Dual of a Complete Graph as an Interconnection Network

S.Q. Zheng † and Jie Wu ‡

† Dept. of Computer Science, University of Texas at Dallas, Richards on, TX 75083-0688 ‡ Dept. of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL 33431

Abstract

A new class of interconnection networks, the hypernetworks, has been proposed recently. Hypernetworks are characterized by hypergraphs. Compared with point-to-point networks, they allow for increased resource-sharing and communication bandwidth utilization, and they are especially suitable for optical interconnects. In this paper, we propose a scheme for deriving new hypernetworks using hypergraph duals. As an example, we investigate the dual, K_n^* , of the n-vertex complete graph K_n , and show that it has many desirable properties. We also present a set of fundamental data communication algorithms for K_n^* . Our results indicate that the K_n^* hypernetwork is a useful and promising interconnection structure for high-performance parallel and distributed computing systems.

Key Words: algorithm, communication, hypernetwork, interconnection network, optical interconnect, parallel and distributed computing.

1 Introduction

The interprocessor communication performance is one of the most critical aspects of high-performance parallel and distributed computing systems. Designing high bandwidth, low latency and scalable interconnection networks is a great challenge faced by architecture designers. In recent years, we have seen the trend of seeking interconnection alternatives that combine the best features of lowdimensional networks, such as lower wire densities and higher wire sharing, and best features of high-dimensional networks, such as smaller network diameters and higher potential scalability. Evidently, such alternatives are no long pure point-to-point networks. One of the major driving forces of these changes is the advance of optical interconnection technologies. Photons are non-charged particles, and do not naturally interact. Consequently, there are many desirable characteristics of optical interconnects: high speed (speed of light), increased fanout, high bandwidth, high reliability, supporting longer interconnection lengths, exhibiting low power requirements, and immunity to EMI with reduced crosstalk. These characteristics have significant system configuration and complexity implications [5, 6, 7]. For example, multiple-bus configurations with increased scalability are possible because of relaxed fanout and distance constraints. The optical fanout (which is the maximum number of processors that can be attached to an optical connecting device) is not bound by capacitance but by the power that must be delivered to each receiver to maintain a specified bit-error-rate, referred to as optical power budget. Processors can be arranged at increased physical distances. Resource sharing, achieved by multiple accesses of optical interconnect devices using

time-division multiplexing (TDM), wavelength division multiplexing (WDM), code division multiplexing (CDM), space division multiplexing (SDM), or hybrid multiplexing [8, 9], is a fundamental advantage of optical networks. The emerging optical interconnect technologies will revolutionize interconnection network topologies.

Realizing that conventional graph theory is no longer adequate for the design and analysis of the new generation interconnection structures based on optical interconnect devices, a new class of interconnection networks, the hypernetworks, was proposed recently [12]. The class of hypernetworks is a generalization of point-to-point networks, and it contains point-to-point networks as a subclass. In a hypernetwork, the physical communication medium (a hyperlink) is accessible to multiple processors. The relaxation on the number of processors that can be connected by a link provides more design alternatives so that greater flexibilities in trade-offs of contradicting design goals are possible. The underlying graph theoretic tool for investigating hypernetworks is hypergraph theory [3]. Hypergraphs are used to model hypernetworks. Hypernetwork designs have been formulated as a constrainted optimization problem of constructing hypergraphs.

In this paper, we propose a scheme for constructing a new hypernetwork from an existing one using the concept of dual graph in hypergraph theory. We show that the dual H^* of any given hypergraph H is a hypergraph that have some properties related to the properties of H. Thus, based on the properties of H, one can investigate the properties of H^* . Since the structure of H and its dual H^* can be drastically different, finding hypergraph duals can be considered as a general approach to the design of new hypernetworks. We demonstrate this approach by investigating the structure of the dual K_n^* of an n-vertex complete point-to-point network K_n . We present a set of fundamental data communication algorithms for K_n^* . Our results indicate that the K_n^* hypernetwork is a useful and promising interconnection network for high-performance parallel and distributed computing systems.

2 Preliminaries

Hypergraphs are used as underlying graph models of hypernetworks. A hypergraph [3] H = (V, E) consists of a set $V = \{v_1, v_2, \cdots, v_N\}$ of vertices, and a set $E = \{e_1, e_2, \cdots, e_m\}$ of hyperedges such that each e_i is a non-empty subset of V and $\bigcup_{i=1}^m e_i = V$. An edge e contains a vertex v if $v \in e$. If $e_i \subseteq e_j$ implies that i = j, then H is a simple hypergraph. When the cardinality of an edge e, denoted as |e|, is 1, it corresponds to a selfloop edge. If all the edges have cardinality 2, then H is a graph that corresponds to a point-to-point network. In this paper, we only consider simple hypergraphs (and graphs). A hypergraph of n vertices and m hyperedges can also be defined by its $n \times m$ incidence matrix A with columns representing edges and rows representing vertices such that $a_{i,j} = 0$ if $v_i \notin e_j$, $a_{i,j} = 1$ if $v_i \in e_j$.

For a subset J of $\{1, 2, \dots, m\}$, we call the hypergraph H'(V', E') such that $E' = \{e_i | i \in J\}$ and $V' = \bigcup_{e_i \in E'} e_i$ the partial hypergraph of H generated by the set J. For a subset U of V, we call the hypergraph H''(V'', E'') such that $E'' = \{e_i \cap U | 1 \le i \le m, e_i \cap U \ne \phi\}$ and $V'' = \bigcup_{e \in E''} e$ the sub-hypergraph induced by the set U.

The degree $d_H(v_i)$ of v_i in H is the number of edges in V that contain v_i . A hypergraph in which all the vertices have the same degree is said to be regular. The degree of hypergraph H, denoted by $\Delta(H)$, is defined as $\Delta(H) = \max_{v_i \in V} d_H(v_i)$. A regular hypergraph of degree k is called k-regular hypergraph. The rank r(H) and antirank s(H) of a hypergraph H is defined as $r(H) = \max_{1 \leq j \leq m} |e_j|$ and $s(H) = \min_{1 \leq j \leq m} |e_j|$, respectively. We say that H is a uniform hypergraph if r(H) = s(H).

A uniform hypergraph of rank k is called k-uniform hypergraph. A hypergraph is vertex (resp. hyperedge) symmetric if for its any two vertices (resp. hyperedges) v_i and v_j (resp. e_i and e_j) there is an automorphism of the hypergraph that maps v_i to v_j (resp. e_i to e_j).

In a hypergraph H, a path of length q is defined as a sequence $(v_{i_1}, e_{j_1}, v_{i_2}, e_{j_2}, \cdots, e_{j_q}, v_{i_{q+1}})$ such that (1) $v_{i_1}, v_{i_2}, \cdots, v_{i_{q+1}}$ are all distinct vertices of H; (2) $e_{j_1}, e_{j_2}, \cdots, e_{j_q}$ are all distinct edges of H; and (3) $v_{i_k}, v_{i_{k+1}} \in e_{j_k}$ for $k = 1, 2, \cdots, q$. A path from v_i to v_j , $i \neq j$, is a path in H with its end vertices being v_i and v_j . A hypergraph is connected if there is a path connecting any two vertices. We only consider connected hypergraphs. A hypergraph is linear if $|e_i \cap e_j| \leq 1$ for $i \neq j$, i.e., two distinct buses share at most one common vertex. For any two distinct vertices v_i and v_j in a hypergraph H, the distance between them, denoted by $dis(v_i, v_j)$, is the length of the shortest path connecting them in H. Note that $dis(v_i, v_i) = 0$. The diameter of a hypergraph H, denoted by $\delta(H)$, is defined by $\delta(H) = \max_{v_i, v_j \in H} dis(v_i, v_j)$. More concepts in hypergraph theory can be found in [3].

A hypernetwork M is a network whose underlying structure is a hypergraph H, in which each vertex v_i corresponds to a unique processor P_i of M, and each hyperedge e_j corresponds to a connector that connects the processors represented by the vertices in e_j . A connector is loosely defined as an electronic or a photonic component through which messages are transmitted between connected processors, not necessarily simultaneously, in constant time. We call a connector a hyperlink.

The simplest implementation of a hyperlink is by a bus. Basically, there are two optical bus configurations: dual-bus and folded bus. In a duel-bus system, every processor is connected to two unidirectional buses, and one bus attachment consists of a pair of transmitter (e.g. laser diode) and receiver (e.g. photo diode). The two buses transmit in opposite directions so that there is a path from every processor to every other processor in the system. In a folded bus system, each processor is attached to the bus twice, one attachment for reading and the other for writing. The bus is divided into two sections, the up-stream section for processors to send data, and the down-stream section for processors to receive data. With TDM or CDM, the performance of dual-bus and folded bus can be improved. A photonic crossbar switch is a hyperlink. A star coupler [9, 10], which uses WDM, can be considered either as a generalized bus structure or a photonic switch, is another implementation of a hyperlink. In the rest of this paper, the following pairs of terms are used interchangeably: (hyper)edges and (hyper)links, vertices and processors, point-to-point networks and graphs, and hypernetworks and hypergraphs.

The problem of designing efficient interconnection networks can be considered as a constrainted optimization problem. For example, the goal of designing point-to-point networks is to find well-structured graphs (whose ranks are fixed, as a constant 2) with small degrees and diameters. In hypernetwork design, the relaxation on the number of processors that can be connected by a hyperlink (i.e. the rank of the hyperlink) provides more design alternatives so that greater flexibilities in trade-offs of contradicting design goals are possible.

3 Dual Hypernetworks and K_n^* Hypernetwork

The dual of a hypergraph H=(V,E) with vertex set $V=\{v_1,v_2,\cdots,v_N\}$ and hyperedge set $E=\{e_1,e_2,\cdots,e_m\}$ is a hypergraph $H^*=(V^*,E^*)$ with vertex set $V^*=\{v_1^*,v_2^*,\cdots,v_m^*\}$ and hyperedge set $E^*=\{e_1^*,e_2^*,\cdots,e_N^*\}$ such that v_j^* corresponds to e_j with hyperedges $e_i^*=\{v_j^*|v_i\in e_j$ in $H\}$. In other words, H^* is obtained from H by interchanging of vertices and hyperedges in H.

Proposition 1 H is r-uniform if and only if H^* is r-regular.

Proposition 2 The dual of a linear hypergraph is also linear.

Proposition 3 A hypergraph H is vertex symmetric if and only if H^* is hyperedge symmetric.

Proposition 4 The dual of a sub-hypergraph of H is a partial hypergraph of the dual hypergraph H^* .

Proposition 5 $\delta(H) - 1 < \delta(H^*) < \delta(H) + 1$.

Propositions 1 - 4 are obvious. We prove Proposition 5. We first show that (1) $\delta(H^*) \leq \delta(H) + 1$, and then show that (2) $\delta(H) - 1 \leq \delta(H^*)$. Let e_i and e_j be any two distinct hyperedges in H. Let v_k be any vertex in e_i and v_l be any vertex in e_j . If v_k and v_l are connected by a hyperedge in H, then the distance between v_i^* and v_j^* in H^* is 1. Otherwise, consider a shortest path $P = (v_k = v_{k_0}, e_{i_1}, v_{k_1}, e_{i_2}, v_{k_2}, \cdots, e_{i_p}, v_{k_p} = v_l)$ from v_k to v_l in H, where all v_k is are distinct and all e_{i_s} is are distinct. The length of P is p. Clearly, $P^* = (v_i^*, e_k^*, v_{i_1}^*, e_{k_1}^*, v_{i_2}^*, e_{k_2}^*, \cdots, v_{i_p}^*, e_{k_p}^*, v_j^*)$ is a path from v_k^* to v_l^* in H^* . The length of P^* is p+1. Thus, (1) is true. Suppose that $\delta(H) = d$, and (2) is not true, i.e. $d-2=\delta(H)-2\geq \delta(H^*)$. Then, by (1) we have $\delta(H)\leq \delta(H^*)+1\leq d-1$, which contradicts the assumption that $\delta(H)=d$. Therefore, (2) is true.

Propositions 1 - 5 show that some properties of the dual hypergraph H^* of a given hypergraph H can be derived from properties of H. For example, if H is a ring, then H^* is isomorphic to H. However, in general, the structures of H and its dual H^* can be drastically different. Finding hypergraph duals can be considered as a general approach to the design of new hypernetworks.

We consider using the dual of a point-to-point graph as a hypernetwork. Properly labeling the vertices and hyperedges in a hypergraph can greatly simplify its use as a communication network. Vertex labels are used as processor addresses. Similarly, hyperedge labels are used as the unique names of hyperlinks. There are many ways to label the vertices and hyperedges of K_n^* . Although all different labeling schemes of K_n^* are equivalent because the symmetries of K_n^* (Proposition 3), we choose to define the K_n^* hypernetwork using an interesting scheme by which the connectivity of K_n^* can be concisely derived.

Definition 1 Let $N_n = n(n-1)/2$ for n > 0. The K_n^* hypernetwork, $n \ge 3$, is a hypergraph that consists of N_n vertices, $v_1, v_2, ..., v_{N_n}$, and n hyperlinks, $e_1, e_2, ..., e_n$. The connectivity of K_n^* can be recursively defined as follows:

- (1) K_3^* consists of three vertices v_1 , v_2 , and v_3 , and three hyperlinks $e_1 = \{v_1, v_2\}$, $e_2 = \{v_1, v_3\}$, and $e_3 = \{v_2, v_3\}$.
- (2) K_n^* is constructed from K_{n-1}^* by adding n-1 more vertices $v_{N_{n-1}+1}, v_{N_{n-1}+2}, ..., v_{N_{n-1}+n-1} = v_{N_n}$, and one more hyperlink e_n such that all the newly added n-1 vertices are connected to e_n and $v_{N_{n-1}+m}$ is connected to hyperlink e_m , $1 \le m \le n-1$.

For a vertex v_i in K_n^* , we use i as its vertex label. Similarly, we use j as the label of hyperedge e_j of K_n^* . By a simple induction on n, it is easy to show that $(K_n^*)^*$ is a complete graph of n vertices. By the properties of K_n and above Propositions, we observe the following fact:

Fact 1 K_n^* is 2-regular, (n-1)-uniform, linear, and vertex and hyperedge symmetric; the diameter of K_n^* is 1 if n=3, and 2 if n>3.

In the following alternative definition, the connectivity of K_n^* hypernetwork is explicitly specified.

Definition 2 Let $N_n = n(n-1)/2$ for n > 0. The K_n^* hypernetwork, where $n \ge 3$, is a hypergraph that consists of N_n vertices, $v_1, v_2, \cdots, v_{N_n}$, and n hyperlinks, e_1, e_2, \cdots, e_n . For any two distinct vertices v_i and v_j , let $u_i = \min\{r | N_r \ge i\}$, $u_j = \min\{s | N_s \ge j\}$, $l_i = i - N_{u_i-1}$, and $l_j = j - N_{u_j-1}$. v_i and v_j are connected by a hyperlink if and only if one of the following conditions holds: (1) $u_i = u_j$; (2) $u_i = l_j$; (3) $l_i = u_j$; or (4) $l_i = l_j$. Furthermore, if (1) or (2) holds then $v_i, v_j \in e_{u_i}$, and if (3) or (4) holds then $v_i, v_j \in e_{l_i}$.

By a simple induction on n, one can easily see that Definitions 1 and 2 use the same vertex and hyperedge labeling schemes and they are equivalent. It is easy to verify that any vertex v_i of K_n^* is connected to exactly two hyperedges e_l and e_u , where $u = \min\{r | N_r \geq i\}$, and $l = i - N_{u-1}$. We call hyperedges e_l and e_u the lower and upper hyperedge of v, respectively. For any l and u such that $1 \leq l < u \leq n$, there is a unique vertex v_i that is connected to hyperedges e_l and e_u , and furthermore, $i = N_{u-1} + l$. Therefore, a vertex v_i of K_n^* can be uniquely identified by an ordered pair $\langle l, u \rangle$, $1 \leq l < u \leq n$.

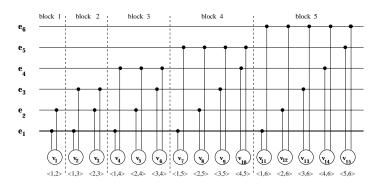


Figure 1: Bus implementation of K_6^* .

The notion of $\langle l,u\rangle$ can be interpreted in another way. If we group those vertices that share the same upper hyperlink, n-1 groups (also called blocks) are formed. The k-th (k>0) block contain k vertices. Vertices within each block are labeled based on the location of their lower hyperlinks in the block. Given vertex $\langle l,u\rangle$, u-1 is the block number of the block it resides, and l is the rank of this vertex within the block. As shown in the next section, being able to address processors by hyperlinks is a useful property of the K_n^* hypernetwork for the design and analysis of parallel algorithms. Figure 1 shows the bus implementation of the K_6^* hypernetwork, whose corresponding K_6 is shown in Figure 2.

The uniformity (i.e. all hyperlinks consist of the same number of processors), regularity (i.e. all the processors are included in the same number of hyperlinks), and linearity (i.e. no two hyperlink share more than one processor) of the K_n^* hypernetwork have important implications. Consider the bus-based implementations of hypernetworks. Here, uniformity and linearity imply that the bus loads are evenly distributed and minimized, and regularity implies simplified processor design since all the processors have the same interface circuitry. Vertex (hyperedge) symmetry is important for a hypergraph to be used as a hypernetwork, since it allows for all the processors (hyperlinks) to be treated as identical. Both Definitions 1 and 2 can be used to expand an existing K_n^* hypernetwork to a K_{n+1}^* hypernetwork without modifying the connections in K_n^* . The property that a larger

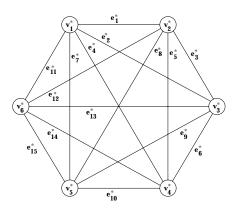


Figure 2: Complete graph K_6 corresponding to K_6^* .

hypernetwork can be easily constructed using smaller hypernetworks in the same class, when enhancement is desired, is call the the *expandability* of a hypernetwork. Clearly, the K_n^* hypernetwork is easy to expand. The incremental expandability of K_n^* is discussed in Section 5. Proposition 5 indicates that K_n^* can be partitioned into several smaller hypernetworks in the K_n^* family. This property is useful in designing parallel algorithms for K_n^* using the divide-and-conquer paradigm.

The K_n^* hypernetwork may become infeasible when n is large. To improve scalability, we can use K_n^* as a building block to construct more complicated hypernetworks. For example, we may arrange $N = n^2(n-1)^2/4$ processors as an $[n(n-1)/2] \times [n(n-1)2]$ grid, and connect each row and column as a K_n^* . The resulting "two-dimensional" hypernetwork is regular, uniform, and linear. Both the degree and diameter of this hypernetwork are 4, and the rank of this hypernetwork is n-1, which is $O(N^{1/4})$. Similarly, we can construct a "three-dimensional" regular, uniform and linear hypernetworks of N processors with degree and diameter 6, and rank $O(N^{1/6})$. Compared with the K_n^* hypernetwork, these "multidimensional" hypernetworks have decreased processor failure tolerance and improved hyperlink failure tolerance.

4 Data Communication Algorithms for the K_n^* Hypernetwork

In this section, we demonstrate how to use the vertex and hyperedge labels to design data communication algorithms for the K_n^* hypernetwork. For simplicity, we assume bidirectional bus implementation of hyperlinks. We also assume that transmitting a word between two processors connected by a bus takes constant time. Since a bus is shared by all its connected processors, at most one pair of processors can communicate at any time instance. Bus communications can be either synchronous and asynchronous. In asynchronous mode communication, arbiters are needed to allocate the bus to processors in an on-line fashion. We assume a synchronous mode communication. Bus allocations, although operated dynamically, are predetermined by an off-line scheduling algorithm. This bus operational mode has been used in [4] for analyzing a multiple-bus interprocessor connection structure. We consider four types communication operations: one-to-one communications, one-to-many communications, many-to-one communications and many-to-many communications. We show that the performances of our algorithms are either optimal (ROUTE and BROADCAST) or optimal within a constant factor (PERMUTATION, REDUCTION, TOTAL_EXCHANGE and PREFIX). These communication algorithms constitute a powerful set of tools for designing parallel algorithms

on the K_n^* hypernetwork.

4.1 One-to-One Communications

We consider two fundamental one-to-one communication operations, shortest path routing between two processors, and data exchange using a permutation.

4.1.1 Shortest path routing

The following algorithm can be used for data routing from $v_i = \langle l_i, u_i \rangle$ to $v_j = \langle l_j, u_j \rangle$ in K_n^* .

```
procedure ROUTE(\langle l_i,u_i\rangle,\,\langle l_j,u_j\rangle) begin

if u_i=u_j or u_i=l_j then

\langle l_i,u_i\rangle sends the message to \langle u_i,l_j\rangle using hyperlink e_{u_i}

else if l_i=u_j or l_i=l_j then

\langle l_i,u_i\rangle sends the message to \langle l_j,u_j\rangle using hyperlink e_{l_i}

else /* \langle l_i,u_i\rangle and \langle l_j,u_j\rangle do not share a hyperlink */

l=\min\{l_i,l_j\};

if l_i=l then

\langle l_i,u_i\rangle sends the message to \langle l_j,u_j\rangle through the path (\langle l_i,u_i\rangle,e_{l_i},\langle l_i,u_j\rangle,e_{u_j},\langle l_j,u_j\rangle)

else \langle l_i,u_i\rangle sends the message to \langle l_j,u_j\rangle through the path (\langle l_i,u_i\rangle,e_{l_i},\langle l_i,u_j\rangle,e_{l_j},\langle l_j,u_j\rangle) end
```

It is easy to verify that for any given pair of processors v_i and v_j in the K_n^* hypernetwork, algorithm ROUTE routes a message from v_i to v_j , or vise verser, along a shortest path.

4.1.2 Permutation

Permutation is a bijection on the set of processors in K_n^* . In a permutation communication operation, each processor $\langle a,b \rangle$ sends a message to another processor $\langle a',b' \rangle$, and each processor receives a message from exactly one processor. We use a set of N_n ordered processor pairs $(\langle a,b \rangle, \langle a',b' \rangle)$ to represent an permutation. In each pair $(\langle a,b \rangle, \langle a',b' \rangle)$, $\langle a,b \rangle$ and $\langle a',b' \rangle$ are called the source processor and destination processor of the pair, respectively. We use $A_{(\langle a,b \rangle, \langle a',b' \rangle)}$ to denote a message to be sent from $\langle a,b \rangle$ to $\langle a',b' \rangle$. A permutation is called a total permutation if $\langle a,b \rangle \neq \langle a',b' \rangle$ for all pairs; otherwise, it is called a partial permutation. We only consider total permutations, since a partial permutation can be carried out using a total permutation by masking out those processors which are mapped to themselves.

We present an algorithm PERMUTATION which performs a permutation operation efficiently. Depending on the values of b and b', algorithm PERMUTATION routes messages $A_{(\langle a,b\rangle,\langle a',b'\rangle)}$ along different paths of length at most 2. There are three cases: (i) b = b', (ii) b < b' and (iii) b > b'. For each of these three cases, algorithm PERMUTATION routes the messages strictly along paths shown in Figure 3. Based on these path patterns, we call a message a two-step message if it follows a path of length 2 (cases (ii) and (iii)); otherwise, it is called a one-step message (case (i)). Note that the source and destination processors of a two-step message may be distance 1 apart. Algorithm PERMUTATION consists of two phases. In the first phase, all one-step messages are sent to their

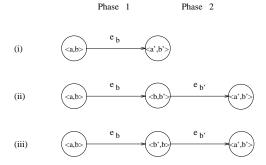


Figure 3: Routing paths used by algorithm PERMUTATION for messages $A_{(\langle a,b\rangle,\langle a',b'\rangle)}$. (i) b=b', (ii) b < b', and (iii) b > b'.

destinations, and all two-step messages are routed to the intermediate processors of their routing paths. In the second phase, all two-step messages are sent to their destinations. In each phase, a hyperlink may be used to transmit more than one message.

```
procedure PERMUTATION
begin

/* Phase 1 */

for all hyperlinks e_k do in parallel

Use e_k to sequentially transmit those messages with e_k assigned for their first step
endfor

/* Phase 2 */

for all hyperlinks e_k do in parallel

Use e_k to sequentially transmit the two-step messages with e_k assigned for their second step
endfor
end
```

Observing Figure 3, we see the following: In the first phase, e_k is used to transmit messages of source processors $\langle a,k\rangle$. Since there are at most n-1 such source processors in a permutation, the number of messages to be transmitted using e_k is at most n-1. Thus, the total number of parallel message transmission steps in the first phase is no more than n-1. In the second phase, each e_k is used to transmit messages to destination processors $\langle a',k\rangle$ and there are at most n-1 such destination processors in a permutation. The total number of parallel message transmission steps in the second phase is also at most n-1. Hence, the total number of steps performed by PERMUTATION is 2(n-1). There are $N_n=n(n-1)/2$ messages. Each message destinates a distinct processor in a total permutation and all these n(n-1)/2 messages need to be transmitted. At least (n-1)/2 parallel message transmission steps are required in the worst case because there are n hyperlinks in K_n^* . Hence, the performance of PERMUTATION is optimal within a constant factor.

Careful readers may notice that hyperlink e_1 is not used in PERMUTATION. If we let e_1 to share some communication load, the permutation performance can be slightly improved. In fact, by evenly distributing the communication load among hyperlinks, the performances of all algorithms presented in this paper, excluding ROUTE and BROADCAST, can be slightly improved. However, the modified algorithms will be more complicated.

4.2 One-to-Many Communication

Consider the following algorithm for broadcasting a message from any processor $v = \langle l, u \rangle$ to all the other processors in K_n^* .

```
procedure BROADCAST(\langle l,u\rangle) begin \langle l,u\rangle broadcasts the message to all the processors connected by e_u; for all the processors \langle a,b\rangle such that a=u or b=u do in parallel if a=u then \langle a,b\rangle broadcasts the message to processors in \{\langle i,b\rangle|i>a\} using e_b; if b=u then \langle a,b\rangle broadcasts the message to processors in \{\langle a,j\rangle|j\neq b\} using e_a endfor end
```

The processors in the K_n^* hypernetwork can be partitioned into five mutually disjoint groups.

```
\begin{array}{ll} group \ 1: & \{\langle a,b\rangle \mid a=l \wedge b=u\} \\ group \ 2: & \{\langle a,b\rangle \mid a=u\} \\ group \ 3: & \{\langle a,b\rangle \mid a\neq l \wedge b=u\} \\ group \ 4: & \{\langle a,b\rangle \mid a>u\} \\ group \ 5: & \{\langle a,b\rangle \mid a< u \wedge b\neq u\} \end{array}
```

Group 1 contains one processor, the source processor. After the first step, processors in group 2 and group 3 receive the message. In the second step, each processor in group 4 receives the message from a processor in group 2 via the first **if** statement, and each processor in group 5 receives the message from a processor in group 3 via the second **if** statement. The performance of *BROADCAST* is optimal.

4.3 Many-to-One Communication

A reduction (or census, or fan-in) function is defined as a commutative and associative operation on a set of values, such as finding maximum, addition, logic or, etc. It can be carried out using a many-to-one communication operation. The following is an algorithm for performing a reduction operation specified by the operator + on a set of N_n values A_1, A_2, \dots, A_{N_n} stored in v_1, v_2, \dots, v_{N_n} , and putting the final result in v_1 . We assume that each processor v_i has a working register B_i (which is initialized to A_i). Again, we use an ordered pair $\langle l, u \rangle$ of hyperlinks to represent a processor. $A_{\langle l, u \rangle}$ and $B_{\langle l, u \rangle}$ represent A and B values associated with $\langle l, u \rangle$, respectively. Given any processor $\langle l, u \rangle$, procedure TRANSFORM is used to transform $\langle l, u \rangle$ to $\langle 1, 2 \rangle$ and all the other $\langle a, b \rangle$ in K_n^* to $\langle a', b' \rangle$.

```
procedure TRANSFORM\left(\langle l,u\rangle\right)
begin
for all \langle a,b\rangle do in parallel
if a=1 and b=2 then \langle a',b'\rangle:=\langle l,u\rangle
```

```
else if a=1 then \langle a',b'\rangle \coloneqq \langle \min\{l,b\}, \max\{l,b\}\rangle
else if a=2 then \langle a',b'\rangle \coloneqq \langle \min\{u,b\}, \max\{u,b\}\rangle
else if a=l then \langle a',b'\rangle \coloneqq \langle 1,b\rangle
else if b=u then \langle a',b'\rangle \coloneqq \langle 2,a\rangle
end for
```

By the symmetry of the K_n^* hypernetwork, we know that the new identities $\langle a', b' \rangle$ assigned to processors of K_n^* satisfy the connectivities of K_n^* . We use $v_1 = \langle 1, 2 \rangle$ to collect the final result.

```
procedure REDUCTION (\langle 1,2\rangle,+) begin for all \langle 1,j\rangle such that j\geq 3 do in parallel \langle 1,j\rangle receives A_{\langle 2,j\rangle} from \langle 2,j\rangle using e_j and performs B_{\langle 1,j\rangle}:=B_{\langle 1,j\rangle}+A_{\langle 2,j\rangle} endfor; for k=3 to n do in parallel for all \langle 1,j\rangle do in parallel if j=2 then \langle 1,j\rangle receives B_{\langle 1,k\rangle} from e_j and performs B_{\langle 1,j\rangle}:=B_{\langle 1,j\rangle}+B_{\langle 1,k\rangle} else if j>k then \langle 1,j\rangle receives A_{\langle k,j\rangle} from e_j and performs B_{\langle 1,j\rangle}:=B_{\langle 1,j\rangle}+A_{\langle k,j\rangle} else do nothing endfor endfor
```

It is easy to verify that algorithm REDUCTION takes n-1 parallel communication steps. We know that the total number of + operations performed by reduction on K_n^* is $N_n-1=n(n-1)/2-1$, each operand is used at least once, and at least one communication operation of transmitting an operand or a partial result is required for each + operation. Since there are n hyperlinks in K_n^* , at least (n-1)/2 parallel communication steps, one value transmitted per hyperlink, are required. Thus, the communication performance of REDUCTION is optimal within a constant factor.

4.4 Many-to-Many Communication

We consider two cases: all-to-all communication and prefix computation. In all-to-all communication, each processor sends a message to all the other processors. It is also called the *total exchange* operation. The prefix computation can be considered as a many-to-many operation since many results are computed using many operands.

4.4.1 All-to-all communication

We can obtain an all-to-all communication by modifying the algorithm *REDUCTION*. The operator used is set union. After n-1 steps, v_1 receives all messages. Then, using two additional steps, v_1 broadcast all the N_n messages to all processors in K_n^* . A drawback of this algorithm is that each step transmits $O(N_n)$ messages along a hyperlink. We give another algorithm with improved performance.

```
procedure TOTAL_EXCHANGE
begin
    /* Phase 1: intra-block total-exchange */
   for j = 3 to n do in parallel
              for i = 1 to j - 1 do
                  Processor \langle i,j \rangle broadcasts its message to processors in \{\langle a,j \rangle | a \neq i\} using e_i
              endfor
   endfor;
   Denote the set of messages processor \langle i, j \rangle has by S_{\langle i, j \rangle};
   /* Phase 2: inter-block total-exchange */
   for i = 2 to n do
         \langle 1, i \rangle broadcasts S_{\langle 1, i \rangle} to processors in \{\langle 1, b \rangle | b \neq i\} using e_1;
         for all the processors in \{\langle 1, b \rangle | b \neq i\} do in parallel
              \langle 1, b \rangle broadcasts S_{\langle 1, i \rangle} it received to processors in \{\langle a, b \rangle | a \neq 1\} using e_b
         endfor
   endfor
end
```

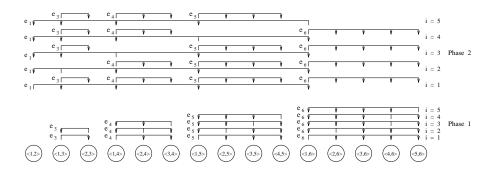


Figure 4: Communication patterns used by $TOTAL_EXCHANGE$ on K_6^* .

Algorithm $TOTAL_EXCHANGE$ has two phases. The first phase consists of n-1 parallel intrablock broadcasting operations. The second phase consists of n-1 iterations, each iteration has two parallel communication steps, one for inter-block broadcasting and the other for intra-block broadcasting. For K_6^* , the communication patterns of $TOTAL_EXCHANGE$ are shown in Figure 4. The correctness of the algorithm directly follows from the definition of K_n^* and the communication patterns used.

The number of parallel communication steps performed by $TOTAL_EXCHANGE$ is optimal within a constant factor since the lower bound $\Omega(n)$ of the number of communication steps for a many-to-one communication operation holds for the total-exchange operations. Each processor is connected to two hyperlinks, and it needs to receive $N_n - 1 = O(n^2)$ messages. If all messages have the same number w of bits, each processor needs to receive $O(wn^2)$ bits. With respect to the number of steps performed, the number of bits (which is O(wn) transmitted along a hyperlink per step) is optimal within a constant factor.

4.4.2 Prefix Computation

Given a sequence $S=(a_1,a_1,\cdots,a_N)$ of N elements in a domain D, and an associative operation \otimes on D, the prefix problem is to compute $z_i=a_1\otimes a_2\otimes\cdots\otimes a_i$ for $1\leq i\leq N$. We use A_i to denote the operand value a_i initially stored in processor v_i .

```
procedure PREFIX (\otimes)
begin
   /* Phase 1 */
   for j = 3 to n do in parallel
        for i = 1 to j - 1 do
             Processor \langle i,j \rangle broadcasts A_{\langle i,j \rangle} to processors in \{\langle a,j \rangle | a>i \} using e_j
        endfor
   endfor
   Each processor \langle a,b \rangle performs \otimes operation on all the A-values received, including its own A-value,
   and let the result be X_{(a,b)};
    /* Phase 2 */
   for j = 2 to n - 1 do in parallel
        Processor \langle j-1,j\rangle broadcasts X_{\langle j-1,j\rangle} to processors in \{\langle j-1,b\rangle|b>j\} using e_{j-1}
   endfor
    Assume that the value received by processor \langle a, b \rangle is Y_{(a,b)};
   /* Phase 3 */
   for j = 3 to n do in parallel
        for i = 1 to j - 2 do
             Processor \langle i,j \rangle broadcasts Y_{\langle i,j \rangle} to processors in \{\langle a,j \rangle | a \neq i\} using e_j
        endfor
   endfor
   for all the processors \langle a, b \rangle do in parallel
         \langle a,b \rangle performs \otimes operation on X_{(a,b)} and all the Y-values it received
   endfor
end
```

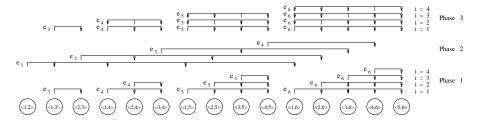


Figure 5: Communication patterns used by PREFIX on K_6^* .

Algorithm PREFIX consists of three phases. The first phase performs prefix computation for all blocks in parallel. This phase only requires n-2 intra-block communications using different hyperlinks. The second phase performs one parallel inter-block broadcasting operation. The third phase also uses n-2 parallel intra-block broadcasting operations. For K_6^* , the communication patterns

are shown in Figure 5. Generalizing these patterns using the definition of K_n^* , we can conclude that algorithm PREFIX carries out a prefix computation using 2n-3 parallel communication steps, one operand or partial result value is broadcast along a hyperlink per step.

The $\Omega(n)$ lower bound for the number of communication steps of REDUCTION holds for the prefix computation. Since one value is broadcast per hyperlink in each communication step of algorithm PREFIX, the communication performance of PREFIX is optimal within a constant factor.

5 Incomplete K_n^* Hypernetwork

We observe that the gap, $N_n - N_{n-1} = n - 1$, between K_{n-1}^* and K_n^* is not a constant. It is desirable that hypernetworks can be expanded with incremental size increases. For any given N such that $N_{n-1} < N < N_n$, we can construct a sub-hypergraph H of K_n^* such that |V(H)| = N and |E(H)| = n. Such a sub-hypergraph is called an *incomplete* K_n^* hypergraph.

Definition 3 The incomplete K_n^* hypernetwork, where n > 3, of N vertices such that $N_{n-1} < N < N_n$ is the sub-hypergraph of K_n^* induced by vertex set $\{v_1, v_2, \dots, v_N\}$.

In other words, an incomplete K_n^* hypernetwork of N vertices, $N_{n-1} < N < N_n$, is defined by the incidence matrix obtained from the incidence matrix of K_n^* by deleting its rows corresponding vertices $v_{N+1}, v_{N+2}, \cdots, v_{N_n}$. The vertices in an incomplete K_n^* can be divided into n-1 blocks. The i-th block has i vertices for $1 \le i < n-1$ as in K_n^* , and the (n-1)-th block has at least one vertex and at most n-2 vertices. For convenience, we call the (n-1)-th block of an incomplete K_n^* its incomplete block. We use k_n to denote the number of vertices in the incomplete block of an incomplete K_n^* . An incomplete K_n^* is linear and 2-regular, but it is not uniform, and not (vertex and hyperedge) symmetric. It is not difficult to prove that the diameter of incomplete K_n^* hypernetwork, where n > 3, is 2.

It is easy to verify that the shortest path routing communication algorithm ROUTE and data broadcasting algorithm BROADCAST presented in the previous section can be directly used for the incomplete K_n^* hypernetwork. Consider the reduction operation. Since an incomplete K_n^* is not symmetric, we cannot use procedure TRANSFORM to relabel the processors. We adapt REDUCTION given in the previous section to an incomplete K_n^* by adding one operation: send the final result from $\langle 1,2\rangle$ to the final destination $\langle l,u\rangle$ using hyperlinks in at most two additional steps. It is simple to verify that the all-to-all data communication algorithm $TOTAL_EXCHANGE$ presented in the previous section can be used for the incomplete K_n^* hypernetwork. This is done by treating all the processors v_j such that j>N in the K_n^* hypernetwork as dummy processors that do not participate in communications.

Algorithm PERMUTATION cannot be used for permutation operations on an incomplete K_n^* . We present a modified algorithm $PERMUTATION_INC$. Depending on the values of b and b', algorithm $PERMUTATION_INC$ routes messages $A_{(\langle a,b\rangle,\langle a,b'\rangle)}$ along different paths of length at most 3. There are seven cases: (i) b = b', (ii) (ii) $b < b' \neq n$, (iii) $b' < b \neq n$, (iv) b' = n and $b \leq \lceil k_n/2 \rceil$, (vi) b' = n and $b > \lceil k_n/2 \rceil$, and (vii) b = n and $b' > \lceil k_n/2 \rceil$. Any message $A_{(\langle a,b\rangle,\langle a',b'\rangle)}$ in a total permutation satisfies one and only one of these seven conditions. For each of these cases, algorithm $PERMUTATION_INC$ routes the messages strictly along paths shown in Figure 6. Algorithm $PERMUTATION_INC$ is similar to PERMUTATION. It consists of three phases. In the first phase, all one-step messages are sent to their destinations, and all two-step and three-step messages are routed to the next processors on their routing paths. In

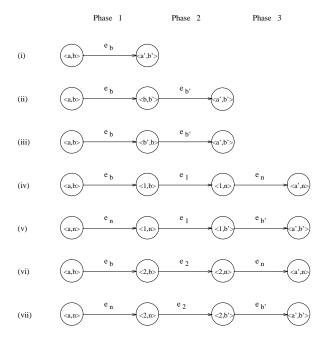


Figure 6: Routing paths used by algorithm $PERMUTATION_INC$ for messages $A_{(\langle a,b\rangle,\langle a',b'\rangle)}$. (i) b=b', (ii) (ii) $b < b' \neq n$, (iii) $b' < b \neq n$, (iv) b'=n and $b \leq \lceil k_n/2 \rceil$, (v) b=n and $b' \leq \lceil k_n/2 \rceil$, (vi) b'=n and $b > \lceil k_n/2 \rceil$, and (vii) b=n and $b' > \lceil k_n/2 \rceil$.

the second phase, all two-step messages are sent to their destinations, and all three-step messages are sent to the third processors on their routing paths. Then, in the third phase, all three-step messages reach their destinations. As in algorithm *PERMUTATION*, in each phase of algorithm PERMUTATION_INC, messages are transmitted on different hyperlinks in parallel, and messages are transmitted on the same hyperlink sequentially. Observe Figure 6. In the first phase, the number of messages transmitted using hyperlink e_n (cases (i), (v) and (vii)) is at most k_n , which is less than n-1 (since the incomplete block has at most n-2 processors), and the number of messages transmitted on any other hyperlink e_b is also no more than n-2 (since the number of messages with $\langle a,b\rangle$ as their source processors is at most n-2). Hence, the first phase has no more than n-2 parallel message transmission steps. In the second phase, the number of messages transmitted using $e_{b'}$, $b' \neq 1$ and $b' \neq 2$, is at most n-2, because there are at most n-2 two-step messages with destination processors $\langle a', b' \rangle$ such that $b' \neq 1$ and $b' \neq 2$ (Note: actually, there is no processor $\langle a',b'\rangle$ with b'=1 in K_N^*). The messages transmitted using e_1 satisfy conditions (iv) and (v), and the total number of such messages is no more than k_n+1 . The messages transmitted using e_2 satisfy (vi) and (vii) or b'=2, and there are at most $2(k_n-\lceil k_n/2\rceil)+1\leq k_n+1$ such messages. Therefore, the second phase has no more than $\max\{n-2,k_n+1\}$ parallel message transmission steps. In the third phase, the number of messages transmitted using e_n is no more than k_n , because there are at most k_n three-step messages with processors in the incomplete block as destination processors. The number of messages transmitted using any other $e_{b'}$ is also no more than k_n , because the number of three-step messages with processors in the incomplete block as source processors is no more than k_n . The total number of parallel message transmission steps performed by $PERMUTATION_INC$ for any permutation operation is no more than $n-2+\max\{n-2,k_n+1\}+k_n$. The worst case is that $k_n = n - 2$, which results in 3n - 5 steps. Comparing with the $\Omega(n)$ lower bound, the

performance of *PERMUTATION_INC* is optimal within a constant factor.

The algorithm PREFIX given in the previous section also cannot be directly applied to an incomplete K_n^* hypernetwork. We have to modify it to obtain an algorithm with similar performance.

```
procedure PREFIX\_INC (\otimes)
begin
   /* Phase 1 */
   Same as the Phase 1 of PREFIX;
    /* Phase 2 */
   for j = 2 to n - 2 do in parallel
           Processor \langle j-1,j\rangle broadcasts its X-value to processors in \{\langle j-1,b\rangle|b>j\} using e_{j-1}
   endfor
   Assume that the value received by processor \langle a, b \rangle is Y_{\langle a, b \rangle};
    /* Phase 3 */
   for j = 3 to n - 1 do in parallel
           for i = 1 to j - 2 do
                  Processor \langle i,j \rangle broadcasts its Y-value to processors in \{\langle a,j \rangle | a \neq i \} using e_i
           endfor
   endfor
   for all the processors \langle a, b \rangle such that b \neq n do in parallel
           \langle a,b\rangle performs \otimes operation on X_{\langle a,b\rangle} and all the Y-values it received,
           and let the result be Z_{\langle a,b\rangle}
   endfor
    /* Phase 4 */
   Use ROUTE to send Z_{(n-2,n-1)} from (n-2,n-1) to (1,n);
    \langle 1, n \rangle broadcasts Z_{(n-2,n-1)} to processors in \{a, n | a \neq 1\} using e_n;
   for all the processors \langle a, b \rangle such that b = n do in parallel
           Z_{\langle a,b\rangle} := X_{\langle a,b\rangle} \otimes Z_{\langle n-2,n-1\rangle}
   endfor
end
```

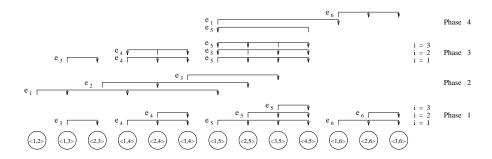


Figure 7: Communication patterns used by $PREFIX_INC$ on an incomplete K_6^* of 13 processors.

Algorithm $PREFIX_INC$ is partitioned into four phases. The first phase performs prefix computation for all blocks in parallel as in PREFIX. This phase requires n-3 intra-block communications using different hyperlinks. The second phase and the third phase are the same as the corresponding

phases in PREFIX, but all communication and computation are restricted to the first n-2 blocks of the incomplete K_n^* . These two phase have one and n-3 parallel communication steps, respectively. The fourth phase requires 3 communication steps to broadcast the partial result of $\langle n-2, n-1 \rangle$, the rightmost processor of the (n-2)-th block, to the (n-1)-th block (which is the incomplete block). It is easy to verify that algorithm $PREFIX_INC$ carries out a prefix computation on an incomplete K_n^* hypernetwork in 2n-2 parallel communication steps, which is optimal within a constant factor. For an incomplete K_6^* of 13 processors, the communication patterns are shown in Figure 7.

6 Discussions

We say that a linear hypernetwork is non-trivial if it has at least 4 vertices, at least 2 hyperlinks, and each hyperlink contains at least 2 vertices. Let $H^+ = \{H \mid H \text{ is a non-trivial linear, regular hypergraph of degree 2}\}$. We call the hypernetworks in H^+ the class of degree-2 linear, regular hypernetworks. For any H in H^+ , its dual H^* is a point-to-point network. However, the dual of a point-to-point network may not be in H^+ . For example, if a vertex v of a point-to-point network G has degree 1, then its corresponding hyperlink e^* in G^* contains exactly one vertex, and consequently, G^* is not in H^+ . Let $G^+ = \{G \mid G$ is a point-to-point network such that it has at least 4 edge, and each vertex of G has degree greater than 1 f. Clearly, for any point-to-point network f in f, we can obtain a non-trivial, linear, degree-2 hypernetwork f in f by applying the dual operation to f. It is easy to prove that for any hypernetwork f in f hypernetworks that are excluded from f are not interesting.

Among all the hypergraphs derived from duals of point-to-point graphs, the dual, K_n^* , of the n-vertex complete graph K_n has the smallest m/N ratio when N is fixed and smallest diameter, where m and N is the number of hyperedges and vertices, respectively. We have discussed the K_n^* hypernetwork in much detail. Between the high cost/performance of fully connected network K_n and low cost/performance of linearly connected network (a ring) are a set of point-to-point networks that constitute a wide range of trade-offs in cost and performance. For example, H can be point-to-point networks such as hypercubes, star graphs [1], chordal rings (including barrel shifters) [2], etc. The duals of these point-to-point networks also constitute a wide range of trade-offs in cost and performance.

In any point-to-point network, the number of links is at least equal to the number of processors (except a tree, in which the number of links is one less the number of processors). A trivial lower bound on the time complexity of parallel algorithm on a point-to-point network is the best sequential time divided by the number of processors. But in a hypernetwork, it is desirable that the number of hyperlinks is less than the number of processors due to cost-effectiveness consideration. In such a situation, the number of hyperlinks, the rank of hyperlinks and the hypernetwork degree are important factors in determining the lower bounds of time complexities of parallel algorithms, as demonstrated in our algorithm analysis. If we replace each bus by a crossbar switch, more efficient algorithms for the communication and computing problems we considered are possible. For example, using crossbar switches as hyperlinks of K_n^* , reduction and prefix operations can be implemented in $O(\log n)$ time, which is optimal. The $O(n^2)$ time complexity of total-exchange operation on the K_n^* hypernetwork cannot be improved because of the constant degree of K_n^* . We do not know if the time complexity of permutation operation on the K_n^* hypernetwork with crossbar switch hyperlinks can be reduced to $O(\log n)$.

Most discussions in this paper are restricted to constant degree (more specifically, degree 2) linear

hypernetworks. Our approach can be easily generalized to the design and analysis of variable-degree and/or non-linear hypernetworks. Hypernetwork design is formulated as a constrainted hypergraph construction optimization problem. Hypergraph theory plays a central role in hypernetwork design and analysis. Simple hypergraph theory concepts, such as Steiner triple systems and hypergraph duals, have led to several interesting hypernetwork topologies as demonstrated in [13] and this paper. It has been pointed out in [12] that hypernetwork designs are also related to block design problems in combinatorial mathematics, which in turn are related to algebra and number theory.

References

- [1] S. Akers, D. Harel, and B. Krishnamurthy, The Star Graph: an Attractive Alternative to the n-Cube, *Proceedings of 1987 International Conference on Parallel Processing*, pp. 393-400, 1987.
- [2] B.W. Arden, and H. Lee, Analysis of Chordal Ring Network, *IEEE Transactions on Computers*, **30**, pp. 291-295, 1981.
- [3] C. Berge Hypergraphs, North-Holland, 1989
- [4] O.M. Dighe, R. Vaidyanathan, and S.Q. Zheng, The Bus-Connected Ringed Tree: A Versatile Interconnection Network, to appear in *Journal of Parallel and Distributed Computing*.
- [5] P.W. Dowd, Wavelength Division Multiple Access Channel Hypercube Processor Interconnection, *IEEE Trans. on Computers*, Vol 41, No. 10, pp. 1223-1241, 1992.
- [6] M.R. Feldman, S.C. Esener, C.C. Guest and S.H. Lee, Comparison Between Optical and Electrical Interconnects Based on Power and Speed Considerations, Appl. Opt., Vol. 27, pp. 1742-1751, 1988.
- [7] M.R. Feldman and C.C. Guest, Interconnect Density Capabilities of Computer Generated Holograms for Optical Interconnection of Very Large Scale Integrated Circuits, *Appl. Opt.*, Vol. 28, pp. 3134-3173, 1989.
- [8] P. E. Green, Jr., Fiber Optical Networks, Prentice Hall, 1993.
- [9] J. Jahns and S.H. Lee (editors), Optical Computing Hardware, Academic Press, Inc., 1994.
- [10] C. Partridge, Gigabit Networking, Addison-Wesley, 1994.
- [11] S.Q. Zheng, Hypernetworks A Class of Interconnection Networks with Increased Wire Sharing: Part I Part IV, Technical Reports, Department of Compute Science, Louisiana State University, Baton Rouge, LA 70803, Dec., 1994.
- [12] S. Q. Zheng, An abstract model for optical interconnection networks, in *Parallel Computing Using Optical Interconnection Networks*, K. Li, Y. Pan and S.Q. Zheng, eds., pp. 139-162, Kluwer Academic Press, 1998.
- [13] S.Q. Zheng, Sparse Hypernetworks Based on Steiner Triple Systems, *Proc of 1995 International Conf. on Parallel Processing*, pp. I.92 I.95, 1995.