
Virtual Network Embedding with Opportunistic
Resource Sharing

Sheng Zhang, Student Member, IEEE, Zhuzhong Qian, Member, IEEE,

Jie Wu, Fellow, IEEE, Sanglu Lu, Member, IEEE, and Leah Epstein

Abstract—Network virtualization has emerged as a promising approach to overcome the ossification of the Internet. A major challenge

in network virtualization is the so-called virtual network embedding problem, which deals with the efficient embedding of virtual

networks with resource constraints into a shared substrate network. A number of heuristics have been proposed to cope with the NP-

hardness of this problem; however, all of the existing proposals reserve fixed resources throughout the entire lifetime of a virtual

network. In this paper, we re-examine this problem with the position that time-varying resource requirements of virtual networks should

be taken into consideration, and we present an opportunistic resource sharing-based mapping framework, ORS, where substrate

resources are opportunistically shared among multiple virtual networks. We formulate the time slot assignment as an optimization

problem; then, we prove the decision version of the problem to be NP-hard in the strong sense. Observing the resemblance between

our problem and the bin packing problem, we adopt the core idea of first-fit and propose two practical solutions: first-fit by collision

probability (CFF) and first-fit by expectation of indicators’ sum (EFF). Simulation results show that ORS provides a more efficient

utilization of substrate resources than two state-of-the-art fixed-resource embedding schemes.

Index Terms—Virtual network embedding, opportunistic resource sharing, NP-hard, 3-partition, bin packing

Ç

1 INTRODUCTION

THE Internet has been extremely successful in support-
ing global commerce, communication, and defense [1],

[2]. However, the multiprovider nature of the Internet and
end-to-end design of Internet Protocol (IP) are now
creating hurdles for the further evolution of the Internet.
Network virtualization has been proposed recently as a
promising approach to overcome the current ossification
of the Internet [2], [3], [4], and it has been investigated in
several projects, including CABO [3], PlanetLab [5], and
VINI [6].

In a network virtualization environment, an infrastructure
provider (InP) maintains a physical/substrate network (SN),
which is composed of substrate nodes and links; a service
provider (SP) leases physical resources (e.g., CPU, band-
width, and memory space) from InPs and creates custo-
mized virtual networks (VNs) to provide value-added
services (e.g., video conferencing, VoIP, content distribu-
tion) for end users. Network virtualization has some
desirable properties. First, the separation of the control
and data tiers makes the network core programmable and

flexible [7]. Second, physical resources can be used more
efficiently, and thus, high energy efficiency can be achieved.

The fundamental challenge that network virtualization
faces is how to embed multiple virtual networks with
resource constraints into a substrate network, so as to
efficiently utilize substrate resources. Known as the virtual
network embedding (VNE) problem, it is proven to be NP-
complete by reducing the multiway separator problem to this
problem [8]; therefore, a number of heuristics [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19] have been proposed.

Unfortunately, all of the prior proposals reserve fixed
resources throughout the entire lifetime of a virtual net-
work, which wastes the precious substrate resources. First,
SPs potentially target users all over the world, so it is
extremely difficult to predict the workload before they are
ready to serve end users. As the resource requirement of a
VN at a particular time is generally proportional to the
workload at that time, to cope with a peak workload on
demand, service providers often overpurchase substrate
resources, which may lead to a considerable waste of
resources for a normal workload. Second, the resource
requirements of many applications experience significant
changes over time [20]. Given these two factors, provision-
ing fixed resources for virtual networks throughout their
lifetimes is clearly wasteful.

In this paper, we exploit this key observation and propose
a novel model that reflects the time-varying resource
requirement of a VN. More specifically, we model the
resource requirement of a VN as the combination of a basic
subrequirement, which exists throughout the lifetime of the
VN, and a variable subrequirement, which occurs with a
probability. Based on this model, this paper designs an
opportunistic resource sharing-based embedding framework,
ORS [21], which in general consists of two components, i.e.,

816 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

. S. Zhang, Z. Qian, and S. Lu are with the State Key Laboratory for Novel
Software Technology, Nanjing University, Computer Science Building,
Xianlin Campus Mailbox 603, 163 Xianlin Avenue, Qixia District,
Nanjing, Jiangsu 210023, P.R. China.
E-mail: zhangsheng@dislab.nju.edu.cn, {qzz, sanglu}@nju.edu.cn.

. J. Wu is with the Department of Computer and Information Sciences,
Temple University, Room 302, Wachman Hall, 1805 North Broad Street,
Philadelphia, PA 19122. E-mail: jiewu@temple.edu.

. L. Epstein is with the Department of Mathematics, University of Haifa,
Mount Carmel, Haifa 31905, Israel. E-mail: lea@math.haifa.ac.il.

Manuscript received 26 Sept. 2012; revised 15 Jan. 2013; accepted 14 Feb.
2013; published online 27 Feb. 2013.
Recommended for acceptance by X. Tang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-09-0992.
Digital Object Identifier no. 10.1109/TPDS.2013.64.

1045-9219/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

the macrolevel node-to-node/link-to-path embedding, and
the microlevel time slot assignment. In the macrolevel
embedding, we adopt a traditional greedy strategy (e.g.,
[13]) to derive the mapping results of virtual nodes to
substrate nodes and virtual links to substrate paths.

In the microlevel time slot assignment, we focus on the
scenario in a single substrate link. The results can adapt
naturally to the other substrate links and nodes (details are
in Section 5). Suppose that the substrate link is based on
time-division multiplexing, where time is partitioned into
multiple frames of equal length, and each frame is further
divided into time slots of equal length. The number of time
slots in a frame depends on the physical bandwidth of this
substrate link. Several virtual links are embedded in this
substrate link; then, the problem becomes how to map the
bandwidth requirement of virtual links to the physical time
slots. For the basic bandwidth subrequirement from a
virtual link, which exists throughout the lifetime of the
respective VN, we have no choice but to allocate the
corresponding required slots to it. For the variable
bandwidth subrequirement, we propose to opportunisti-
cally share time slots among multiple virtual links to
improve resource utilization. However, collisions accom-
pany sharing. To break the tradeoff between utilization and
collision, we use a collision probability threshold to
represent the “volume” of a time slot and formulate the
time slot assignment as an optimization problem. We prove
the decision-version problem to be NP-hard by reducing
the 3-partition problem [22] to it. An integer linear
programming-based (ILP) optimal solution is also pro-
vided. Due to the similarities between this problem and the
bin packing problem [23], we then propose two practical
first-fit-based solutions from different perspectives: first-fit
by collision probability (CFF) and first-fit by expectation of
indicators’ sum (EFF).

Through extensive simulations, we demonstrate that, in
the long run, ORS accepts more virtual network requests
and provides a more efficient utilization of substrate
resources than two state-of-the-art fixed-resource embed-
ding schemes. The contributions are summarized as follows:

1. To the best of our knowledge, this is the first
attempt that considers virtual network embedding
in the context of opportunistic resource sharing at
the level of the entire network. To provide efficient
resource utilization, which is of great benefit to both
InPs and SPs, an embedding framework, ORS, is
designed; its effectiveness is confirmed by extensive
simulations.

2. We propose a novel model that reflects the time-
varying properties of the resource requirement of a
VN, based on which we formulate the microlevel
time slot assignment problem as an optimization
problem. We first prove the decision version of
this problem to be NP-hard in the strong sense, then
propose an ILP-based optimal solution and two
practical algorithms.

3. We conduct extensive theoretical analysis and
simulation studies to verify the performance of ORS.

We now continue by proposing the resource requirement
model in Section 2 before we introduce the VNE problem

in Section 3. We then provide the overview of ORS in
Section 4, describe the details of ORS in Section 5, and
conduct performance evaluations in Section 6. Before
concluding the paper in Section 8, we survey related work
in Section 7.

2 VIRTUAL NETWORK REQUEST WITH TIME-
VARYING RESOURCE REQUIREMENT

In this section, we first present the traditional virtual
network request model, and then, we introduce a model
that captures the time-varying properties of virtual network
resource requirements.

2.1 Traditional Virtual Network Request Model

The main substrate resources that we consider in this paper
are CPU and bandwidth, which is the typical case in almost
all of the related literature so far. However, our framework
can naturally adapt to the scenario where a node has
multiple types of resources. We will give remarks on the
adaptation in Section 5 when needed.

For the purpose of unifying resource notations, we
assume that the substrate network is based on time-division
multiplexing, where time is partitioned into multiple frames
of equal length, and each frame is further divided into equal
time slots. In doing so, both CPU and bandwidth require-
ments can be expressed in time slots.

A traditional virtual network request is denoted by a
weighted undirected graph, Gv ¼ ðNv;EvÞ, where Nv and
Ev are the sets of virtual nodes and links, respectively. Each
virtual node nv 2 Nv is associated with a CPU requirement
CðnvÞ in time slots, and each virtual link ev ¼ ðnvi ; nvjÞ 2 Ev

is associated with a bandwidth requirement BðevÞ in time
slots. Fig. 1a shows an example, where the corresponding
resource requirement of each node or link is written next to
the respective node or link that represents it.

2.2 The Time-Varying Resource Requirement Model

SPs can hardly predict the number of end users of the
applications deployed in their virtual networks; to guaran-
tee the quality-of-service of a peak workload, SPs always
overpurchase substrate resources. Besides, the resource
requirements of many applications experience significant
changes over time. Therefore, provisioning fixed resources
for VNs throughout their lifetimes is clearly wasteful. To
avoid such wasteful situations, we need to model the time-
varying resource requirement of a VN in the first place.

By using profiling experimentations, one can potentially
derive some complicated functions, for example, high-order

ZHANG ET AL.: VIRTUAL NETWORK EMBEDDING WITH OPPORTUNISTIC RESOURCE SHARING 817

Fig. 1. Each node or link is associated with a fixed resource requirement
in the traditional VN request, while, in our model, the resource
requirement of each node or link is expressed in a tuple <b; v; p>.

polynomials, to capture the time-varying resource require-
ment in a very precise way [20]. However, such smooth
functions may increase the representation and communica-
tion burden of SPs, as well as complicate the resource
provisioning in SNs. To strike a balance between modeling
precision and implementation difficulties, and to initiate a
tractable study as a first step, this paper resorts to a
probability-based model and leaves exploring other tradeoffs
as future work.

In our model, the time-varying resource requirement of
a virtual node or link is composed of a basic subrequire-
ment, which exists throughout the lifetime of the respective
VN, and a variable subrequirement, which occurs with a
probability. Based on this resource requirement mode, we
replace the CðnvÞ and BðevÞ in the traditional representa-
tion with tuples <bðnvÞ; vðnvÞ; pðnvÞ> and <bðevÞ; vðevÞ;
pðevÞ>, respectively, where bðnvÞ (respectively, bðevÞ)
denotes the number of time slots in the basic subrequire-
ment, and vðnvÞ (respectively, vðevÞ) denotes the number of
time slots in the variable subrequirement, which occurs
with probability pðnvÞ. Take virtual node a in Fig. 1b, for
example, since <bðaÞ; vðaÞ; pðaÞ> ¼ <8; 4; 0:3>, we then
know that virtual node a needs eight slots with a
probability of 0.7 and 12 slots with a probability of 0.3.

Overall, we admit that many challenges remain, for
example, how does an SP choose suitable <b; v; p> tuples to
best reflect the time-varying resource requirement of his/
her VN. However, the thesis of this paper is the notion of
opportunistic resource sharing, and what it brings to InPs
and SPs. We hope that this simplified model can provide
some insights on the design of future VNE algorithms.

3 THE VIRTUAL NETWORK EMBEDDING PROBLEM

A substrate network is modeled as a weighted undirected
graph, Gs ¼ ðNs;EsÞ, where Ns and Es are the sets of
substrate nodes and links, respectively. Similarly, each
substrate node ns 2 Ns is associated with a CPU capacity
CðnsÞ in time slots, and each substrate link es ¼ ðnsi ; nsjÞ 2 Es

is associated with a bandwidth capacity BðesÞ in time slots.
The set of loop-free paths from nsi to nsj is denoted as
Psðnsi ; nsjÞ. The residual resources of ns and es are denoted as
RCsðnsÞ and RBsðesÞ, respectively. The computation of
RCsðnsÞ and RBsðesÞ in the context of opportunistic
resource sharing is not trivial, as we shall discuss shortly
in Section 5.6. The right side of Fig. 2 shows a substrate
network, where the corresponding resource capacity of each

substrate node or link is written next to the respective node
or link that represents it.

The embedding of a VN Gv
i is defined as mapping M

from Gv
i to a subset of Gs, such that the resource

requirement of Gv
i is satisfied and the resource capacities

in Gs are not violated. It can be further decomposed into
two components: 1) node mapping Mn : Nv

i ! Ns, which
maps different virtual nodes to different substrate nodes;
and 2) link mappingMl : Ev

i ! Ps, which maps a virtual link
to a substrate loop-free path.

In Fig. 2, the node mapping for Gv
1 is fa! A; b!

G; c! D; d! Cg, and the link mapping is fðabÞ ! fAGg;
ðbcÞ ! fGH;HDg; ðcdÞ ! fDCg; ðdaÞ ! fCB;BAgg; the
node mapping for Gv

2 is fe! H; f ! D; g! Eg, and the
link mapping is fðefÞ ! fHDg; ðfgÞ ! fDEgg.

Our main interest is to propose an embedding frame-
work for InPs to cope with a sequence of VN requests that
arrive and depart over time. Upon the arrival of request Gv

i ,
an InP must decide to either accept or reject it. Here, we
assume that VN requests arrive one by one, and batch
processing is not the focus of this paper. From the
standpoint of an InP, the objective is to maximize its
revenue through efficiently utilizing its substrate resources.
Following prior research [12], [13], the revenue, RðGv

i Þ, of
embedding Gv

i can be defined as

RðGv
i Þ ¼ !c

X
nv2Nv

ðbðnvÞ þ vðnvÞÞ þ !b
X
ev2Ev

ðbðevÞ þ vðevÞÞ
" #

Tvi ;

where !c and !b are the weights, providing the flexibility to
tradeoff between the costs of two kinds of resources, and Tvi
is the lifetime of Gv

i . Note that the length of substrate paths
that virtual links are mapped to does not affect the revenue,
since an SP is only willing to pay a rent to the InP that is
proportional to the amount of requested resources. To
maximize the revenue, VN requests should be intelligently
deployed on top of an SN. This paper revisits this problem
from the perspective of opportunistic resource sharing.

4 THE OVERVIEW OF OUR FRAMEWORK

In this section, we present an overview of our framework,
ORS. The details are introduced in Section 5.

ORS generally consists of two components, as shown in
Algorithm 1. The macrolevel node-to-node/link-to-path
embedding component adopts a traditional greedy strategy
in [13] to derive the mapping of virtual nodes to substrate
nodes and virtual links to substrate paths. In this
component, we first place virtual nodes in queue Q with
decreasing ðbðQ½i�Þ þ pðQ½i�ÞvðQ½i�ÞÞ, which is the expected
number of time slots required by a virtual node Q½i�; then,
we map each virtual node from the head to the end of Q to
the unused substrate node with the most residual resource.
If the residual resource of a substrate node is less than the
expected number of time slots required by the correspond-
ing virtual node, the VN request is rejected. This kind of
“maximum-first” embedding fashion is beneficial to future
requests that may require some scarce or bottleneck
resources. We then map each virtual link to the shortest
path [24] with sufficient bandwidth between its end hosts,
to minimize the span. We note that, when the VN request

818 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

Fig. 2. An example of virtual network embedding.

contains multiple edges between a pair of nodes, we turn
to find the k shortest paths [25] to reduce the sum of
the lengths of multiple substrate paths that these edges are
mapped to.

Algorithm 1. The ORS embedding framework.

1: Wait until a VN request Gv arrives
2: Macrolevel node-to-node/link-to-path mapping:

3: for all ns 2 Ns do unusedðnsÞ 1 end for

4: Q sorted Nv with decreasing

ðbðQ½i�Þ þ pðQ½i�ÞvðQ½i�ÞÞ
5: for i ¼ 1 to Q:length do

6: MnðQ½i�Þ argmaxðRCsðnsÞ � unusedðnsÞÞ
7: if RCsðMnðQ½i�ÞÞ < ðbðQ½i�Þ þ pðQ½i�ÞvðQ½i�ÞÞ
8: then reject Gv and return

9: end for

10: for all ev ¼ ðnv;mvÞ 2 Ev do

11: Ps0 fpathjRBsðpathÞ � ðpðevÞvðevÞ þ bðevÞÞ,
path 2 PsðMnðnvÞ;MnðmvÞÞg

12: if Ps0 ¼¼ ; then reject Gv and return

13: MlðevÞ argminðhopðpathÞÞ
(the shortest path [24] or the k shortest paths [25])

14: end for

15: Microlevel time slot assignment:

16: for all nv 2 Nv do

17: if false ¼¼ CFF ðvðnvÞ; pðnvÞÞ (or EFF)

18: then reject Gv and return

19: update RCsðMnðnvÞÞ
20: end for

21: for all ev 2 Ev do

22: for all es 2 MlðevÞ do

23: if false ¼¼ CFF ðvðevÞ; pðevÞÞ (or EFF)

24: then reject Gv and return

25: update RBsðesÞ
26: end for

27: end for

In the microlevel component, we run CFF or EFF in each
of the substrate nodes and links that are involved in the
mapping of Gv to deal with time slot allocations; then, we
update residual resources of them. The details of this
component are introduced in Section 5. It is worth
elaborating on that lines 7 and 11 of Algorithm 1 only
provide early-reject conditions; even when the node
mapping Mn passes the checking condition in line 7, and
the link mappingMl passes checking condition of line 11, it
is still possible that the resource requirement of Gv could
not be guaranteed in the microlevel time slot assignment.

While the “maximum-first” strategy of the macrolevel
component largely comes from [13], the main contributions
of this paper lie in the microlevel component. We conclude
this section by presenting the time complexity of ORS. In
macrolevel embedding, the sorting and mapping of virtual
nodes takes OðjNvjlogðjNvjÞ þ jNvjÞ time, and finding the k
shortest paths takes OðjEsj þ jNsjlogðjNsjÞ þ kÞ [25]; since
we need to execute the k shortest paths algorithm at most
jNsj2 times, this component takes OððjNvjlogðjNvjÞ þ jNvjÞ þ
jNsj2ðjEsj þ jNsjlogðjNsjÞ þ kÞÞ ¼ OðjNsj4Þ time in all. Here,
we have simplified the summations by using jEsj ¼
OðjNsj2Þ. Based on the results in Section 5.7, the microlevel

component takes OðF jNsj2Þ; therefore, the overall time
complexity of ORS is OðjNsj4 þ F jNsj2Þ.

5 MICROLEVEL TIME SLOT ASSIGNMENT—AN

OPPORTUNISTIC RESOURCE SHARING VIEW

In this section, we will first provide a formal description of
the time slot assignment problem and its hardness result.
Then, we present an ILP-based optimal solution and two
practical first-fit-based solutions. We also show how to
estimate residual resources of substrate nodes and links.
Finally, we will give a brief summary of this section.

5.1 Problem Formulation

Since both CPU and bandwidth requirements can be
expressed as time slots, this section only takes the time slot
assignment in a substrate link for illustration. The solutions
can be applied to substrate nodes without any changes.

Consider the following scenario, where a set of n virtual
links from different VNs are embedded across a substrate
link. For simplicity, the resource requirements from
different VN requests are assumed to be independent of
each other. This seems to be reasonable, since VNs are
operated by different SPs and offer different services to
different users. For the basic subrequirements that exist
throughout the lifetime of the respective VN request, we
must allocate the required number of dedicated time slots
for them; however, for the variable subrequirements, since
they occur with a probability that is less than 1, sharing may
be a viable choice to conserve substrate resources for future
VN requests. Therefore, we will only consider how to assign
substrate slots to variable subrequirements in the remainder
of this section.

We propose to assign one substrate slot to multiple units
of variable subrequirements. However, collisions may
happen, i.e., multiple units of subrequirements occur
simultaneously. To strike a tradeoff between utilization
and collision, we use a collision threshold pth to represent
the “volume” of a substrate time slot.

Denote by Dj, the set of variable subrequirements that
substrate slot tsj is assigned to; let Xi indicate whether the
ith variable subrequirement occurs, i.e., Pr½Xi ¼ 1� ¼ pi.
Then, the probability of a collision happening at slot tsj,
denoted by PrðDjÞ, is

PrðDjÞ ¼ Pr
X
i2Dj

Xi � 1

2
4

3
5 ¼ 1�

Y
i2Dj

ð1� piÞ

�
X
i2Dj

pi
Y

k2Dj;k6¼i
ð1� pkÞ

0
@

1
A:

ð1Þ

We have the following optimization problem:

Problem 1 (The Time Slot Assignment Problem—TSA).
Given a set of n virtual links from different VNs, the variable
subrequirement of the ith virtual link is vi time slots, each of
which is needed with probability pi. Find an assignment of
substrate time slots to the subrequirements to minimize the
number of slots used, such that: 1) for the variable
subrequirement of the ith virtual link, the number of time

ZHANG ET AL.: VIRTUAL NETWORK EMBEDDING WITH OPPORTUNISTIC RESOURCE SHARING 819

slots assigned to it is at least vi; and 2) the collision probability

at each substrate time slot is no more than a given collision

threshold pth.

For example, Fig. 3 shows a feasible assignment. ts1 can

be assigned to two variable subrequirements because they

collide with a probability 0.08, which is less than pth ¼ 0:1;

however, ts4 cannot be assigned to the second and fourth

subrequirements simultaneously, because the collision

probability 0.12 is larger than pth.
For the hardness of the TSA problem, we have the

following theorem: Please refer to the supplemental

material, which can be found on the Computer Society

Digital Library at http://doi.ieeecomputersociety.org/

10.1109/TPDS.2013.64, for the detailed proofs of all the

theorems in this paper.

Theorem 1. TSA is NP-hard in the strong sense.

5.2 An ILP-Based Optimal Solution

Inspired by the cutting stock problem,1 we can formulate the

TSA problem by means of ILP. Denote a set of variable

subrequirements whose collision probability is no more than

pth as a pattern. Denote the number of all possible patterns as

m. For each possible pattern j, let xj represent the times that

pattern j appears in a feasible assignment. Thus, the TSA

problem can be formulated as

min
Xm
j¼1

xj;

s:t:
Xm
j¼1

ðajixjÞ � vi; 8i 2 f1; 2; . . . ; ng;

xj; nonnegative integer; 8j 2 f1; 2; . . . ;mg;

ð2Þ

where aji indicates whether pattern j contains the ith

subrequirement. Ideally, (2) can be optimally solved using

intelligent exhaustive search approaches, such as back-

tracking and branch-and-bound [24]. However, it is not

practical. First, the number of possible patterns can be

exponentially large, the construction of which costs ex-

ponential time; second, the intelligent exhaustive search

approach usually consists of a systematic enumeration of all

candidate solutions, which is also difficult to apply in

practice. This motivates us to design practical solutions,

which are introduced in the next two sections.

5.3 First-Fit by Collision Probability

In the bin packing problem [23], we are given n items with

sizes s1; s2; . . . ; sn 2 ð0; 1�, and the objective is to find a

packing method in unit-sized bins that minimizes the

number of bins used. We observe that, when each variable

subrequirement requires only one time slot, i.e., vi ¼ 1 for

all 1 � i � n, TSA is similar to bin packing, except that the

size of multiple items is the sum of them in bin packing; the

collision probability of multiple subrequirements is neither

linear nor multiplicative, as shown in (1).
The first-fit algorithm [23] is a greedy approximation

algorithm of factor 2 for bin packing. In first-fit, items are

considered in an arbitrary order, and for each item, first-fit

attempts to place the item in the first bin that can

accommodate the item. If this is not possible, the item is

placed into a new bin. First-fit can be executed online and

has a low time complexity.

Algorithm 2. First-Fit by Collision Probability (CFF).

1: Input: vi and pi
2: cnt 0, index 0

3: while cnt < vi do

4: while getCollistionProðDindex; piÞ > pth do

5: index indexþ 1

6: if index > N return false

7: end while

8: Dindex Dindex [fig
9: cnt cntþ 1, index indexþ 1

10: if index > N return false

11: end while

12: return true

The resemblance between the two problems inspires us

to adopt the core idea of first-fit and design the “first-fit

by collision probability” algorithm, shown in Algorithm 2.

In the algorithm, N is the total number of substrate time

slots, and Dj is the set of subrequirements that the

jth substrate time slot is assigned to; the function

getCollisionProðDindex; piÞ returns the collision probability

of subrequirements Dindex [fig and can be implemented

in an incremental manner. Let

AðDjÞ ¼
Y
h2Dj

ð1� phÞ;

BðDjÞ ¼
X
h2Dj

�
ph

Y
k2Dj; k 6¼h

ð1� pkÞ
�
:

Then, the collision probability in (1) can be rewritten as

PrðDjÞ ¼ 1�AðDjÞ �BðDjÞ. We have

AðDj [figÞ ¼ AðDjÞð1� piÞ;
BðDj [figÞ ¼ BðDjÞð1� piÞ þAðDjÞpi:

ð3Þ

Let us look at the performance guarantee of CFF. Denote

by Scff the assignment results from CFF, and by Sopt the

results from the optimal solution. Abusing the notation a

bit, we also use Scff and Sopt to denote the number of

substrate slots used in these results, respectively, if no

confusion can be caused. Let

820 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

1. Cutting stock problem [26]. Given a number of rolls of paper of fixed
width waiting to be cut, yet different customers want different numbers of
rolls of various-sized widths, find a cutting method to minimize the waste.

Fig. 3. The time slot assignment problem. The probability threshold
serves as the “volume” of a substrate time slot.

pmin ¼ min1�i�npi; vmin ¼ min1�i�nvi;

pmax ¼ max1�i�npi; vmax ¼ max1�i�nvi:

We then have the following theorem.

Theorem 2. Scff � Soptðvmax � vol1Þ=ðvmin � vol2Þ, where volI
and volII are the roots of equations:

1� ð1� pminÞvol1 � vol1 � pmin � ð1� pminÞvol1�1 ¼ pth;
1� ð1� pmaxÞvol2 � vol2 � pmax � ð1� pmaxÞvol2�1 ¼ pth:

5.4 First-Fit by Expectation of Indicators’ Sum

In Algorithm 2, the getCollisionPro function is invoked
whenever we want to see whether a substrate slot can
accommodate a unit of variable subrequirement, and it still
costs five additions and three multiplications, even when
using incremental calculation. Recall that the number of
substrate nodes and links may be very large; if we could
reduce the time complexity of getCollisionPro a little, then
the total benefit would be great.

Denote Xi as the indicator of the ith variable subrequire-
ment. Our motivational question is, for a given pth, does a
corresponding value exist such that, if the sum of the
indicators of a set of variable subrequirements is less than
that value, then we can definitely know that the collision
probability of them is less than pth? Fortunately, based on
Chernoff bound [27], we prove the following theorem.

Theorem 3. If E½
P

i2Dj
Xi� � �th, then Pr½Dj� � pth, where

�the
1��th ¼ pth, and e is the exponential constant.

Given the value of pth, we have to solve a transcendental
equation pth ¼ �the1��th to get the corresponding �th. In our
implementation, we resort to numerical methods. We notice
that the curve of pth ¼ �the1��th is similar to a parabola;
therefore, polynomial interpolation is used to approxi-
mately calculate �th. Given three points, (0.1,0.245),
(0.5,0.824), and (0.9,0.994), we get

pth � �1:27812�th
2 þ 2:21437�th þ 0:0363438:

With the help of this theorem, the original determination
of whether a substrate slot can accommodate a unit of
variable subrequirement turns into evaluating whether the
expectation of the sum of the subrequirements’ indicators is
less than �th. We then modify the TSA problem a little and
get the following problem.

Problem 2 (The Expectation-Based Time Slot Assignment

Problem—ETSA). Given a set of n virtual links from
different VNs, the variable subrequirement of the ith virtual
link is vi time slots, each of which is needed with probability pi.

Find an assignment of substrate time slots to the subrequire-

ments to minimize the number of slots used, such that: 1) for

the variable subrequirement of the ith virtual link, the number

of time slots assigned to it is at least vi; and 2) the expectation

of the sum of the indicators of a set of variable subrequirements

that a substrate slot is assigned to is no more than a given

expectation threshold �th.

Theorem 4. The ETSA problem is NP-complete.

We replace the condition in line 4 of Algorithm 2 with
pi þ

P
k2Dindex

pk > �th, and name the new algorithm “first-fit
by expectation of indicators’ sum”. In doing so, the
checking condition in line 4 is reduced to one addition
operation, suggesting that EFF may run faster than CFF.

It turns out that using an expectation threshold decreases
the number of variable subrequirements that a substrate slot
can be assigned to; however, this relaxation gap is a bit
more subtle than it might initially appear. To motivate it,
we start with the following illuminating example:

Consider a substrate slot that is assigned to n variable

subrequirements from different virtual links, each occur-

ring with the same probability p; then, the collision

probability Pr½coll� is 1� ð1� pÞn � npð1� pÞn�1 and the

expectation of the sum of indicators E½Y � is np. For each

E½Y �, we obtain a value of pth by Theorem 3. Fig. 5 shows

the relaxation gap. For instance, when n ¼ 2 and p ¼ 0:1,

we have E½Y � ¼ 2� 0:1 ¼ 0:2; Pr½coll� ¼ 1� ð1� 0:1Þ2 �
2� 0:1� ð1� 0:1Þ ¼ 0:01, pth ¼ E½Y �e1�E½Y � ¼ 0:445, indi-

cating, if we use �th ¼ 0:2 as the expectation threshold,

then the collision probability is guaranteed to be no more

than 0.445. However, the collision probability of these two

subrequirements is 0.01, which is much smaller than 0.445.
The main reason behind this phenomenon is that mutual

independence is ignored in the EFF algorithm due to the

linearity of expectation. To make up the relaxation gap, we

replace �th by ��th in EFF, i.e., pi þ
P

k2Dindex
pk > ��th. Here,

the parameter � is used to control the relaxation, and its

empirical value will be investigated in our simulations.

ZHANG ET AL.: VIRTUAL NETWORK EMBEDDING WITH OPPORTUNISTIC RESOURCE SHARING 821

Fig. 4. Fragmentation of time slots due to the dynamics of virtual networks. (a) The original assignment; after some time, the first virtual link leaves
and the fifth virtual link comes. (b) and (c) The scenarios without and with rearrangement, respectively. We see that the rearrangement reduces the
number of slots used by 2.

Fig. 5. Due to the linearity of expectation, the mutual independence is
ignored in EFF, leading to a relaxation gap.

5.5 Rearrangement

Due to the dynamics of virtual network requests, the
substrate resources may become fragmented, i.e., some
shared time slots are not in full use. In this section, we
propose to use rearrangement to avoid resource fragmenta-
tion and improve resource utilization.

We start with an illustrating example, shown in Fig. 4.
Fig. 4a shows a snapshot of the time slot assignment in a
substrate link. Note that only the shared time slots are shown
in the figure, since the dedicated time slots are in full use all
the time. After some time, the first virtual link along with its
variable subrequirement leaves, and the fifth virtual link
along with its variable subrequirement arrives. According to
the first-fit-based algorithms, we first check whether ts1 can
accommodate a unit of subrequirement from the fifth virtual
link, and it cannot, since p3p5 ¼ 0:12 > pth. We then check the
following slots and, finally, reach the assignment shown in
Fig. 4b, where eight slots are used.

However, if we rearrange the time slot assignment when
the first virtual link leaves, we could assign ts1 and ts2 to
the variable subrequirements from the fourth virtual link. In
doing so, slots ts5 and ts6 would be assigned to the newly
arrived virtual link. The final assignment is shown in
Fig. 4c, where we can see that the rearrangement reduces
the number of slots used by 2.

This example motivates us to propose the rearrangement
protocol as follows: On a virtual network request’s leave, or
at intervals set by an InP, the following operations are
performed in every substrate node and link: for decreasing j
from N to 1, the subrequirements in Dj are reassigned by
using CFF or EFF. The loop ends upon an encounter with a
substrate slot, which is just assigned to a new subrequire-
ment by this rearrangement protocol.

In a sense, rearrangement “compresses” the assignment
so that it takes up less time slots, which is beneficial to
future VN requests, and improves substrate resources
utilization. It is worth noticing that, after the rearrangement
is performed, the residual resources of substrate nodes and
links change. To capture this change, the residual resource
estimation should be executed. We can see that the
rearrangement incurs some computational overhead; there-
fore, our protocol allows InPs to achieve a tradeoff between
resource utilization and computational overhead by tuning
the trigger intervals.

5.6 Estimating Residual Resource

This section presents how we estimate the residual
resources of each substrate node and link in the context of
opportunistic resource sharing.

Residual resources are traditionally defined as follows:
RCsðnsÞ ¼ CsðnsÞ �

P
8nv fcðnv; nsÞ and RBsðesÞ ¼ BsðesÞ �P

8ev fbðev; esÞ, where fcðnv; nsÞ denotes the amount of the
CPU resources in ns that are allocated to nv, and fbðev; esÞ
denotes the amount of the bandwidth resources in es that
are allocated to ev. Since both CPU and bandwidth are
expressed in time slots, this section focuses on RBsðesÞ;
RCsðnsÞ can be analyzed similarly.

However, when we apply opportunistic resource sharing
to the resource allocation in substrate networks, some
substrate time slots are shared among multiple virtual
networks; then, it is nontrivial to calculate the amount of
residual resources in a substrate node or link. Fig. 6 shows a
time slot allocation snapshot in a substrate link. We see that

ts1 and ts5 are assigned to some basic subrequirements; each
of ts2, ts3, ts4, ts6, and ts7 is assigned to a set of variable
subrequirements, denoted as Di; the other slots are unused.
The residual resource should include the unused slots and
the residual “room” in the shared slots. We then propose a
reasonable method to properly measure the latter.

For a substrate node or link that has N time slots, where
N ¼ CsðnsÞ if it is a substrate node ns, or N ¼ BsðesÞ if it is a
substrate link es, denote the set of slots that are assigned to
basic subrequirements as Sb; denote the set of slots that are
assigned to variable subrequirements as Sv; and denote the
rest as Su. For example, in Fig. 6, Sb ¼ f1; 5g, Sv ¼ f2; 3;
4; 6; 7g, and Su ¼ f1; 2; 3; . . . ; NgnðSb [SvÞ.

The residual room rrk in the kth slot which belongs to
Sv is defined as a probability that satisfies the following
condition: if we assign tsk to a new variable subrequire-
ment, which occurs with this probability, then the collision
probability would be equal to pth. This definition is
intuitively reasonable, as it indicates the maximum
probability of a variable subrequirement that we can
assign tsk to.

When jDkj ¼ 1 and Dk ¼ fhg, rrk ¼ pth=ph; when jDkj >
1, according to (3), we have

1�AðDkÞð1� rrkÞ � ðBðDkÞð1� rrkÞ þAðDkÞrrkÞ ¼ pth:

After solving it, we get

rrk ¼
AðDkÞ þBðDkÞ þ pth � 1

BðDkÞ
¼ pth � PrðDkÞ

BðDkÞ
: ð4Þ

Thereby, the residual resource of this substrate link is

RBsðesÞ ¼ jSuj þ
X
k2Sv

minfrrk; 1g: ð5Þ

Take ts1 in Fig. 2, for example, Prðf1; 3gÞ ¼ 0:08,
Bðf1; 3gÞ ¼ 0:44; thus, the residual room in ts1 is rr1 ¼
ðpth � Prðf1; 3gÞÞ=Bðf1; 3gÞ � 0:045.

5.7 Remarks and Summary

In summary, this section starts with the formulation and the
NP-hard result of the microlevel time slot assignment
problem and then provides an ILP-based optimal solution,
which is not practical. The similarities between our problem
and bin packing further motivate us to propose two first-fit-
based heuristics, the performances of which are to be
investigated in our extensive simulations. We then design a
simple rearrangement protocol to cope with resource
fragmentation and show how to estimate residual resources
of substrate nodes and links. We also provide in Section 1 of
the supplemental material, available online, some intuitive
insights on how opportunistic resource sharing can lead to a
win-win situation—service providers’ costs are lowered,
while infrastructure providers’ revenues increase, as well.

822 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

Fig. 6. A snapshot of time slot allocation in a substrate link. ts1 and ts5

are assigned to some basic subrequirements; each of ts2, ts3, ts4, ts6,
and ts7 is assigned to a set of variable subrequirements, denoted as Di,
respectively; the other slots are unused.

We note that the adaptation of the microlevel time slot
assignment to the scenario where a node has multiple types
of resources is trivial, since the algorithms in this section are
microlevel and are executed in every substrate and link.
When there are multiple types of resources, the InPs just
have to run the algorithms for them individually.

We conclude this section by presenting the time
complexity results. Denote the maximum variable sub-
requirement among all of the virtual nodes and links from
a virtual network as maxðvÞ; denote the maximum
capacity among all of the substrate nodes and links in a
substrate network as maxðmaxðBÞ;maxðCÞÞ. Let F ¼
maxðvÞ �maxðmaxðBÞ;maxðCÞÞ; then, both CFF and EFF
have at most OðF Þ comparisons. The estimation of residual
resources takes OðjNsj þ jEsjÞ time. The overall time
complexity of the microlevel component is OððjNsj þ
jEsjÞð1þ F ÞÞ ¼ OðF jNsj2Þ, where jNsj and jEsj are the
cardinalities of Ns and Es, respectively.

6 PERFORMANCE EVALUATION

In this section, we first concentrate on the scenario of a
single substrate link in an effort to quantify the benefits of
opportunistic resource sharing and compare the perfor-
mances of CFF and EFF. We then compare ORS with two
state-of-the-art fixed-resource embedding schemes.

6.1 Single Substrate Link

We first consider a scenario where a single substrate link is
shared among multiple virtual links from different virtual
network requests. Since we have no choice but to allocate
the corresponding required slots for basic subrequirements,
we do not consider the basic subrequirements in this
section. The number of variable subrequirements is n, and
the ith ð1 � i � nÞ subrequirement needs vi slots with
probability pi. In our simulation, vi is uniformly generated
between 2 and vmax; pi is uniformly generated from two
intervals, i.e., ð0:05; 0:10Þ and ð0:05; 0:20Þ; the collision
threshold pth is chosen from f0:1; 0:2; 0:3g. We try to
compare the performances of CFF and EFF, and see the
effects of n, vmax, and pth.

6.2 Results of Single Substrate Link

1. The impact of n: Fig. 7 shows the corresponding
results, where we keep the other parameters fixed,
for example, pth ¼ 0:1 and vmax ¼ 10. We denote
EFF with relaxation parameter � by EFF(�), and the
number of substrate slots that are needed, if
opportunistic resource sharing is not adopted, by

“total slots.” We note that, when n increases from
20 to 100 with an increment of 20, the data points
are linear in shape, indicating that the number of
substrate slots used grows linearly with n. We also
see that, when � increases, the results of EFF(�)
occupy less substrate slots, since a larger � allows
more subrequirements to be accommodated in a
single substrate slot. We also find that EFF (14)
achieves almost the same results as CFF; however,
when � > 14, as we shall explain shortly in Fig. 9,
the collision probability would be bigger than the
threshold.

2. The impact of vmax: Fig. 8 shows the corresponding
results, where we keep the other parameters fixed,
for example, pth ¼ 0:1 and n ¼ 50. When vmax goes
up from 10 to 50 with an increment of 10, the
substrate slots used also grows linearly with vmax. By
comparing Fig. 8a with Fig. 8b, we find that, when pi
doubles on average, the number of slots used nearly
doubles. The main reason behind this phenomenon
is that, when pi increases on average, the number of
subrequirements that a substrate slot can accommo-
date decreases; however, as the collision probability
is neither additive nor multiplicative, the double of
pi does not necessarily lead to a doubling of the
number of slots used.

3. Comparison of running times: Fig. 9a demonstrates the
comparison results between the running times of
CFF and EFF, where pth ¼ 0:1, vmax ¼ 30, and
pi 2 ð0:05; 0:10Þ. We make two observations. First,
EFF generally runs faster than CFF. The main reason
behind this phenomenon is that, as we mentioned in
Section 5.4, EFF replaces the getCollisionPro func-
tion, which requires five additions and three multi-
plications, with just one addition. Second, EFF(�)
runs faster when � is increasing. The reason is

ZHANG ET AL.: VIRTUAL NETWORK EMBEDDING WITH OPPORTUNISTIC RESOURCE SHARING 823

Fig. 7. Comparison of CFF and EFF under varying n while keeping
pth ¼ 0:1 and vmax ¼ 10. EFF(x) denotes � ¼ x.

Fig. 8. Comparison of CFF and EFF under varying vmax while keeping
pth ¼ 0:1 and n ¼ 50.

Fig. 9. Running time comparison and the impact of pth.

implicit, if somewhat subtle: one substrate slot can
accommodate more variable subrequirements when
� becomes larger; thus, the value of index in EFF(�)
becomes smaller on average.

4. The impact of pth: Fig. 9b shows the ratio of EFF (14) to
total slots under different thresholds, while we keep
n ¼ 100 and vmax ¼ 10. We note that, for fixed vmax,
the ratio goes down when the threshold increases.
This is reasonable, since the threshold serves as the
“volume” of a substrate slot, and a larger threshold
allows a substrate slot to accommodate more
subrequirements. For fixed pth, the ratio goes up
when vmax increases. This is because a larger vmax
makes the number of subrequirements that a
substrate slot can accommodate decrease, and hence,
EFF (14) needs more substrate slots.

In our simulations, we also find that, when � > 14, the
collision probability in the embedding results of EFF
would be bigger than pth ¼ 0:1. In addition, this critical
value is about 10 when pth ¼ 0:2, and about eight when
pth ¼ 0:3. We explain this as follows: if we replace every pi
with pmax ¼ maxð1�i�nÞpi, then the number of subrequire-
ments that a single substrate slot can accommodate,
denoted as y, can be resolved by 1� ð1� pmaxÞy �
pmaxð1� pmaxÞy�1y ¼ pth. Then, by double counting the
indicators’ sum, we get ��th ¼ pmaxy. When pth goes up,
both y and �th go up, but � goes down, indicating that �th
grows faster than y.

We also conducted simulations with pth ¼ 0:2 and
pth ¼ 0:3. The results are similar to the above and are,
therefore, omitted due to space limitations. Briefly speak-
ing, both CFF and EFF improve the resource utilization, and
EFF is less time-consuming and more flexible than CFF.

6.3 Entire Substrate Network

In this section, we consider VNE at the level of the entire
network, compare our framework with two state-of-the-art
fixed-resource embedding algorithms [12], [13], and inves-
tigate the impacts of various parameters.

Our simulation settings follow prior work [12], [13], as
network virtualization is still in its infancy. We use
ANSNET and ARPANET as the substrate network topolo-
gies. Both CPU and bandwidth capacities in substrate
networks are generated uniformly from the interval
between 50 and 100. For virtual networks, the number of
virtual nodes is determined by a uniform distribution
between 2 and 10, and each pair of virtual nodes is
connected with a probability of 0.5. We also check whether
a virtual network is connected; if it is not, we just regenerate
it until we get a connected topology. The lifetime of each

virtual network is assumed to be exponentially distributed
with an average of 10 minutes. The arrivals of VN requests
are modeled as a Poisson process with an average rate of
five requests per minute. The collision probability threshold
is set to 0.1 throughout this evaluating scenario. The results
are averaged over 100 times of running. (Results over
ARPANET are similar and are omitted due to space
limitations.) Our framework ORS is compared with the
following two algorithms:

. R� V iNE [12]: coordinated node and link mapping
through mixed integer programming formulation
and randomized rounding.

. Greedy [13]: greedy node mapping and path splitting.

The performance metrics we use for comparison include
acceptance ratio, which is the ratio of the number of accepted
virtual network requests to all requests, node utilization ratio,
which is the ratio of the amount of the allocated CPU
resources to overall CPU resources in the substrate network,
and link utilization ratio, which is the ratio of the amount of
the allocated bandwidth resources to overall bandwidth
resources in the substrate network. We are also interested in
the impacts of the following parameters:

. E½bþ v�: the average total number of slots required
by a virtual node or link;

. E½b=ðbþ vÞ�: the average percentage of the number of
slots in a basic subrequirement to the total number of
slots required by a virtual node or link; and

. E½p�: the average happening probability of variable
subrequirements of virtual nodes and links.

6.4 Results of Entire Substrate Network

1. Comparison of acceptance ratios. Figs. 10a, 10b, and 10c
show the comparison of the acceptance ratio over
time, cumulative distribution function (CDF) of node
utilization ratio, and CDF of link utilization ratio,
respectively. In these experiments, E½bþ v� is 10,
E½b=ðbþ vÞ� ¼ 0:5, and E½p� ¼ 0:15. In Fig. 10a, as a
whole, the acceptance ratio of ORS is the highest,
and Greedy is the lowest, indicating that opportu-
nistic resource sharing indeed improves the deploy-
ment of virtual networks, which further enables the
substrate network to accept more VN requests. We
notice that the acceptance ratio of three algorithms is
about 0.4 on average, which is a little low. The main
reason is that links in the substrate network
(ANSNET has 32 nodes and 58 links, ARPANET
has 20 nodes and 32 links) are sparse, while each

824 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

Fig. 10. Comparison results among ORS, R� V iNE, and Greedy, where E½bþ v� ¼ 10; E½b=ðbþ vÞ� ¼ 0:5; E½p� ¼ 0:15.

pair of nodes in a virtual network is connected with
a probability of 0.5. Thus, topology becomes the
dominating factor in our simulation scenarios.

2. Comparison of node and link utilization ratios. In
Figs. 10b and 10c, the node/link utilization ratios
of ORS and R� V iNE are the highest and the
second highest, respectively. We notice that the link
utilization ratio is a little higher than node utilization
ratio in every algorithm, i.e., each CDF curve in
Fig. 10b is in the left of the corresponding curve in
Fig. 10c, if we can put these two figures together and
look at them. This is reasonable, since a virtual link
spans over several substrate links, while a virtual
node only exists in a substrate node.

3. The impact of E½bþ v�. Fig. 11b shows the results of
the impact of E½bþ v�. We note that, in the case of a
small E½bþ v�, the acceptance ratio is high. However,
with increasing E½bþ v�, the substrate network
resources become scarce, which causes more and
more VN requests to be rejected. In this figure,
ðE½bþ v� ¼ 15Þ achieves almost the same acceptance
ratio as ðE½bþ v� ¼ 20Þ. The main reason behind this
phenomenon is that ðE½bþ v� ¼ 15Þ is sufficiently
large compared to the average capacity of substrate
nodes and links, i.e., 75 in our simulation.

4. The impact of E½b=ðbþ vÞ� and E½p�. Fig. 11c shows the
impact of them, where ðE½b=ðbþ vÞ� ¼ 0:30; E½p� ¼
0:15Þ has the best performance, and ðE½b=ðbþ vÞ� ¼
0:50; E½p� ¼ 0:05Þ has the second best, indicating that
the basic subrequirement percentage b=ðbþ vÞ plays
a more important role than the occurring probability
p, which is reasonable, since the basic subrequire-
ments cannot be shared.

In summary, simulations of the single substrate link
scenario demonstrate that both CFF and EFF improve the
resource utilization of substrate networks, and EFF is more
flexible and less time consuming than CFF. In addition,
simulations of the entire substrate network show that our
framework outperforms two state-of-the-art fixed-resource
embedding algorithms, in terms of both acceptance ratio
and utilization ratio. Our results also show some insights
into the impacts of various parameters.

7 RELATED WORK

For the general network virtualization, cognitive radio-

based virtual networks are envisioned in [28]; optical

backbone network virtualization is investigated in [29].

Virtualization is used to lower the barrier for deploying

wide-area services in [30]. Adaptive resource allocation is

introduced to maximize the aggregate performance across
multiple virtual networks in [31].

For the virtual network embedding problem, a large
number of algorithms have been proposed in the past.
These algorithms give good inspiration to the design of
ORS. Simulated annealing was introduced to cope with
VNE’s NP-completeness in [9] and [19]. Embedding with
unlimited substrate resources is studied in [11] and [10].
Zhu and Ammar [11] focused on load balancing and on-
demand assignments, and Lu and Turner [10] attempted to
minimize the embedding cost of a single virtual network
with a backbone-star topology. Yu et al. [13] envisioned
path splitting support from substrate networks and
proposed to first map virtual nodes greedily, then handle
link mapping based on the multicommodity flow algo-
rithm. Lischka and Karl [14] proposed a backtracking
algorithm based on subgraph isomorphism detection, but
restricted the length of the substrate paths. Chowdhury
et al. [12] proposed a linear programming and determinis-
tic/randomized rounding-based algorithm with better
coordination between node and link mappings, but added
location constraints to simplify the problem. Chowdhury
et al. [16] presented a policy-based decentralized inter-
domain virtual network embedding framework and also
designed a location-aware VN request forwarding mechan-
ism. Recently, Bienkowski et al. [32] presented a competi-
tive analysis framework for service migration in a mobile
network virtualization architecture, where thin clients on
mobile devices access services that can be migrated closer to
the access points, as to reduce user latency. Even et al. [7]
proposed a competitive online algorithm for admission
control, while assuming the existence of an oracle that helps
to compute the embedding.

Comparatively, while prior embedding algorithms re-
serve fixed resources throughout the lifetime of a virtual
network, this work rethinks this paradigm and proposes to
opportunistically share resources among multiple virtual
networks, so as to make efficient use of the precious
substrate resources.

8 CONCLUSIONS

In this paper, we rethink the virtual network embedding
problem from the perspective of opportunistic resource
sharing, and we propose an embedding framework that
consists of the macrolevel node-to-node/link-to-path em-
bedding and the microlevel time slot assignment. Extensive
simulations confirm the effectiveness of our framework.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their insightful suggestions. This work was supported in
part by NSFC Grants (Nos. 61073028, 61202113, and
61021062), Key Project of Jiangsu Research Program Grant
(No. BE2010179), Jiangsu NSF Grant (No. BK2011510), 973
Program of China Grants (Nos. 2009CB320705 and
2011CB302800), College graduate research and innovation
project of Jiangsu Grant (No. CXZZ12_0055), and US
National Science Foundation (NSF) Grants (ECCS 1128209,
CNS 1065444, CCF 1028167, CNS 0948184, and CCF
0830289). Zhuzhong Qian is the corresponding author.

ZHANG ET AL.: VIRTUAL NETWORK EMBEDDING WITH OPPORTUNISTIC RESOURCE SHARING 825

Fig. 11. Sensitivity analysis. In (a), E½b=ðbþ vÞ� ¼ 0:5; E½p� ¼ 0:15; and in
(b), E½bþ v� ¼ 10.

REFERENCES

[1] J. Turner and D. Taylor, “Diversifying the Internet,” Proc. IEEE
GlobeCom, 2005.

[2] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming
the Internet Impasse through Virtualization,” Computer, vol. 38,
no. 4, pp. 34-41, Apr. 2005.

[3] N. Feamster, L.-X. Gao, and J. Rexford, “How to Lease the Internet
in Your Spare Time,” ACM SIGCOMM Computer Comm. Rev.,
vol. 37, no. 1, pp. 61-64, 2007.

[4] N. Chowdhury and R. Boutaba, “A Survey of Network Virtualiza-
tion,” Computer Networks, vol. 54, no. 5, pp. 862-876, 2010.

[5] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M.
Wawrzoniak, and M. Bowman, “PlanetLab: An Overlay Testbed
for Broad-Coverage Services,” ACM SIGCOMM Computer Comm.
Rev., vol. 33, no. 3, pp. 3-12, 2003.

[6] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In
VINI Veritas: Realistic and Controlled Network Experimentation,”
ACM SIGCOMM Computer Comm. Rev., vol. 36, no. 4, pp. 3-14,
2006.

[7] G. Even, M. Medina, G. Schaffrath, and S. Schmid, “Competitive
and Deterministic Embeddings of Virtual Networks,” Proc. 13th
Int’l Conf. Distributed Computing and Networking (ICDCN ’12), 2012.

[8] D.G. Andersen, “Theoretical Approaches to Node Assignment,”
unpublished Manuscript, Dec. 2002.

[9] R. Ricci, C. Alfeld, and J. Lepreau, “A Solver for the Network
Testbed Mapping Problem,” ACM SIGCOMM Computer Comm.
Rev., vol. 33, no. 2, pp. 65-81, 2003.

[10] J. Lu and J. Turner, “Efficient Mapping of Virtual Networks onto a
Shared Substrate,” Technical Report WUCSE-2006-35, Washington
Univ., 2006.

[11] Y. Zhu and M. Ammar, “Algorithms for Assigning Substrate
Network Resources to Virtual Network Components,” Proc. IEEE
INFOCOM, 2006.

[12] M. Chowdhury, M. Rahman, and R. Boutaba, “ViNEYard: Virtual
Network Embedding Algorithms with Coordinated Node and
Link Mapping,” IEEE/ACM Trans. Networking, vol. 20, no. 1,
pp. 206-219, Feb. 2012.

[13] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking Virtual
Network Embedding: Substrate Support for Path Splitting and
Migration,” ACM SIGCOMM Computer Comm. Rev., vol. 38, no. 2,
pp. 17-29, 2008.

[14] J. Lischka and H. Karl, “A Virtual Network Mapping Algorithm
Based on Subgraph Isomorphism Detection,” Proc. First ACM
Workshop Virtualized Infrastructure Systems and Architectures
(VISA ’09), 2009.

[15] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual Network Embedding through Topology-Aware Node
Ranking,” SIGCOMM Computer Comm. Rev., vol. 41, pp. 38-47,
Apr. 2011.

[16] M. Chowdhury, F. Samuel, and R. Boutaba, “Polyvine: Policy-
Based Virtual Network Embedding Across Multiple Domains,”
Proc. ACM SIGCOMM Workshop Virtualized Infrastructure Systems
and Architectures (VISA ’10), 2010.

[17] N. Butt, N. Chowdhury, and R. Boutaba, “Topology-Awareness
and Reoptimization Mechanism for Virtual Network Embed-
ding,” Proc. Ninth IFIP TC 6 Int’l Conf. Networking, 2010.

[18] I. Houidi, W. Louati, D. Zeghlache, P. Papadimitriou, and L.
Mathy, “Adaptive Virtual Network Provisioning,” Proc. ACM
SIGCOMM Workshop Virtualized Infrastructure Systems and Archi-
tectures (VISA ’10), 2010.

[19] S. Zhang, Z. Qian, S. Guo, and S. Lu, “FELL: A Flexible Virtual
Network Embedding Algorithm with Guaranteed Load Balan-
cing,” Proc. IEEE Int’l Conf. Comm. (ICC ’11), 2011.

[20] D. Xie, N. Ding, Y.C. Hu, and R. Kompella, “The Only Constant Is
Change: Incorporating Time-Varying Network Reservations in
Data Centers,” Proc. ACM SIGCOMM ’12, 2012.

[21] S. Zhang, Z. Qian, J. Wu, and S. Lu, “An Opportunistic Resource
Sharing and Topology-Aware Mapping Framework for Virtual
Networks,” Proc. IEEE INFOCOM, 2012.

[22] M. Gary and D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. WH Freeman, 1979.

[23] V.V. Vazirani, Approximation Algorithms. Springer, 2003.
[24] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction

to Algorithms, second ed. MIT Press. 2001.
[25] D. Eppstein, “Finding the K Shortest Paths,” Proc. 35th Ann. Symp.

Foundations of Computer Science (FOCS ’94), 1994.

[26] P.C. Gilmore and R.E. Gomory, “A Linear Programming
Approach to the Cutting-Stock Problem,” Operations Research,
vol. 9, pp. 849-859, 1961.

[27] H. Chernoff, “A Measure of Asymptotic Efficiency for Tests of a
Hypothesis Based on the Sum of Observations,” Annals of Math.
Statistics, vol. 23, no. 4, pp. 493-507, 1952.

[28] B. Ishibashi, N. Bouabdallah, and R. Boutaba, “QOS Performance
Analysis of Cognitive Radio-Based Virtual Wireless Networks,”
Proc. IEEE INFOCOM, 2008.

[29] K. Shiomoto, I. Inoue, and E. Oki, “Network Virtualization in
High-Speed Huge-Bandwidth Optical Circuit Switching Net-
work,” Proc. IEEE INFOCOM, 2008.

[30] Y. Zhu, R. Zhang-Shen, S. Rangarajan, and J. Rexford, “Cabernet:
Connectivity Architecture for Better Network Services,” Proc.
ACM CoNEXT Conf., 2008.

[31] J. He, R. Zhang-Shen, Y. Li, C.-Y. Lee, J. Rexford, and M. Chiang,
“DaVinci: Dynamically Adaptive Virtual Networks for a Custo-
mized Internet,” Proc. ACM CoNEXT Conf., 2008.

[32] M. Bienkowski, A. Feldmann, D. Jurca, W. Kellerer, G. Schaffrath,
S. Schmid, and J. Widmer, “Competitive Analysis for Service
Migration in VNets,” Proc. Second ACM SIGCOMM Workshop
Virtualized Infrastructure Systems and Architectures (VISA ’10), 2010.

Sheng Zhang received the BS degree in
computer science from Nanjing University,
China, in 2008, where he is working toward the
PhD degree in the Department of Computer
Science and Technology. His research interests
include delay tolerant networks, future Internet
design, and service computing. He is also a
member of the State Key Laboratory for Novel
Software Technology, and a student member of
the IEEE.

Zhuzhong Qian received the PhD degree in
computer science in 2007. He is an associate
professor at the Department of Computer
Science and Technology, Nanjing University,
China. His research interests include cloud
computing, distributed systems, and pervasive
computing. He is the chief member of several
national research projects on cloud computing
and pervasive computing. He has published
more than 30 research papers in related fields.

He is a member of the IEEE.

Jie Wu (F’09) is the chair and a Laura H. Carnell
Professor in the Department of Computer and
Information Sciences at Temple University. Prior
to joining Temple University, he was a program
director at the US National Science Foundation
(NSF) and Distinguished Professor at Florida
Atlantic University. His current research inter-
ests include mobile computing and wireless
networks, routing protocols, cloud and green
computing, network trust and security, and

social network applications. Dr. Wu regularly published in scholarly
journals, conference proceedings, and books. He serves on several
editorial boards, including IEEE Transactions on Computers, IEEE
Transactions on Service Computing, and Journal of Parallel and
Distributed Computing. Dr. Wu was general cochair/chair for IEEE
MASS 2006 and IEEE IPDPS 2008 and program co chair for IEEE
INFOCOM 2011. Currently, he is serving as general chair for IEEE
ICDCS 2013 and ACM MobiHoc 2014, and program chair for CCF
CNCC 2013. He was an IEEE Computer Society Distinguished Visitor,
ACM Distinguished Speaker, and chair for the IEEE Technical
Committee on Distributed Processing (TCDP). Dr. Wu is a CCF
Distinguished Speaker and a fellow of the IEEE. He is the recipient of
the 2011 China Computer Federation (CCF) Overseas Outstanding
Achievement Award.

826 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

Sanglu Lu received the BS, MS, and PhD
degrees from Nanjing University, China, in 1992,
1995, and 1997, respectively, all in computer
science. She is currently a professor in the
Department of Computer Science and Technol-
ogy and the State Key Laboratory for Novel
Software Technology. Her research interests
include distributed computing, wireless net-
works, and pervasive computing. She has
published more than 80 papers in referred

journals and conferences in the above areas. She is a member of IEEE.

Leah Epstein received the PhD degree in
computer science from Tel-Aviv University in
1999. She is an associate professor of mathe-
matics at the University of Haifa, Israel. Her
main areas of research are bin packing and
scheduling, paging and caching, graph pro-
blems, online algorithms, approximation algo-
rithms, and algorithmic game theory. She has
published more than 100 journal articles, and a
similar number of conference papers, and

supervised many graduate students. She is a member of the editorial
board of several journals, participated in many conference program
committees, and was the program committee chair for the 20th
European Symposium on Algorithms (ESA2012), track A.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG ET AL.: VIRTUAL NETWORK EMBEDDING WITH OPPORTUNISTIC RESOURCE SHARING 827

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

