two neighbors of the current node v. Since node
v knows only its 2-hop information, all intermediate nodes
x1, x2, . . . , xm are within 2 hops of v. In addition, all interme-
diate nodes must have a higher priority than node v. A priority
is a unique attribute of a node, such as node ID or the combi-
nation of node degree (i.e., |N(v)|) and node ID. Node priori-
ties establish a total order among nodes to avoid simultaneous
withdrawals that may cause a partition in the virtual backbone.
If every node pair of v’s neighbors are connected via high pri-
ority nodes, then v can be safely removed from the backbone
while the remaining nodes still form a CDS.

In Fig. 1(a), node 1 is a non-backbone node based on the
coverage condition, because its neighbors 2, 5, and 8 are di-
rectly connected. Node 2 has two neighbors 1 and 6 that are
not directly connected. However, nodes 1 and 6 are connected
via a replacement path (1, 5, 6). Here we assume node ID
is used as priority, and node 5 has a higher priority than 2.
Therefore, node 2 is a non-backbone node. Similarly, nodes
3, 4, 5, 6, and 7 are also non-backbone nodes. The resul-
tant backbone, consisting of node 8 only, is a CDS of the
network.

2.2. k-connectivity and k-domination

Many existing works [3,6,18,22,23] suggested to maintain k-
vertex connectivity (or simply k-connectivity) in wireless net-
works for fault tolerance and/or high throughput.

Definition 1 (k-vertex connectivity). A network G is k-vertex
connected if it is connected and removing any 1, 2, . . . , k − 1
nodes from G will not cause partition in G.
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An equivalent definition is that a network is k-vertex con-
nected if any two nodes in the network are connected via k-node
disjoint paths (Menger’s theorem [28]). The network in Fig. 1
is 3-connected, since any two nodes are connected via three
node disjoint paths. For example, nodes 1 and 3 are connected
via node disjoint paths (1, 8, 3), (1, 5, 7, 3), and (1, 2, 6, 4, 3).
Maximal flow (minimal cut) algorithms [14] are usually em-
ployed to discover all node disjoint paths between a pair of
source/sink nodes. A general purpose maximum flow algorithm
has a computation complexity of O(|V ||E|). If one only needs
to verify whether there are k-node disjoint paths between two
nodes, a variation of Edmonds and Karp’s flow augmentation
algorithm [13] can do the job in O(k|E|) time. This is because
each augmentation (i.e., the process of finding a new path) is a
breadth-first search in G, which takes O(|E|) time, and it takes
at most k augmentations to find (or verify the non-existence
of) k-node disjoint paths. The time complexity for verify the
k-connectivity of a graph G is O(k2|V ||E|).

Definition 2 (k-connected k-dominating set). A node set V ′ ⊆
V is a k-dominating set (or simply k-DS) of G if every node
not in V ′ has at least k neighboring nodes in V ′. A k-DS is
a k-connected k-dominating set (or simply k-CDS) of G if the
subgraph G[V ′] induced from V ′ is k-vertex connected.

The previous definition of CDS (also called 1-CDS) is a
special case of k-CDS with k = 1. Several schemes [3,22,23]
have been proposed to maintain the k-connectivity in topol-
ogy control. Basu and Redi [6] designed a centralized al-
gorithm for achieving 2-connectivity in wireless networks
using mobile nodes. Jorgic et al. [18] suggested to use local
k-connectivity to approximate global k-connectivity based on
neighborhood information. The problems of constructing dou-
ble dominating sets and k-dominating sets in general graphs
have been studied in [16,24]. In [19], three heuristic algo-
rithms are provided to construct a double dominating set.
Localized double dominating set algorithms were discussed
in [30]. The localized construction of a k-CDS has not been
discussed.

3. k-Extensions of existing CDS algorithms

In this section, we extend both probabilistic and deter-
ministic localized CDS algorithms (Gossip, Grid, and the
Wu and Dai’s coverage condition) to construct k-CDS in
wireless networks, and show limits of these extensions. In
the next section, we will introduce a new approach, color-
based coverage condition (CBCC), to overcome those limits.
These three localized K-CDS algorithms are compared in
Table 1.

3.1. Probabilistic approach

The gossip-based algorithm can be easily extended to con-
struct a k-CDS with high probability. The extended rule for
selecting backbone nodes is as follows:

Table 1
Comparison of k-CDS algorithms

Algorithm Guarantees Backbone Comm. Message Computation
k-CDS size (expected) rounds size cost

k-Gossip No npk 0 N/A O(1)

k-Grid No O(BkA) 1 O(1) O(�)

k-Coverage Yes O(k) · OPT 2 O(�) O(k�4)

CBCC No O(1) · OPT 2 O(�) O(�3)

k-Gossip: Each node has a backbone status with probability
pk .

Note that the above rule is almost identical to its 1-CDS ver-
sion. The difference is that the probability pk that any node be-
comes a backbone node is now a function of k. In k-Gossip, the
perfect value of pk , which constructs a small virtual backbone
while maintaining a k-CDS with high probability, depends not
only on k, but also on total node number n, deploy area A, and
transmission range R. Some analytical study has provided an
upper bound of pk that almost always achieves k coverage in
a network [21]. However, these upper bounds are conservative
estimations of the perfect pk , which usually need adjustments
based on experimental data. Fig. 3(a) shows our experiment re-
sults in a sample network, where 200 nodes with transmission
range 250 m are randomly deployed in a 1000 m × 1000 m re-
gion. For each k, there exists a pk that almost always (i.e., with
a probability very close to 1) selects a k-CDS. For example,
when k = 2, using pk = 48% constructs a 2-CDS with proba-
bility 91.0%. When k = 3, using pk = 62% achieves a success
ratio of 92.4%.

As in its 1-CDS counterpart, k-Gossip incurs very low over-
head at each node. It requires no information exchange among
neighbors and very low (O(1)) computation cost. Therefore,
the backbone construction process completes almost instanta-
neously. The major drawback is that it requires some global
information, such as network size and density, to be effective.
The expected number of backbone nodes in k-Gossip is npk . If
different values of pk are used under different circumstances,
global network information, such as node number n and de-
ployment area A, must be collected and broadcast to each node.
If the above global information is unknown and a single pk is
used for different network situations, the selection of pk must
be very conservative to maintain a k-CDS in the worst case
scenario, which yields a larger backbone size of O(n).

Similarly, we can extend the grid-based rule as follows:
k-Grid: Each node has at least Bk backbone neighbors.
In k-Grid, the ideal number of neighbors Bk depends less on

network size or density, and adapts better to a non-uniform node
distribution. Since the average density of backbone nodes is
O(Bk), the resultant backbone size is expected to be O(BkA).
The major problem in the k-Grid implementation is how to con-
trol the density of backbone nodes. The traditional clustering
approach [25] involves node status information propagation,
and suffers from a long expected delay O(log n). We propose
the following pure localized algorithm to approximate the k-
Grid rule.
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Fig. 3. Success ratio of probabilistic k-CDS protocols in random networks
with 200 nodes deployed in a 1000 × 1000 area. The transmission range is
250: (a) k-Gossip with varying pk , (b) k-Grid with varying Bk .

Randomized k-Grid
(1) Each node v computes its degree �(v) = |N(v)| via

exchanging “Hello” messages among neighbors.
(2) Each node v has a backbone status with probability

min{1,
Bk

�(v)+1 }.

In the above algorithm, the node density in the neighbor-
hood is estimated as �(v) + 1. Although a more accurate
estimation can be computed from degrees of all neighbors
(�(u) : u ∈ N(v)), such an enhancement requires 2-hop
information and doubles the message overhead. To com-
pute node degree, each node sends a “Hello” message with
O(1) size. The corresponding computing cost is O(�) per
node, where � is the maximal node degree. Fig. 3(b) shows
values of Bk that construct a k-CDS with high probability.
Especially, using Bk = 11 constructs a 2-CDS with prob-
ability 91.8%; using Bk = 14 constructs a 3-CDS with
probability 92.4%.

3.2. Deterministic approach

The original coverage condition [33] that constructs a 1-CDS
can be extended as follows to construct a k-CDS.

k-Coverage condition: Node v has a non-backbone status if
for any two neighbors u and w, k node disjoint replacement
paths exist that connect u and w via several intermediate nodes
(if any) with higher IDs than v.

In the original coverage condition, a node can be removed
from a CDS if all its neighbors are inter-connected via a re-
placement path. In the k-coverage condition, the criterion is
more strict: if a node is to be removed from a k-CDS, all its
neighbors must be k-connected with each other via higher pri-
ority nodes. This criterion is shown by Fig. 2(b), where two
neighbors u and w of the current node v are connected via node
disjoint paths P1, P2, . . . , Pk consisting of high priority (gray)
nodes. The following theorem shows that k-coverage condition
guarantees a k-CDS in a k-connected network.

Lemma 1. A node set V ′ is a k-CDS of network G if after
removing any k − 1 nodes from V ′, the remaining part of V ′ is
a CDS of the remaining part of G.

Proof. First, V ′ is a k-dominating set of G. Because otherwise,
there exists a node v in G with less than k neighbors in V ′.
After removing all those neighbors from V ′, node v is no longer
dominated by V ′, which contradicts the assumption that the
remainder of V ′ dominates the remainder of G. Second, G[V ′]
is still connected after removing any k − 1 nodes; that is, V ′ is
k-connected. �

Theorem 1. If the k-coverage condition is applied to a k-
connected network G, the resultant virtual backbone V ′ forms
a k-CDS of G.

Proof. Let V be the set of all nodes and X be the set of any
k − 1 nodes from V ′. Since G is k-connected, its subgraph
G

′
induced from V − X is also connected. Let v be any non-

backbone node in V − V ′. Based on the k-coverage condition,
any two neighbors u and w of v are connected via k-node
disjoint replacement paths. After removing k − 1 nodes from
G, u and w are still connected via at least one replacement path
in G

′
. Since all non-backbone nodes in G

′
satisfy the original

coverage condition, the remaining nodes in V −V ′ form a CDS
of G

′
[33]. From Lemma 1, V ′ is a k-CDS of G. �

When k = 1, the k-coverage condition is equivalent to the
original coverage condition. Fig. 1(b) shows a 2-CDS con-
structed by the k-coverage condition with k = 2. Here node
5 becomes a backbone node, because two of its neighbors,
nodes 1 and 6, are connected by only one replacement path. On
the other hand, nodes 1, 2, 3, and 4 are non-backbone nodes,
because all their neighbors are connected via 2-node disjoint
replacement paths. The resultant virtual backbone, containing
nodes 5, 6, 7, and 8, is a 2-CDS of the network. Similarly,
nodes 2, 4, 5, 6, 7, and 8 in Fig. 1(c) are selected as backbone
nodes when k = 3. Here we assume each node uses complete
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Fig. 4. For any node in region S, having k high priority nodes in each gray
region guarantees k-node disjoint replacement paths between each pair of its
neighbors.

2-hop information; otherwise, both nodes 1 and 3 will be back-
bone nodes. When node 1 uses restricted 2-hop information, it
can only find two replacement paths between neighbors 2 and
8: (2, 8) and (2, 5, 8). The third node disjoint path (2, 6, 8) is
invisible in restricted 2-hop information.

It has been proved in [11] that the expected size of the
resultant CDS derived from the original coverage condition
is O(1) times the size of a minimal CDS in an optimal so-
lution. Unfortunately, we cannot prove a similar bound for
k-CDS with k > 2. Another extension of the coverage con-
dition that holds this bound will be discussed in the next
section.

Theorem 2. The expected number of backbone nodes selected
by the k-coverage condition is O(k) times the size of a minimal
k-CDS.

Proof. Consider a square region S with side a = R/2
√

2
in Fig. 4. Neighbors of nodes in S are within a finite region
N(S). Without loss of generality, assume nodes are randomly
“thrown” into N(S) in the descending order of priority. Let X
be a random variable such that, after the first X nodes has been
thrown, there are at least k nodes in each of the 12 gray re-
gions. Afterwards, all nodes thrown into S has a non-backbone
status because their neighbors are k-connected via high priority
nodes in these gray regions. Therefore, the number of backbone
nodes in S is upper bounded by X.

Dai and Wu [11] showed that E[X] = O(1) for k = 1.
In order to get a bound for the general case, each node is
given a color c (1�c�k). Specifically, the node has the mth
highest priority in region N(S) has a color (m mod k) + 1. Let
Xi (1� i�k) be the random variable such that after throwing
kXi nodes, there is at least one node with color i in each of
these gray regions. From the proof in [11], it is easy to see that
E[Xi] = O(1). Since X� maxk

i=1(kXi)�k
∑k

i=1 Xi , we have

E[X]�k
∑k

i=1 E[Xi] = O(k2).
From above discussion, the expected backbone size in k-

coverage condition is O(k2A′), where A′ is the total number
of non-empty regions of size S in the deployment area. On the

other hand, the size of a minimal k-CDS is �(kA′). The ratio
of the two is O(k). �

The k-coverage condition depends on local information
only. No global information such as network size is required.
The size of the resultant virtual backbone is barely affected by
the network density. The k-coverage condition has the same
message size and rounds of information exchange as the orig-
inal coverage condition. When 2-hop information is collected,
each node sends two messages with size O(�). However,
the k-coverage condition is more complex than the original
condition. Each node needs to compute the vertex connec-
tivity among O(�2) pairs of neighbors using the maximal
flow algorithm with time complexity O(k|E|) as discussed in
Section 3.1. When the algorithm uses restricted 2-hop informa-
tion, |E| = O(�2) and it takes O(k�2) time to verify whether
two neighbors are k-connected. The overall computation cost
at each node is O(k�4), which is higher than that of the
original coverage condition (O(�3)). Although some density
reduction methods [34] can be employed to reduce � in very
dense networks, these methods also introduce extra overhead
and slower convergency.

4. Color-based k-CDS construction

This section introduces a hybrid paradigm that enables 1-
CDS algorithms to construct a k-CDS with high probability in
relatively dense networks. Unlike pure probabilistic schemes,
this approach does not depend on any network parameter. This
approach is also easier to implement and has lower overhead
than the deterministic algorithm discussed in the previous sec-
tion. We use Wu and Dai’s [33] coverage condition as an ex-
ample to show how to convert a CDS algorithm using this
paradigm.

4.1. A hybrid paradigm

As shown in the last section, when extending an existing
CDS algorithm to construct k-CDS, the original algorithm needs
to be modified, and usually becomes more complex in con-
cepts and implementation techniques. In this section, we pro-
pose a hybrid paradigm, called color-based k-CDS construction
(CBKC), to make the migration process simpler. The basic idea
is to randomly partition the network into several subnetworks
with different colors, and apply a traditional CDS algorithm
to each subnetwork. The first step is probabilistic; when the
network is sufficiently dense, colored nodes in each partition
almost always form a CDS of the original network. The sec-
ond step is deterministic; each colored backbone constructed
within a subnetwork by a CDS algorithm is still a CDS of the
entire network. Together, k-colored backbones form a k-CDS.
Since any CDS algorithm A can be used in constructions of
colored backbones, our color-based scheme provides a general
framework for extending a wide range of existing CDS algo-
rithms to construct k-CDS in relatively dense wireless networks.



F. Dai, J. Wu / J. Parallel Distrib. Comput. 66 (2006) 947–958 953

1

8

3

6

7

5

4

2

1

8

3

2

6

7

5

4

1

8

3

2

6

7

5

4

1

8

3

2

6

7

5

4

1

8

3

2

6

7

5

4

(a) (b) (c)

(d) (e)

Fig. 5. Color-based coverage condition. (a) Nodes with odd ID numbers are
of color 1 (gray), and nodes with even IDs are of color 2 (white). (b, c)
Two colored virtual backbones (represented by double circles) are constructed
using the coverage condition. Nodes with different colors and their adjacent
links (represented by dotted circles and lines) are not considered by CBCC-II.
(d) The final 2-CDS consists of all backbone nodes. (e) CBCC-II fails when
a colored backbone does not form a CDS of the entire network.

Color-based k-CDS construction (CBKC)
(1) Each node v selects a random color cv (1�cv �k) for

itself. As a result, the node set V is divided into k disjoint
subsets V1, V2, . . . , Vk , with each subset Vc containing
nodes with color c.

(2) For each color c, a localized CDS algorithm A is applied
to construct a virtual backbone V ′

c ⊂ Vc that covers the
original network.

(3) The final k-CDS is the union
⋃k

c=1 V ′
c of all colored vir-

tual backbones.

Fig. 5 illustrates CBKC process. In Fig. 5(a), all nodes are
randomly assigned color (1) gray and (2) white. In Fig. 5(b),
two gray nodes 5 and 7 are selected to form a CDS of the entire
network. In Fig. 5(c), a single node 8 is selected from white
nodes to form a CDS. The set of all backbone nodes {5, 7, 8}
forms a 2-CDS of the network, as shown by Fig. 5(d). The
following theorem shows that the above generic scheme almost
always constructs a k-CDS in dense networks.

Theorem 3. If all nodes in the network are randomly placed
in a finite square region, then CBKC almost always constructs
a k-CDS when the node number exceeds a constant nk .

Proof. We first show that each node set Vc formed at step 1
is a CDS of the network G with high probability when node
number is sufficiently large. It has been proved in [21] that given
a probability p and a radius r, there exists a n(p, r) such that
when n�n(p, r) nodes are randomly deployed in a unit square,
and each node is marked a color c with probability p, then the

entire region is almost always covered by those marked nodes
(i.e., every point in this region is within distance r of a marked
node). Suppose both the actual square area A and the actual

transmission range R are fixed. Let nk = n
(

1
k
, R

2
√

A

)
. It is

easy to see that when n�nk nodes are randomly and uniformly
divided into k sets V1, V2, . . . , Vk , each set Vc almost always
covers the region under transmission range R/2. It has been
proved in [32] that a set achieving area coverage with covering
radius R/2 is connected under transmission range R. Therefore,
each Vc is a CDS of G.

When each set Vc is a CDS of G, the virtual backbone V ′
c

selected by algorithm A in step 2 is also a CDS of G. Let
V ′ = ⋃k

c=1 V ′
c be the union of k-node disjoint CDSs of G. After

removing k − 1 from V ′, there is at least one V ′
c untouched.

Therefore, the remaining nodes in V ′ still form a CDS of G.
From Lemma 1, V ′ is a k-CDS of G. �

4.2. Color-based coverage condition

We use the coverage condition as an example to illustrate the
effectiveness of the color-based paradigm. When the original
coverage condition is extended using the CBKC framework,
only one modification is needed in the following revised rule:

Color-based coverage condition (CBCC): Node v has a non-
backbone status if for any two neighbors u and w, a replacement
path exists that connects u and w via several intermediate nodes
(if any) with the same color and higher priorities than that of v.

Fig. 5(a–d) shows an example of CBCC. Note that with the
CBCC, the search for a replacement path is now restricted to
nodes with the same color. This modification actually reduces
the average computation cost, but the worst case computa-
tion complexity is still the same (O(�3)). CBCC also inher-
its the constant probabilistic bound of the original coverage
condition [11].

Theorem 4. The expected number of backbone nodes selected
by CBCC is O(1) times the optimal value.

Proof. It was shown in [11] that the expected number of
backbone nodes selected by the original coverage condition
is O(A/R2), where A is the area of a rectangular deployment
region and R is the transmission range. Since the virtual back-
bone constructed by CBCC consists of k-colored backbones,
the total number of backbone nodes is O(kA/R2). Note that
any k-dominating set needs at least O(kA/R2) nodes to main-
tain k-coverage. Therefore, the expected backbone size of
CBCC is O(1) times the minimal k-dominating set, which is
no larger than a minimal k-CDS. �

To further reduce the message and computation cost, we con-
sider a more aggressive variation of CBCC. The original color-
based coverage condition (called CBCC-I) covers all neighbors
regardless of their colors; that is, any two neighbors of a non-
backbone node must be connected via a replacement path. For
example, node 3 in Fig. 5(e) is a backbone node in CBCC-I, be-
cause it has two neighbors 2 and 7 that are not connected via a
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gray replacement path. In the more aggressive variation (called
CBCC-II), only neighbors with the same color are considered.
As shown in Fig. 5(b), when a gray node is applying CBCC-
II, all white nodes are excluded from its 2-hop information.
The same rule also applies in white backbone construction, as
shown in Fig. 5(c).

Compared to CBCC-I, CBCC-II uses smaller “Hello” mes-
sages to collect 2-hop information, has lower computation cost,
and constructs a smaller backbone. However, the worst case
performance and overhead of both variations are the same.
Since CBCC-II is more aggressive than CBCC-I, its probabil-
ity of constructing a k-CDS is lower than CBCC-I. As shown in
Fig. 5(e), when node 3 uses CBCC-II to determine its status, it
becomes a non-backbone node because it has only one visible
neighbor 7. However, the resultant gray backbone {5, 7} is not
a CDS of the entire network, and union of all backbone nodes
{5, 7, 8} is not 2-dominating. The failure of node 8 will leave
node 2 uncovered. Note that, however, when the network is
very dense and node coverage is a good approximation of area
coverage, the probability is high that CBCC-II selects a CDS
of the entire network for each color, and the final backbone is
a k-CDS.

5. Simulation

We conduct simulation study to evaluate the performance of
three proposed k-CDS construction algorithms. Simulation re-
sults show that a small k-CDS can be formed with high prob-
ability and relatively low overhead in those schemes.

5.1. Implementation

All proposed protocols have been implemented on a custom
simulator ds. 1 All simulations are conducted in randomly gen-
erated static networks. We assume an ideal situation where all
messages are received by their neighbors without losses. Simu-
lations in more realistic networks with mobility, collision, and
contention will be future work. To generate a network, n nodes
are randomly placed in a 1000 m × 1000 m region. The trans-
mission range R is 250 m. Any two nodes with distance less
than R are considered neighbors. Each simulation is repeated
500 times, and uses the average data as the final result. Both
k-coverage condition and color-based schemes use restricted
2-hop information to reduce computation overhead.

All k-CDS protocols, k-Gossip, k-Grid, k-coverage condition
(k-Coverage), and two variations of the color-based coverage
condition (CBCC-I and CBCC-II), are evaluated with k = 2
and 3, where the following performance metrics are compared:

• Success ratio, defined as S/T , where T is total number of
networks that are k-connected, and S is the count that a pro-
tocol successfully forms a k-CDS. High success ratio is es-
sential for the reliability of a k-CDS protocol.

1 Check http://sourceforge.net/projects/wrss/ for more details of the simu-
lator.

• Backbone size, i.e., average number of backbone nodes se-
lected by a protocol. A smaller backbone size means lower
bandwidth and energy consumption by the k-CDS.

• Tolerable failure ratio. We define the failure ratio as the
fraction of failed backbone nodes. For a k-CDS protocol, its
tolerable failure ratio is the maximal average failure ratio
that the remaining backbone nodes still form a 1-CDS. It
indicates the robustness of a backbone.

• Message overhead, measured as the average number of bytes
sent by each node during the k-CDS construction process.
Note the number of messages sent by each node is equiva-
lent to the number of “Hello” exchange rounds, as shown in
Table 1.

Fig. 6 shows sample virtual backbones constructed by five
protocols with k = 2 in a network with 100 nodes. We selected
pk = 48% in k-Gossip for a high success ratio. The resultant
virtual backbone consists of 48 nodes and a 2-CDS of the net-
work (as shown in Fig. 6(a)). Such a backbone survives five
random node failures, but was disconnected after the sixth fail-
ure (as shown in Fig. 6(b)). In k-Grid, using a Bk = 11 produces
a large 4-CDS with 77 backbone nodes (as shown in Fig. 6(c)).
k-Coverage selects 53 nodes and forms a 2-CDS (as shown in
Fig. 6(d)). Both color-based schemes divide the network into
two equal partitions with different colors (represented by dif-
ferent node shapes). CBCC-I selects 57 backbone nodes (as
shown in Fig. 6(e)), and CBCC-I selects 45 backbone nodes (as
shown in Fig. 6(f)). Both schemes constructs a 2-CDS. Overall,
CBCC-II has the smallest backbone size, and k-Grid achieves
the highest connectivity in this specific network.

5.2. Simulation results

Success ratio: Fig. 7 compares the success ratio of four algo-
rithms in constructing 2-CDS and 3-CDS, when the node num-
ber n varies from 100 to 300. The probability pk in k-Gossip
and density Bk in k-Gossip are determined based on our previ-
ous experimental data in networks with 200 nodes (as shown
in Fig. 3). We assume that each node has no access to global
information, and uses fixed a pk or Bk in all networks.

As shown in Fig. 7, k-Coverage has 100% success ratio in
all circumstances, which confirms our claim in Theorem 1:
k-Coverage guarantees a k-CDS in all k-connected networks.
CBCC-I has a very high success ratio in relatively dense net-
works. For k = 2, it has 99% success ratio in networks with
more than 150 nodes. For k = 3, its success ratio is larger than
97% when n�200. Again, these results confirm our conclusion
in Theorem 3: the original color-based scheme almost always
forms a k-CDS in dense networks.

The success ratio of k-Gossip is low in sparse networks.
When n = 100, its success ratio is 22.0% when k = 2 and
12.9% when k = 3. However, its success ratio improves as
the network density increases, and exceeds 90% after n�200.
Similarly, there is no single perfect Bk in k-Grid for all net-
works. The success ratio is high in sparse networks and be-
comes lower in dense networks, but the difference is not as
obvious as in k-Gossip. CBCC-II has the lowest success ratio,

http://sourceforge.net/projects/wrss/
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Fig. 6. Sample virtual backbones constructed by different protocols with k = 2: (a) k-Gossip, pk = 48%, size 48, 2-CDS, (b) partition after 6 node failures,
(c) k-Grid, Bk = 11, size 72, 4-CDS, (d) k-Coverage, size 53, 2-CDS, (e) CBCC-I, size 57, 2-CDS, and (f) CBCC-II, size 45, 2-CDS.

except when k = 2 and n�150. Its best performance is 84%
for k = 2 and 73% for k = 3. The assumption behind CBCC-II
is that node coverage is a good approximation of area coverage
in very dense networks. Obviously, the simulated networks are
not sufficiently dense to make this scenario really happen.

Backbone size: Fig. 8 compares virtual backbone size in 2-
CDS and 3-CDS construction. k-Gossip usually produces the
largest backbone. This is because we use a fixed pk in the sim-
ulation, which selects npk nodes on average. That is, the back-

bone size increases with the node number n. Using a variable
pk in k-Gossip is possible, but requires global information and
experimental data to determine a perfect value of pk for each
network configuration. The first requirement incurs extra run-
time overhead, and the second increases the preparation cost.

The other three algorithms have relatively small backbone
sizes, which increases slightly as n increases. Among them, k-
Coverage has the best performance in dense networks, CBCC-
II produces the smallest backbone in sparse networks, and
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Fig. 7. Success ratio: (a) 2-CDS (pk = 48, Bk = 11), (b) 3-CDS (pk = 62,
Bk = 14).

CBCC-I has the worst performance in all scenarios. Since
CBCC-II can merely maintain a k-CDS in sparse networks, k-
Coverage is actually the best choice in terms of virtual back-
bone size. Our explanations to this phenomenon are: first, all
coverage condition-based schemes seems to have probabilistic
upper bound in dense networks (even though we cannot prove
it for k-Coverage). Therefore, we will not see a proportional
increase of the backbone size as in k-Gossip. Second, main-
taining k separate 1-CDSs incurs higher redundancy than pre-
serving a single k-CDS, which results in more backbone nodes
in the color-based schemes.

Tolerable failure ratio: When a k-CDS is constructed for
fault-tolerance, i.e., maintaining a 1-CDS with high probability,
its ability to survive a large percentage of backbone node fail-
ures is essential. As shown in Fig. 9(a), when all protocols aim
to construct a 2-CDS, they can usually tolerate 35–45% back-
bone node failures. Two exceptions are k-Gossip and CBCC-
II, which have low (15–25%) tolerable failure ratios in sparse
networks (n�150). In dense networks, k-Gossip can tolerate a
large percent (70%) of node failures.

Generally speaking, a large backbone tolerates more node
failures. One interesting observation is that both CBCC-I and
CBCC-II have similar tolerable failure ratios to that of k-Grid,
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Fig. 8. Backbone size: (a) 2-CDS (pk = 48, Bk = 11), (b) 3-CDS (pk = 62,
Bk = 14).

although k-Grid has a large backbone size. The color-based
schemes are more effective than k-Grid because they make
smarter decisions using 2-hop information. Another conclusion
is that, in dense networks, CBCC-II is as good as CBCC-I in
terms of fault tolerance.

Message overhead: Fig. 9(b) shows the average number of
bytes sent by each node during k-CDS construction. k-Gossip
does not use neighborhood information; each node sends no
messages. k-Grid uses 1-hop information and sends one mes-
sage with a fixed size. k-Coverage and two color-based schemes
use 2-hop information; each node sends two messages. The first
one has a fixed size; the size of the second one is proportional to
the number of neighbors. CBCC-II has a lower message over-
head than k-Coverage and CBCC-I, because its second message
carries only information of neighbors in the same color. When
k = 2, the average bytes sent by CBCC-II is roughly half that
sent by k-Coverage and CBCC-II.

Simulation results can be summarized as follows:

(1) k-Gossip has the lowest overhead and high success ratio
in dense networks, but also has serious problems. When a
fixed pk is used, it has low reliability in sparse networks
and a large backbone size in dense networks.
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Fig. 9. Reliability and overhead (k = 2): (a) tolerable failure ratio, (b) average
message overhead.

(2) k-Grid incurs a low message overhead and a reasonable
success ratio, but produces a relatively large backbone.

(3) k-Coverage guarantees 100% success ratio and selects a
smallest backbone in most scenarios. Its only weakness is
the relatively complicated algorithm and high computation
cost.

(4) CBCC-I has lower overhead than k-Coverage, and almost
always constructs a k-CDS in relatively dense networks.
The resultant backbone size is larger than in k-Coverage,
but much smaller than k-Gossip.

(5) CBCC-II has lower overhead than CBCC-I, but does not
show a satisfactory success ratio in our simulation. How-
ever, high success ratio may still be observed in very dense
networks.

6. Conclusion

This paper proposes four localized protocols that construct
a k-connected k-dominating set (k-CDS) as a virtual backbone
of wireless networks. Three protocols are extensions of exist-
ing CDS algorithms. The fourth scheme is a generic paradigm,

which enables many existing virtual backbone formation algo-
rithms to produce a k-CDS with high probability. Our simula-
tion results show that these protocols can select a small k-CDS
with relatively low overhead.

As future work, we plan to conduct extensive simulation
study on the performance of k-CDS in carrying out important
tasks such as routing and area monitoring. We will also try to
find a tighter probabilistic approximation ratio of the k-coverage
condition (if one exists).
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