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Abstract

A new class of interconnection networks, the hypernetworks, has been proposed recently.

Hypernetworks are characterized by hypergraphs. Compared with point-to-point networks, they

allow for increased resource-sharing and communication bandwidth utilization, and they are

especially suitable for optical interconnects. In this paper, we propose a scheme for deriving

new hypernetworks using hypergraph duals. As an example, we investigate the dual, K�

n
, of the

n-vertex complete graph Kn, and show that it has many desirable properties. We also present

a set of fundamental data communication algorithms for K�

n
. Our results indicate that the K�

n

hypernetwork is a useful and promising interconnection structure for high-performance parallel

and distributed computing systems.

Key Words: algorithm, communication, hypernetwork, interconnection network, optical intercon-
nect, parallel and distributed computing.

1 Introduction

The interprocessor communication performance is one of the most critical aspects of high-performance
parallel and distributed computing systems. Designing high bandwidth, low latency and scalable
interconnection networks is a great challenge faced by architecture designers. In recent years, we
have seen the trend of seeking interconnection alternatives that combine the best features of low-
dimensional networks, such as lower wire densities and higher wire sharing, and best features of
high-dimensional networks, such as smaller network diameters and higher potential scalability. Ev-
idently, such alternatives are no long pure point-to-point networks. One of the major driving forces
of these changes is the advance of optical interconnection technologies. Photons are non-charged
particles, and do not naturally interact. Consequently, there are many desirable characteristics of
optical interconnects: high speed (speed of light), increased fanout, high bandwidth, high reliabil-
ity, supporting longer interconnection lengths, exhibiting low power requirements, and immunity to
EMI with reduced crosstalk. These characteristics have signi�cant system con�guration and com-
plexity implications [5, 6, 7]. For example, multiple-bus con�gurations with increased scalability
are possible because of relaxed fanout and distance constraints. The optical fanout (which is the
maximum number of processors that can be attached to an optical connecting device) is not bound
by capacitance but by the power that must be delivered to each receiver to maintain a speci�ed
bit-error-rate, referred to as optical power budget. Processors can be arranged at increased physical
distances. Resource sharing, achieved by multiple accesses of optical interconnect devices using
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time-division multiplexing (TDM), wavelength division multiplexing (WDM), code division multi-
plexing (CDM), space division multiplexing (SDM), or hybrid multiplexing [8, 9], is a fundamental
advantage of optical networks. The emerging optical interconnect technologies will revolutionize
interconnection network topologies.

Realizing that conventional graph theory is no longer adequate for the design and analysis of
the new generation interconnection structures based on optical interconnect devices, a new class
of interconnection networks, the hypernetworks, was proposed recently [12]. The class of hyper-
networks is a generalization of point-to-point networks, and it contains point-to-point networks as
a subclass. In a hypernetwork, the physical communication medium (a hyperlink) is accessible to
multiple processors. The relaxation on the number of processors that can be connected by a link
provides more design alternatives so that greater 
exibilities in trade-o�s of contradicting design
goals are possible. The underlying graph theoretic tool for investigating hypernetworks is hyper-
graph theory [3]. Hypergraphs are used to model hypernetworks. Hypernetwork designs have been
formulated as a constrainted optimization problem of constructing hypergraphs.

In this paper, we propose a scheme for constructing a new hypernetwork from an existing one
using the concept of dual graph in hypergraph theory. We show that the dual H� of any given
hypergraph H is a hypergraph that have some properties related to the properties of H . Thus,
based on the properties of H , one can investigate the properties of H�. Since the structure of H
and its dual H� can be drastically di�erent, �nding hypergraph duals can be considered as a general
approach to the design of new hypernetworks. We demonstrate this approach by investigating the
structure of the dual K�

n of an n-vertex complete point-to-point network Kn. We present a set of
fundamental data communication algorithms forK�

n. Our results indicate that the K
�
n hypernetwork

is a useful and promising interconnection network for high-performance parallel and distributed
computing systems.

2 Preliminaries

Hypergraphs are used as underlying graph models of hypernetworks. A hypergraph [3] H = (V;E)
consists of a set V = fv1; v2; � � � ; vNg of vertices, and a set E = fe1; e2; � � � ; emg of hyperedges such
that each ei is a non-empty subset of V and [mi=1ei = V . An edge e contains a vertex v if v 2 e.
If ei � ej implies that i = j, then H is a simple hypergraph. When the cardinality of an edge e,
denoted as jej, is 1, it corresponds to a sel
oop edge. If all the edges have cardinality 2, then H

is a graph that corresponds to a point-to-point network. In this paper, we only consider simple
hypergraphs (and graphs). A hypergraph of n vertices and m hyperedges can also be de�ned by
its n�m incidence matrix A with columns representing edges and rows representing vertices such
that ai;j = 0 if vi 62 ej , ai;j = 1 if vi 2 ej .

For a subset J of f1; 2; � � � ; mg, we call the hypergraph H 0(V 0; E0) such that E0 = feiji 2 Jg
and V 0 = [ei2E0ei the partial hypergraph of H generated by the set J. For a subset U of V , we call
the hypergraph H 00(V 00; E00) such that E00 = fei \ U j1 � i � m; ei \ U 6= �g and V 00 = [e2E00e the
sub-hypergraph induced by the set U.

The degree dH(vi) of vi in H is the number of edges in V that contain vi. A hypergraph in which
all the vertices have the same degree is said to be regular. The degree of hypergraph H , denoted by
�(H), is de�ned as �(H) = maxvi2V dH(vi). A regular hypergraph of degree k is called k-regular
hypergraph. The rank r(H) and antirank s(H) of a hypergraphH is de�ned as r(H) = max1�j�m jej j
and s(H) = min1�j�m jej j, respectively. We say that H is a uniform hypergraph if r(H) = s(H).
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A uniform hypergraph of rank k is called k-uniform hypergraph. A hypergraph is vertex (resp.
hyperedge) symmetric if for its any two vertices (resp. hyperedges) vi and vj (resp. ei and ej) there
is an automorphism of the hypergraph that maps vi to vj (resp. ei to ej).

In a hypergraph H , a path of length q is de�ned as a sequence (vi1 ; ej1 ; vi2 ; ej2 ; � � � ; ejq ; viq+1)
such that (1) vi1 ; vi2 ; � � � ; viq+1 are all distinct vertices of H ; (2) ej1 ; ej2 ; � � � ; ejq are all distinct edges
of H ; and (3) vik ; vik+1 2 ejk for k = 1; 2; � � � ; q. A path from vi to vj , i 6= j, is a path in H with
its end vertices being vi and vj . A hypergraph is connected if there is a path connecting any two
vertices. We only consider connected hypergraphs. A hypergraph is linear if jei \ ej j � 1 for i 6= j,
i.e., two distinct buses share at most one common vertex. For any two distinct vertices vi and vj
in a hypergraph H , the distance between them, denoted by dis(vi; vj), is the length of the shortest
path connecting them in H . Note that dis(vi; vi) = 0. The diameter of a hypergraph H , denoted
by �(H), is de�ned by �(H) = maxvi;vj2H dis(vi; vj). More concepts in hypergraph theory can be
found in [3].

A hypernetwork M is a network whose underlying structure is a hypergraph H , in which each
vertex vi corresponds to a unique processor Pi of M , and each hyperedge ej corresponds to a
connector that connects the processors represented by the vertices in ej . A connector is loosely
de�ned as an electronic or a photonic component through which messages are transmitted between
connected processors, not necessarily simultaneously, in constant time. We call a connector a
hyperlink.

The simplest implementation of a hyperlink is by a bus. Basically, there are two optical bus
con�gurations: dual-bus and folded bus. In a duel-bus system, every processor is connected to two
unidirectional buses, and one bus attachment consists of a pair of transmitter (e.g. laser diode) and
receiver (e.g. photo diode). The two buses transmit in opposite directions so that there is a path
from every processor to every other processor in the system. In a folded bus system, each processor
is attached to the bus twice, one attachment for reading and the other for writing. The bus is
divided into two sections, the up-stream section for processors to send data, and the down-stream
section for processors to receive data. With TDM or CDM, the performance of dual-bus and folded
bus can be improved. A photonic crossbar switch is a hyperlink. A star coupler [9, 10], which
uses WDM, can be considered either as a generalized bus structure or a photonic switch, is another
implementation of a hyperlink. In the rest of this paper, the following pairs of terms are used
interchangeably: (hyper)edges and (hyper)links, vertices and processors, point-to-point networks
and graphs, and hypernetworks and hypergraphs.

The problem of designing e�cient interconnection networks can be considered as a constrainted
optimization problem. For example, the goal of designing point-to-point networks is to �nd well-
structured graphs (whose ranks are �xed, as a constant 2) with small degrees and diameters. In
hypernetwork design, the relaxation on the number of processors that can be connected by a hy-
perlink (i.e. the rank of the hyperlink) provides more design alternatives so that greater 
exibilities
in trade-o�s of contradicting design goals are possible.

3 Dual Hypernetworks and K�
n
Hypernetwork

The dual of a hypergraph H = (V;E) with vertex set V = fv1; v2; � � � ; vNg and hyperedge set
E = fe1; e2; � � � ; emg is a hypergraph H� = (V �; E�) with vertex set V � = fv�1; v

�
2; � � � ; v

�
mg and

hyperedge set E� = fe�1; e
�
2; � � � ; e

�
Ng such that v

�
j corresponds to ej with hyperedges e

�
i = fv�j jvi 2 ej

in Hg. In other words, H� is obtained from H by interchanging of vertices and hyperedges in H .
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Proposition 1 H is r-uniform if and only if H� is r-regular.

Proposition 2 The dual of a linear hypergraph is also linear.

Proposition 3 A hypergraph H is vertex symmetric if and only if H� is hyperedge symmetric.

Proposition 4 The dual of a sub-hypergraph of H is a partial hypergraph of the dual hypergraph
H�.

Proposition 5 �(H)� 1 � �(H�) � �(H) + 1.

Propositions 1 - 4 are obvious. We prove Proposition 5. We �rst show that (1) �(H�) � �(H)+1,
and then show that (2) �(H) � 1 � �(H�). Let ei and ej be any two distinct hyperedges in
H . Let vk be any vertex in ei and vl be any vertex in ej . If vk and vl are connected by a
hyperedge in H , then the distance between v�i and v�j in H� is 1. Otherwise, consider a shortest
path P = (vk = vk0 ; ei1; vk1 ; ei2 ; vk2 ; � � � ; eip; vkp = vl) from vk to vl in H , where all vkr 's are distinct
and all eis 's are distinct. The length of P is p. Clearly, P � = (v�i ; e

�
k; v

�
i1
; e�k1 ; v

�
i2
; e�k2 ; � � � ; v

�
ip ; e

�
kp
; v�j )

is a path from v�k to v
�
l in H

�. The length of P � is p+ 1. Thus, (1) is true. Suppose that �(H) = d,
and (2) is not true, i.e. d� 2 = �(H)� 2 � �(H�). Then, by (1) we have �(H) � �(H�)+1 � d� 1,
which contradicts the assumption that �(H) = d. Therefore, (2) is true.

Propositions 1 - 5 show that some properties of the dual hypergraph H� of a given hypergraph
H can be derived from properties of H . For example, if H is a ring, then H� is isomorphic to
H . However, in general, the structures of H and its dual H� can be drastically di�erent. Finding
hypergraph duals can be considered as a general approach to the design of new hypernetworks.

We consider using the dual of a point-to-point graph as a hypernetwork. Properly labeling the
vertices and hyperedges in a hypergraph can greatly simplify its use as a communication network.
Vertex labels are used as processor addresses. Similarly, hyperedge labels are used as the unique
names of hyperlinks. There are many ways to label the vertices and hyperedges of K�

n. Although
all di�erent labeling schemes of K�

n are equivalent because the symmetries of K�
n (Proposition 3),

we choose to de�ne the K�
n hypernetwork using an interesting scheme by which the connectivity of

K�
n can be concisely derived.

De�nition 1 Let Nn = n(n � 1)=2 for n > 0. The K�
n hypernetwork, n � 3, is a hypergraph that

consists of Nn vertices, v1; v2; :::; vNn, and n hyperlinks, e1; e2; :::; en. The connectivity of K
�
n can be

recursively de�ned as follows:

(1) K�
3 consists of three vertices v1, v2, and v3, and three hyperlinks e1 = fv1; v2g, e2 = fv1; v3g,
and e3 = fv2; v3g.

(2) K�
n is constructed from K�

n�1 by adding n� 1 more vertices vNn�1+1; vNn�1+2; :::; vNn�1+n�1 =
vNn, and one more hyperlink en such that all the newly added n� 1 vertices are connected to
en and vNn�1+m is connected to hyperlink em, 1 � m � n � 1.

For a vertex vi in K
�
n, we use i as its vertex label. Similarly, we use j as the label of hyperedge ej

of K�
n. By a simple induction on n, it is easy to show that (K�

n)
� is a complete graph of n vertices.

By the properties of Kn and above Propositions, we observe the following fact:

Fact 1 K�
n is 2-regular, (n� 1)-uniform, linear, and vertex and hyperedge symmetric; the diameter

of K�
n is 1 if n = 3, and 2 if n > 3.
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In the following alternative de�nition, the connectivity ofK�
n hypernetwork is explicitly speci�ed.

De�nition 2 Let Nn = n(n� 1)=2 for n > 0. The K�
n hypernetwork, where n � 3, is a hypergraph

that consists of Nn vertices, v1; v2; � � � ; vNn, and n hyperlinks, e1; e2; � � � ; en. For any two distinct
vertices vi and vj, let ui = minfrjNr � ig, uj = minfsjNs � jg, li = i�Nui�1, and lj = j�Nuj�1.
vi and vj are connected by a hyperlink if and only if one of the following conditions holds: (1)
ui = uj; (2) ui = lj; (3) li = uj; or (4) li = lj. Furthermore, if (1) or (2) holds then vi; vj 2 eui ,
and if (3) or (4) holds then vi; vj 2 eli.

By a simple induction on n, one can easily see that De�nitions 1 and 2 use the same vertex and
hyperedge labeling schemes and they are equivalent. It is easy to verify that any vertex vi of K

�
n is

connected to exactly two hyperedges el and eu, where u = minfrjNr � ig, and l = i � Nu�1. We
call hyperedges el and eu the lower and upper hyperedge of v, respectively. For any l and u such
that 1 � l < u � n, there is a unique vertex vi that is connected to hyperedges el and eu, and
furthermore, i = Nu�1 + l. Therefore, a vertex vi of K

�
n can be uniquely identi�ed by an ordered

pair hl; ui, 1 � l < u � n.
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Figure 1: Bus implementation of K�
6 .

The notion of hl; ui can be interpreted in another way. If we group those vertices that share the
same upper hyperlink, n� 1 groups (also called blocks) are formed. The k-th (k > 0) block contain
k vertices. Vertices within each block are labeled based on the location of their lower hyperlinks
in the block. Given vertex hl; ui, u � 1 is the block number of of the block it resides, and l is the
rank of this vertex within the block. As shown in the next section, being able to address processors
by hyperlinks is a useful property of the K�

n hypernetwork for the design and analysis of parallel
algorithms. Figure 1 shows the bus implementation of the K�

6 hypernetwork, whose corresponding
K6 is shown in Figure 2.

The uniformity ( i.e. all hyperlinks consist of the same number of processors), regularity (i.e. all
the processors are included in the same number of hyperlinks), and linearity (i.e. no two hyperlink
share more than one processor) of the K�

n hypernetwork have important implications. Consider the
bus-based implementations of hypernetworks. Here, uniformity and linearity imply that the bus
loads are evenly distributed and minimized, and regularity implies simpli�ed processor design since
all the processors have the same interface circuitry. Vertex (hyperedge) symmetry is important for
a hypergraph to be used as a hypernetwork, since it allows for all the processors (hyperlinks) to be
treated as identical. Both De�nitions 1 and 2 can be used to expand an existing K�

n hypernetwork
to a K�

n+1 hypernetwork without modifying the connections in K�
n. The property that a larger

5



v
e

e

e
e

e

e

e
e

e

e

 1

 2

 3
 4

 5

 6

 7
 8

 11

 12

1

v
 6

v
 2

v
 3

v
 4

v
 5

*

*

* *

*

*

*

*

*

* *

*

e
 15
*

*e
 14

 13
e*

 9
e*

 10
e

*

*

*
*

*

Figure 2: Complete graph K6 corresponding to K�
6 .

hypernetwork can be easily constructed using smaller hypernetworks in the same class, when en-
hancement is desired, is call the the expandability of a hypernetwork. Clearly, the K�

n hypernetwork
is easy to expand. The incremental expandability of K�

n is discussed in Section 5. Proposition 5
indicates that K�

n can be partitioned into several smaller hypernetworks in the K�
n family. This

property is useful in designing parallel algorithms for K�
n using the divide-and-conquer paradigm.

The K�
n hypernetwork may become infeasible when n is large. To improve scalability, we can

use K�
n as a building block to construct more complicated hypernetworks. For example, we may

arrange N = n2(n � 1)2=4 processors as an [n(n � 1)=2]� [n(n � 1)2] grid, and connect each row
and column as a K�

n. The resulting \two-dimensional" hypernetwork is regular, uniform, and linear.
Both the degree and diameter of this hypernetwork are 4, and the rank of this hypernetwork is n�1,
which is O(N1=4). Similarly, we can construct a \three-dimensional" regular, uniform and linear
hypernetworks of N processors with degree and diameter 6, and rank O(N1=6). Compared with
the K�

n hypernetwork, these \multidimensional" hypernetworks have decreased processor failure
tolerance and improved hyperlink failure tolerance.

4 Data Communication Algorithms for the K�
n
Hypernetwork

In this section, we demonstrate how to use the vertex and hyperedge labels to design data communi-
cation algorithms for the K�

n hypernetwork. For simplicity, we assume bidirectional bus implemen-
tation of hyperlinks. We also assume that transmitting a word between two processors connected by
a bus takes constant time. Since a bus is shared by all its connected processors, at most one pair of
processors can communicate at any time instance. Bus communications can be either synchronous
and asynchronous. In asynchronous mode communication, arbiters are needed to allocate the bus to
processors in an on-line fashion. We assume a synchronous mode communication. Bus allocations,
although operated dynamically, are predetermined by an o�-line scheduling algorithm. This bus
operational mode has been used in [4] for analyzing a multiple-bus interprocessor connection struc-
ture. We consider four types communication operations: one-to-one communications, one-to-many
communications, many-to-one communications and many-to-many communications. We show that
the performances of our algorithms are either optimal (ROUTE and BROADCAST) or optimal
within a constant factor (PERMUTATION, REDUCTION, TOTAL EXCHANGE and PREFIX).
These communication algorithms constitute a powerful set of tools for designing parallel algorithms
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on the K�
n hypernetwork.

4.1 One-to-One Communications

We consider two fundamental one-to-one communication operations, shortest path routing between
two processors, and data exchange using a permutation.

4.1.1 Shortest path routing

The following algorithm can be used for data routing from vi = hli; uii to vj = hlj; uji in K�
n.

procedure ROUTE(hli; uii, hlj; uji)
begin

if ui = uj or ui = lj then
hli; uii sends the message to hui; lji using hyperlink eui

else if li = uj or li = lj then
hli; uii sends the message to hlj; uji using hyperlink eli

else /* hli; uii and hlj ; uji do not share a hyperlink */

l = minfli; ljg;
if li = l then

hli; uii sends the message to hlj; uji through the path (hli; uii; eli; hli; uji; euj ; hlj; uji)
else hli; uii sends the message to hlj ; uji through the path (hli; uii; eui; hlj; uii; elj ; hlj; uji)

end

It is easy to verify that for any given pair of processors vi and vj in the K�
n hypernetwork,

algorithm ROUTE routes a message from vi to vj , or vise verser, along a shortest path.

4.1.2 Permutation

Permutation is a bijection on the set of processors in K�
n. In a permutation communication opera-

tion, each processor ha; bi sends a message to another processor ha0; b0i, and each processor receives
a message from exactly one processor. We use a set of Nn ordered processor pairs (ha; bi; ha0; b0i) to
represent an permutation. In each pair (ha; bi; ha0; b0i), ha; bi and ha0; b0i are called the source proces-
sor and destination processor of the pair, respectively. We use A(ha;bi;ha0;b0i) to denote a message to
be sent from ha; bi to ha0; b0i. A permutation is called a total permutation if ha; bi 6= ha0; b0i for all
pairs; otherwise, it is called a partial permutation. We only consider total permutations, since a
partial permutation can be carried out using a total permutation by masking out those processors
which are mapped to themselves.

We present an algorithm PERMUTATION which performs a permutation operation e�ciently.
Depending on the values of b and b0, algorithm PERMUTATION routes messages A(ha;bi;ha0;b0i) along
di�erent paths of length at most 2. There are three cases: (i) b = b0, (ii) b < b0 and (iii) b > b0.
For each of these three cases, algorithm PERMUTATION routes the messages strictly along paths
shown in Figure 3. Based on these path patterns, we call a message a two-step message if it follows a
path of length 2 (cases (ii) and (iii)) ; otherwise, it is called a one-step message (case (i)). Note that
the source and destination processors of a two-step message may be distance 1 apart. Algorithm
PERMUTATION consists of two phases. In the �rst phase, all one-step messages are sent to their
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Figure 3: Routing paths used by algorithm PERMUTATION for messages A(ha;bi;ha0;b0i). (i) b = b0,
(ii) b < b0, and (iii) b > b0.

destinations, and all two-step messages are routed to the intermediate processors of their routing
paths. In the second phase, all two-step messages are sent to their destinations. In each phase, a
hyperlink may be used to transmit more than one message.

procedure PERMUTATION
begin

/* Phase 1 */

for all hyperlinks ek do in parallel
Use ek to sequentially transmit those messages with ek assigned for their �rst step

endfor
/* Phase 2 */

for all hyperlinks ek do in parallel

Use ek to sequentially transmit the two-step messages with ek assigned for their second step
endfor

end

Observing Figure 3, we see the following: In the �rst phase, ek is used to transmit messages
of source processors ha; ki. Since there are at most n � 1 such source processors in a permutation,
the number of messages to be transmitted using ek is at most n � 1. Thus, the total number of
parallel message transmission steps in the �rst phase is no more than n � 1. In the second phase,
each ek is used to transmit messages to destination processors ha0; ki and there are at most n � 1
such destination processors in a permutation. The total number of parallel message transmission
steps in the second phase is also at most n � 1. Hence, the total number of steps performed by
PERMUTATION is 2(n � 1). There are Nn = n(n � 1)=2 messages. Each message destinates a
distinct processor in a total permutation and all these n(n� 1)=2 messages need to be transmitted.
At least (n� 1)=2 parallel message transmission steps are required in the worst case because there
are n hyperlinks in K�

n. Hence, the performance of PERMUTATION is optimal within a constant
factor.

Careful readers may notice that hyperlink e1 is not used in PERMUTATION. If we let e1 to
share some communication load, the permutation performance can be slightly improved. In fact, by
evenly distributing the communication load among hyperlinks, the performances of all algorithms
presented in this paper, excluding ROUTE and BROADCAST, can be slightly improved. However,
the modi�ed algorithms will be more complicated.
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4.2 One-to-Many Communication

Consider the following algorithm for broadcasting a message from any processor v = hl; ui to all the
other processors in K�

n.

procedure BROADCAST(hl; ui)
begin

hl; ui broadcasts the message to all the processors connected by eu;
for all the processors ha; bi such that a = u or b = u do in parallel

if a = u then ha; bi broadcasts the message to processors in fhi; biji > ag using eb;
if b = u then ha; bi broadcasts the message to processors in fha; jijj 6= bg using ea

endfor

end

The processors in the K�
n hypernetwork can be partitioned into �ve mutually disjoint groups.

group 1 : fha; bi j a = l ^ b = ug

group 2 : fha; bi j a = ug

group 3 : fha; bi j a 6= l ^ b = ug

group 4 : fha; bi j a > ug

group 5 : fha; bi j a < u ^ b 6= ug

Group 1 contains one processor, the source processor. After the �rst step, processors in group 2
and group 3 receive the message. In the second step, each processor in group 4 receives the message
from a processor in group 2 via the �rst if statement, and each processor in group 5 receives the
message from a processor in group 3 via the second if statement. The performance of BROADCAST
is optimal.

4.3 Many-to-One Communication

A reduction (or census, or fan-in) function is de�ned as a commutative and associative operation
on a set of values, such as �nding maximum, addition, logic or, etc. It can be carried out using a
many-to-one communication operation. The following is an algorithm for performing a reduction
operation speci�ed by the operator + on a set of Nn values A1; A2; � � � ; ANn stored in v1; v2; � � � ; vNn,
and putting the �nal result in v1. We assume that each processor vi has a working register Bi (which
is initialized to Ai). Again, we use an ordered pair hl; ui of hyperlinks to represent a processor.
Ahl;ui and Bhl;ui represent A and B values associated with hl; ui, respectively. Given any processor
hl; ui, procedure TRANSFORM is used to transform hl; ui to h1; 2i and all the other ha; bi in K�

n to
ha0; b0i.

procedure TRANSFORM (hl; ui)
begin

for all ha; bi do in parallel
if a = 1 and b = 2 then ha0; b0i := hl; ui

9



else if a = 1 then ha0; b0i := hminfl; bg;maxfl; bgi
else if a = 2 then ha0; b0i := hminfu; bg;maxfu; bgi
else if a = l then ha0; b0i := h1; bi
else if b = u then ha0; b0i := h2; ai

endfor

end

By the symmetry of the K�
n hypernetwork, we know that the new identities ha0; b0i assigned to

processors of K�
n satisfy the connectivities of K�

n. We use v1 = h1; 2i to collect the �nal result.

procedure REDUCTION (h1; 2i, +)
begin

for all h1; ji such that j � 3 do in parallel
h1; ji receives Ah2;ji from h2; ji using ej and performs Bh1;ji := Bh1;ji + Ah2;ji

endfor;
for k = 3 to n do in parallel

for all h1; ji do in parallel

if j = 2 then h1; ji receives Bh1;ki from ej and performs Bh1;ji := Bh1;ji +Bh1;ki

else if j > k then h1; ji receives Ahk;ji from ej and performs Bh1;ji := Bh1;ji + Ahk;ji

else do nothing
endfor

endfor
end

It is easy to verify that algorithm REDUCTION takes n� 1 parallel communication steps. We
know that the total number of + operations performed by reduction onK�

n is Nn�1 = n(n�1)=2�1,
each operand is used at least once, and at least one communication operation of transmitting an
operand or a partial result is required for each + operation. Since there are n hyperlinks in K�

n,
at least (n� 1)=2 parallel communication steps, one value transmitted per hyperlink, are required.
Thus, the communication performance of REDUCTION is optimal within a constant factor.

4.4 Many-to-Many Communication

We consider two cases: all-to-all communication and pre�x computation. In all-to-all communica-
tion, each processor sends a message to all the other processors. It is also called the total exchange
operation. The pre�x computation can be considered as a many-to-many operation since many
results are computed using many operands.

4.4.1 All-to-all communication

We can obtain an all-to-all communication by modifying the algorithm REDUCTION. The operator
used is set union. After n � 1 steps, v1 receives all messages. Then, using two additional steps,
v1 broadcast all the Nn messages to all processors in K�

n. A drawback of this algorithm is that
each step transmits O(Nn) messages along a hyperlink. We give another algorithm with improved
performance.
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procedure TOTAL EXCHANGE
begin

/* Phase 1: intra-block total-exchange */

for j = 3 to n do in parallel

for i = 1 to j � 1 do
Processor hi; ji broadcasts its message to processors in fha; jija 6= ig using ej

endfor

endfor;
Denote the set of messages processor hi; ji has by Shi;ji;
/* Phase 2: inter-block total-exchange */

for i = 2 to n do
h1; ii broadcasts Sh1;ii to processors in fh1; bijb 6= ig using e1;
for all the processors in fh1; bijb 6= ig do in parallel

h1; bi broadcasts Sh1;ii it received to processors in fha; bija 6= 1g using eb
endfor

endfor

end
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Figure 4: Communication patterns used by TOTAL EXCHANGE on K�
6 .

Algorithm TOTAL EXCHANGE has two phases. The �rst phase consists of n�1 parallel intra-
block broadcasting operations. The second phase consists of n � 1 iterations, each iteration has
two parallel communication steps, one for inter-block broadcasting and the other for intra-block
broadcasting. For K�

6 , the communication patterns of TOTAL EXCHANGE are shown in Figure 4.
The correctness of the algorithm directly follows from the de�nition of K�

n and the communication
patterns used.

The number of parallel communication steps performed by TOTAL EXCHANGE is optimal
within a constant factor since the lower bound 
(n) of the number of communication steps for a
many-to-one communication operation holds for the total-exchange operations. Each processor is
connected to two hyperlinks, and it needs to receive Nn � 1 = O(n2) messages. If all messages
have the same number w of bits, each processor needs to receive O(wn2) bits. With respect to the
number of steps performed, the number of bits (which is O(wn) transmitted along a hyperlink per
step) is optimal within a constant factor.
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4.4.2 Pre�x Computation

Given a sequence S = (a1; a1; � � � ; aN) of N elements in a domain D, and an associative operation

 on D, the pre�x problem is to compute zi = a1 
 a2 
 � � � 
 ai for 1 � i � N . We use Ai to
denote the operand value ai initially stored in processor vi.

procedure PREFIX (
)
begin

/* Phase 1 */

for j = 3 to n do in parallel

for i = 1 to j � 1 do
Processor hi; ji broadcasts Ahi;ji to processors in fha; jija > ig using ej

endfor

endfor
Each processor ha; bi performs 
 operation on all the A-values received, including its own A-value,
and let the result be Xha;bi;
/* Phase 2 */

for j = 2 to n� 1 do in parallel

Processor hj � 1; ji broadcasts Xhj�1;ji to processors in fhj � 1; bijb > jg using ej�1
endfor
Assume that the value received by processor ha; bi is Yha;bi;
/* Phase 3 */

for j = 3 to n do in parallel
for i = 1 to j � 2 do

Processor hi; ji broadcasts Yhi;ji to processors in fha; jija 6= ig using ej
endfor

endfor
for all the processors ha; bi do in parallel

ha; bi performs 
 operation on Xha;bi and all the Y -values it received
endfor

end
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Figure 5: Communication patterns used by PREFIX on K�
6 .

Algorithm PREFIX consists of three phases. The �rst phase performs pre�x computation for all
blocks in parallel. This phase only requires n� 2 intra-block communications using di�erent hyper-
links. The second phase performs one parallel inter-block broadcasting operation. The third phase
also uses n � 2 parallel intra-block broadcasting operations. For K�

6 , the communication patterns
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are shown in Figure 5. Generalizing these patterns using the de�nition of K�
n, we can conclude that

algorithm PREFIX carries out a pre�x computation using 2n�3 parallel communication steps, one
operand or partial result value is broadcast along a hyperlink per step.

The 
(n) lower bound for the number of communication steps of REDUCTION holds for the
pre�x computation. Since one value is broadcast per hyperlink in each communication step of
algorithm PREFIX, the communication performance of PREFIX is optimal within a constant factor.

5 Incomplete K�
n
Hypernetwork

We observe that the gap, Nn � Nn�1 = n � 1, between K�
n�1 and K�

n is not a constant. It is
desirable that hypernetworks can be expanded with incremental size increases. For any given N
such that Nn�1 < N < Nn, we can construct a sub-hypergraph H of K�

n such that jV (H)j = N

and jE(H)j= n. Such a sub-hypergraph is called an incomplete K�
n hypergraph.

De�nition 3 The incomplete K�
n hypernetwork, where n > 3, of N vertices such that Nn�1 < N <

Nn is the sub-hypergraph of K�
n induced by vertex set fv1; v2; � � � ; vNg.

In other words, an incomplete K�
n hypernetwork of N vertices, Nn�1 < N < Nn, is de�ned by

the incidence matrix obtained from the incidence matrix of K�
n by deleting its rows corresponding

vertices vN+1; vN+2; � � � ; vNn. The vertices in an incomplete K�
n can be divided into n � 1 blocks.

The i-th block has i vertices for 1 � i < n � 1 as in K�
n, and the (n � 1)-th block has at least one

vertex and at most n � 2 vertices. For convenience, we call the (n � 1)-th block of an incomplete
K�

n its incomplete block. We use kn to denote the number of vertices in the incomplete block of an
incomplete K�

n. An incomplete K
�
n is linear and 2-regular, but it is not uniform, and not (vertex and

hyperedge) symmetric. It is not di�cult to prove that the diameter of incomplete K�
n hypernetwork,

where n > 3, is 2.
It is easy to verify that the shortest path routing communication algorithm ROUTE and data

broadcasting algorithm BROADCAST presented in the previous section can be directly used for
the incomplete K�

n hypernetwork. Consider the reduction operation. Since an incomplete K�
n

is not symmetric, we cannot use procedure TRANSFORM to relabel the processors. We adapt
REDUCTION given in the previous section to an incomplete K�

n by adding one operation: send
the �nal result from h1; 2i to the �nal destination hl; ui using hyperlinks in at most two additional
steps. It is simple to verify that the all-to-all data communication algorithm TOTAL EXCHANGE
presented in the previous section can be used for the incomplete K�

n hypernetwork. This is done by
treating all the processors vj such that j > N in the K�

n hypernetwork as dummy processors that
do not participate in communications.

Algorithm PERMUTATION cannot be used for permutation operations on an incomplete K�
n.

We present a modi�ed algorithm PERMUTATION INC. Depending on the values of b and b0,
algorithm PERMUTATION INC routes messages A(ha;bi;ha;b0i) along di�erent paths of length at
most 3. There are seven cases: (i) b = b0, (ii) (ii) b < b0 6= n, (iii) b0 < b 6= n, (iv) b0 = n and
b � dkn=2e, (v) b = n and b0 � dkn=2e, (vi) b0 = n and b > dkn=2e, and (vii) b = n and b0 > dkn=2e.
Any message A(ha;bi;ha0;b0i) in a total permutation satis�es one and only one of these seven conditions.
For each of these cases, algorithm PERMUTATION INC routes the messages strictly along paths
shown in Figure 6. Algorithm PERMUTATION INC is similar to PERMUTATION. It consists
of three phases. In the �rst phase, all one-step messages are sent to their destinations, and all
two-step and three-step messages are routed to the next processors on their routing paths. In
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Figure 6: Routing paths used by algorithm PERMUTATION INC for messages A(ha;bi;ha0;b0i). (i)
b = b0, (ii) (ii) b < b0 6= n, (iii) b0 < b 6= n, (iv) b0 = n and b � dkn=2e, (v) b = n and b0 � dkn=2e,
(vi) b0 = n and b > dkn=2e, and (vii) b = n and b0 > dkn=2e.

the second phase, all two-step messages are sent to their destinations, and all three-step messages
are sent to the third processors on their routing paths. Then, in the third phase, all three-step
messages reach their destinations. As in algorithm PERMUTATION, in each phase of algorithm
PERMUTATION INC, messages are transmitted on di�erent hyperlinks in parallel, and messages
are transmitted on the same hyperlink sequentially. Observe Figure 6. In the �rst phase, the number
of messages transmitted using hyperlink en (cases (i), (v) and (vii)) is at most kn, which is less
than n� 1 (since the incomplete block has at most n� 2 processors), and the number of messages
transmitted on any other hyperlink eb is also no more than n � 2 (since the number of messages
with ha; bi as their source processors is at most n � 2). Hence, the �rst phase has no more than
n�2 parallel message transmission steps. In the second phase, the number of messages transmitted
using eb0 , b

0 6= 1 and b0 6= 2, is at most n � 2, because there are at most n � 2 two-step messages
with destination processors ha0; b0i such that b0 6= 1 and b0 6= 2 (Note: actually, there is no processor
ha0; b0i with b0 = 1 in K�

N). The messages transmitted using e1 satisfy conditions (iv) and (v), and
the total number of such messages is no more than kn+1. The messages transmitted using e2 satisfy
(vi) and (vii) or b0 = 2, and there are at most 2(kn�dkn=2e)+1 � kn+1 such messages. Therefore,
the second phase has no more than maxfn� 2; kn + 1g parallel message transmission steps. In the
third phase, the number of messages transmitted using en is no more than kn, because there are at
most kn three-step messages with processors in the incomplete block as destination processors. The
number of messages transmitted using any other eb0 is also no more than kn, because the number
of three-step messages with processors in the incomplete block as source processors is no more than
kn. The total number of parallel message transmission steps performed by PERMUTATION INC
for any permutation operation is no more than n � 2 + maxfn � 2; kn + 1g + kn. The worst case
is that kn = n � 2, which results in 3n � 5 steps. Comparing with the 
(n) lower bound, the
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performance of PERMUTATION INC is optimal within a constant factor.
The algorithm PREFIX given in the previous section also cannot be directly applied to an

incomplete K�
n hypernetwork. We have to modify it to obtain an algorithm with similar performance.

procedure PREFIX INC (
)
begin

/* Phase 1 */

Same as the Phase 1 of PREFIX;
/* Phase 2 */

for j = 2 to n� 2 do in parallel

Processor hj � 1; ji broadcasts its X-value to processors in fhj � 1; bijb > jg using ej�1
endfor

Assume that the value received by processor ha; bi is Yha;bi;
/* Phase 3 */

for j = 3 to n� 1 do in parallel

for i = 1 to j � 2 do
Processor hi; ji broadcasts its Y -value to processors in fha; jija 6= ig using ej

endfor
endfor

for all the processors ha; bi such that b 6= n do in parallel
ha; bi performs 
 operation on Xha;bi and all the Y -values it received,
and let the result be Zha;bi

endfor

/* Phase 4 */

Use ROUTE to send Zhn�2;n�1i from hn� 2; n� 1i to h1; ni;
h1; ni broadcasts Zhn�2;n�1i to processors in fa; nja 6= 1g using en;
for all the processors ha; bi such that b = n do in parallel

Zha;bi := Xha;bi 
 Zhn�2;n�1i

endfor
end
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Figure 7: Communication patterns used by PREFIX INC on an incomplete K�
6 of 13 processors.

Algorithm PREFIX INC is partitioned into four phases. The �rst phase performs pre�x compu-
tation for all blocks in parallel as in PREFIX. This phase requires n�3 intra-block communications
using di�erent hyperlinks. The second phase and the third phase are the same as the corresponding
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phases in PREFIX, but all communication and computation are restricted to the �rst n�2 blocks of
the incomplete K�

n. These two phase have one and n�3 parallel communication steps, respectively.
The fourth phase requires 3 communication steps to broadcast the partial result of hn�2; n�1i, the
rightmost processor of the (n� 2)-th block, to the (n� 1)-th block (which is the incomplete block).
It is easy to verify that algorithm PREFIX INC carries out a pre�x computation on an incomplete
K�

n hypernetwork in 2n�2 parallel communication steps, which is optimal within a constant factor.
For an incomplete K�

6 of 13 processors, the communication patterns are shown in Figure 7.

6 Discussions

We say that a linear hypernetwork is non-trivial if it has at least 4 vertices, at least 2 hyperlinks,
and each hyperlink contains at least 2 vertices. Let H+ = fH j H is a non-trivial linear, regular
hypergraph of degree 2 g. We call the hypernetworks in H+ the class of degree-2 linear, regular
hypernetworks. For any H in H+, its dual H� is a point-to-point network. However, the dual
of a point-to-point network may not be in H+. For example, if a vertex v of a point-to-point
network G has degree 1, then its corresponding hyperlink e� in G� contains exactly one vertex, and
consequently, G� is not in H+. Let G+ = fGj G is a point-to-point network such that it has at least
4 edge, and each vertex of G has degree greater than 1 g. Clearly, for any point-to-point network
G in G+, we can obtain a non-trivial, linear, degree-2 hypernetwork H in H+ by applying the dual
operation to G. It is easy to prove that for any hypernetwork H in H+, �(H) � 2. Those degree-2
hypernetworks that are excluded from H+ are not interesting.

Among all the hypergraphs derived from duals of point-to-point graphs, the dual, K�
n, of the

n-vertex complete graph Kn has the smallest m=N ratio when N is �xed and smallest diameter,
where m and N is the number of hyperedges and vertices, respectively. We have discussed the
K�

n hypernetwork in much detail. Between the high cost/performance of fully connected network
Kn and low cost/performance of linearly connected network (a ring) are a set of point-to-point
networks that constitute a wide range of trade-o�s in cost and performance. For example, H can be
point-to-point networks such as hypercubes, star graphs [1], chordal rings (including barrel shifters)
[2], etc. The duals of these point-to-point networks also constitute a wide range of trade-o�s in cost
and performance.

In any point-to-point network, the number of links is at least equal to the number of processors
(except a tree, in which the number of links is one less the number of processors). A trivial lower
bound on the time complexity of parallel algorithm on a point-to-point network is the best sequential
time divided by the number of processors. But in a hypernetwork, it is desirable that the number
of hyperlinks is less than the number of processors due to cost-e�ectiveness consideration. In such
a situation, the number of hyperlinks, the rank of hyperlinks and the hypernetwork degree are
important factors in determining the lower bounds of time complexities of parallel algorithms, as
demonstrated in our algorithm analysis. If we replace each bus by a crossbar switch, more e�cient
algorithms for the communication and computing problems we considered are possible. For example,
using crossbar switches as hyperlinks of K�

n, reduction and pre�x operations can be implemented
in O(logn) time, which is optimal. The O(n2) time complexity of total-exchange operation on the
K�

n hypernetwork cannot be improved because of the constant degree of K
�
n. We do not know if the

time complexity of permutation operation on the K�
n hypernetwork with crossbar switch hyperlinks

can be reduced to O(logn).
Most discussions in this paper are restricted to constant degree (more speci�cally, degree 2) linear
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hypernetworks. Our approach can be easily generalized to the design and analysis of variable-degree
and/or non-linear hypernetworks. Hypernetwork design is formulated as a constrainted hypergraph
construction optimization problem. Hypergraph theory plays a central role in hypernetwork design
and analysis. Simple hypergraph theory concepts, such as Steiner triple systems and hypergraph
duals, have led to several interesting hypernetwork topologies as demonstrated in [13] and this
paper. It has been pointed out in [12] that hypernetwork designs are also related to block design
problems in combinatorial mathematics, which in turn are related to algebra and number theory.
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