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environment. It can provide security well beyond content privacy and integrity. The scientific studies of
anonymous communications are largely originated from Chaum’s two seminal approaches: mixnet and
DC-net. In this paper, we present an overview of the research in this field. We start with the basic defi-
nitions of anonymous communications. We then describe the cryptographic primitives, the network pro-
tocols, and some of the representative anonymous communication systems. We also describe verifiable
mixnets and their applications to electronic voting. Finally, we briefly cite some other anonymous
systems.
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1. Introduction to anonymous communications

The rapid growth of Internet applications has made communica-
tion privacy an increasingly important security requirement. While
end-to-end encryption can protect the data content of communica-
tions from adversarial access, it does not conceal all the relevant
information that two users are communicating. Adversaries can
still learn significant information about the traffic carried on the
network and the physical world entities, such as the network of
the sender and receiver or the network addresses of its end-to-
end source and destination. The exposure of network addresses
may result in a number of severe consequences. Adversaries can
easily overhear all the messages and perform traffic analysis. Even
if communication content is encrypted, routing information is still
sent in the clear because routers need to know packets’ destinations
in order to route them in the right direction. Traffic analysis can also
be done by watching particular data moving through a network, by
matching the amount of data, or by examining coincidences, such
as connections opening and closing at about the same time.

In a tactical military communication network, an abrupt change
in the traffic pattern may indicate some forthcoming activities.
This can be extremely dangerous in that adversaries can easily
identify critical network nodes and then launch targeted attacks
on them. This makes source privacy an essential security require-
ment for government and military communications.

In addition, people seeking sensitive information have a strong
desire to remain anonymous so as to avoid being stigmatized or
even to avoid physical or social detriment by suppressors. The free-
ll rights reserved.
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dom of the information exchange is another important issue that
has received increasing attention in the last years. Some organiza-
tions, such as governments or private companies, may regard a dis-
cussion topic or a report as inconvenient or even harmful when
exposed. They may thus try to censor the exchange of undesired
information by either suppressing the resource providers, or if
the information is protected by anonymity services, taking control
of strategic regions of the network, such as gateways and proxies,
and then filtering communication.

The research on privacy preserving communications was initi-
ated by Chaum in his seminal work ‘‘untraceable electronic mail,
return address, and digital pseudonyms” published in 1981 [1].
Since then, research in anonymous communications has been ex-
tended to many areas. The existing anonymous communications
systems can largely be divided into four categories: cryptosys-
tem-based schemes, routing-based schemes, broadcasting-based
systems, and peer-to-peer communication systems.

The rest of this paper is organized as follows: In Section 2, we
introduce some basic definitions of anonymous communications.
We present some cryptographic primitives that provide source
protections in Section 3. In Section 4, we review mixnet-based
anonymous communication schemes. We describe DC-net-based
systems in Section 5. In Section 6, we outline routing-based anon-
ymous communication systems. We review peer-to-peer based
systems in Section 7. In Section 8, we present a brief outline of ver-
ifiable mixnets and their applications to electronic voting. We con-
clude in Section 9 with a brief citing of some other systems.

2. Terminology

In this section, we will introduce some definitions of anony-
mous communications. A comprehensive reference on the
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definitions has been defined by Pfitzmann and Hansen, which has
been updated multiple times. The most recent version was devel-
oped in 2008 [2].

2.1. Anonymity

To enable anonymity of a subject, there has to be an appropriate
set of subjects with potentially the same attributes. Anonymity of a
subject is defined as the state of not being identifiable within the set
of subjects, which is called the anonymity set.

The anonymity set is the set of all possible subjects. It is also
called the ambiguity set [3]. With respect to acting entities, such
as the senders, the anonymity set consists of the subjects who
might cause an action. With respect to acted entities, such as recip-
ients, the anonymity set consists of the subjects who might be
acted upon. In this way, both the sender and the recipient may
be anonymous only with their respective anonymity set. The ano-
nymity sets for the sender and the recipient may be disjoint, the
same, or they may overlap. The anonymity set may also vary over
time.

As a security requirement for anonymity, the probability that a
verifier can successfully determine the real source is exactly 1=n,
where n is the number of members in the anonymity set.

2.2. Unlinkability

Unlinkability ensures that a user may make multiple uses of re-
sources or services without others being able to link these uses to-
gether. The requirements for unlinkability are intended to protect
the user’s identity against the use of profiling of the operations.
Hiding the relationship between different invocations of a service
or access of a resource will prevent this kind of information
gathering.

As a result, a requirement for unlinkability could imply that the
subject and user identity of an operation must be protected so that
two or more items, or operations of interest to an attacker, cannot
be distinguished or related. Otherwise, this information might be
used to link operations together.

Anonymity may be defined as unlinkability of an item of inter-
est (IOI) and any identifier of a subject. In other words, anonymity
of an IOI means that it is not linkable to any particular identity (ID),
and the anonymity of an ID is defined as not being linkable to any
IOI. With this definition, sender anonymity means that a particular
message is not linkable to any sender, and no message is linkable
to a particular sender. The same description can be applied to reci-
pient anonymity.

Unlinkability differs from pseudonymity in that, although in
pseudonymity the user is also not known, relations between differ-
ent actions can be provided.

2.3. Unobservability

Unobservability is the state of items of interest (IOIs) being
indistinguishable from any IOI (of the same type) at all. This means
that messages are not discernible from random noise. Similar to
anonymity sets, we have unobservability sets of subjects with re-
spect to unobservability. Likewise, sender unobservability means
that it is not noticeable whether any sender within the unobserv-
ability set sends. Recipient unobservability means that it is not
noticeable whether any recipient within the unobservability set re-
ceives. In addition, we can also define relationship unobservability
as the state that is not noticeable whether anything is sent out of a
set of could-be senders to a set of could-be recipients. In other
words, it is not noticeable whether within the relationship unob-
servability set of all possible sender-recipient-pairs, a message is
exchanged in any relationship.
2.4. Pseudonymity

Pseudonyms are identifiers of subjects, unlike the subject’s real
names, which are fixed identifiers. Pseudonyms are generally dy-
namic identifiers, or names of the subjects that are hard to be
linked to the real identities without the shared secret keys. In other
words, a pseudonym is an identifier of a subject other than one of
the subject’s real names.

We can generalize pseudonyms to be identifiers of sets of sub-
jects, but we do not need this in our setting.

The subject, which the pseudonym refers to, is the holder of the
pseudonym. A subject is pseudonymous if a pseudonym is used as
an identifier instead of one of its real names. Pseudonymity is the
use of pseudonyms as identifiers.

Sender pseudonymity is defined as the sender being pseudony-
mous; recipient pseudonymity is defined as the recipient being
pseudonymous. We assume that each pseudonym refers to exactly
one specific holder, invariant over time, not being transferred to
other subjects. Specific kinds of pseudonyms may extend this set-
ting: a group pseudonym refers to a set of holders; a transferable
pseudonym can be transferred from one holder to another subject,
becoming its holder. Such a group pseudonym may induce an ano-
nymity set: Using the information provided by the pseudonym
only, an attacker cannot decide whether an action was performed
by a specific subject within the set.

3. Cryptographic primitives for anonymous communications

In this section, we will outline some cryptographic primitives
that can be used to provide source privacy.

3.1. Group signature

The concept of group signature was first introduced by Chaum
and van Heyst in 1991 [4]. A group signature allows any member
of a group to digitally sign a document anonymously without being
individually identified. The group signature of a document can be
verified by any verifier. As an application, a group signature
scheme can be used by an employee of a large company to sign
electronic documents so that a verifier can be assured that the
message was originated from the company, however, without leak-
ing the particular employee who signed it. Another application is
for keycard to access restricted areas where it is inappropriate to
track individual employees’ movements, but necessary to secure
areas to only employees in the group.

Each group signature requires a group manager. The group
manager is responsible for adding and revealing of the original
signer in the event of disputes. In some systems the responsibilities
of adding members and revoking signature anonymity are sepa-
rated and given to a membership manager and revocation manager
respectively. A group signature scheme should follow these basic
requirements:

� Soundness and completeness: Valid signatures generated by
group members always verify correctly, and invalid signatures
always fail verification.

� Unforgeability: Only members of the group can create valid
group signatures.

� Signer ambiguity: Given a message and its signature, the identity
of the individual signer cannot be determined without the revo-
cation manager’s secret key.

� Unlinkability: Given two messages and their signatures, we can-
not tell if the signatures were from the same signer or not.

� No framing: Even if all other group members (and the managers)
collude, they cannot forge a signature for a non-participating
group member.



Fig. 1. Illustration of Chaumian mixnet.

422 J. Ren, J. Wu / Computer Communications 33 (2010) 420–431
� Unforgeable tracing verification: The revocation manager cannot
falsely accuse a signer of creating a signature he did not create.

Unfortunately, in the original group signature scheme [4], each
time a member of the group signs a document, a new key pair has
to be generated for the signer. The generation of new key pairs
causes the length of both the group members’ secret keys and
the designated authority’s auxiliary information to grow. This
tends to cause the scheme to become unwieldy when used by a
group to sign numerous messages or when used for an extended
period of time. Some improvements have been made in the effi-
ciency of this scheme [5–8]. However, it is hard to give an example
of a group signature without going very deep into technical
discussions.
3.2. Ring signature

The concept of ring signature was invented by Rivest et al. in
2001 [3]. In cryptography, a ring signature is a type of digital sig-
nature that can be performed by any member of a group of users.
In a ring signature, instead of revealing the actual identity of the
message signer, it specifies a set of possible signers. The verifier
can be convinced that the signature was indeed generated by one
of the ring members, however, he is unable to tell which member
actually produced the signature.

The name ring signature comes from the ring-like structure of
the signature algorithm. The idea behind ring signature schemes
is similar to that of group signatures [4,7,8], but with some varia-
tions. First of all, unlike a group signature, a ring signature scheme
does not require a group manager to administrate the set of ring
members. The actual message signer has the freedom to select all
the ring members and sign whatever messages he likes. Second,
in a group signature scheme, the group manager can recover the
real identity of the actual message signer. This makes a group sig-
nature only look indistinguishable to the verifier but not to the
group manager. The group manager can even revoke the anonym-
ity of misbehaving signers. However, for a ring signature, since
there is no group manager, nobody can revoke the anonymity of
the ring signature.

Ring signatures can provide unconditional signer-ambiguity
from any other members in the anonymous set. Ring signatures
are provably secure in the random oracle model. Since the intro-
duction of the ring signature, several ring signature schemes have
been proposed to increase its efficiency, including discrete loga-
rithm based ring signatures [9–11], bilinear pairing-based ring sig-
natures [12–15] and identity-based ring signature schemes
[14,16]. Some variations of ring signature schemes are also pre-
sented in literature [15,17–20].
4. Mixnet-based schemes

In the past two decades, originated largely from Chaum’s mix-
net [1] and DC-net [21], a number of anonymous communication
protocols have been developed. They can largely be divided into
mixnet-based systems and DC-net-based systems.

All secure mix systems are based on Chaum’s seminal work as a
means of sender anonymity. The mixnet family protocols use a set
of ‘‘mix” servers that mix the received packets to make the com-
munication paths (including those of the sender and the recipient)
ambiguous (See Fig. 1). They rely on the statistical properties of
background traffic, also referred to as cover traffic, to achieve the
desired anonymity. The security of mixnet is based on the trust
relationship of the mixers, and cannot provide unconditional
anonymity.
4.1. Chaum’s mix network

Chaum’s research has been applied to many areas as a central
tool for many applications such as message-based email and
flow-based low latency communications. Comparing to informa-
tion-theoretically secure sender anonymity schemes, such as DC-
net (see Section 5), the most important advantage of mixnet is
its smaller communication overhead.

For anonymous email applications, Chaum’s mixnet can be
viewed as a public-key cryptographic primitive that takes as input
a number of ciphertexts, encrypted using public keys of the relay
servers, called mixes, decrypts and shuffles them and finally out-
puts a random permutation of plaintexts. To ensure anonymity,
multiple mixes with secret permutations shared between them
are proposed so that even if one or several of the mixes are cor-
rupted, the correspondence between the items in its input and
those in its output is still hidden. As a result, this mix system can
provide source and destination address privacy for the communi-
cating parties.

For multiple cascade, or series of mixes, the structure of the
mixes is analogous to message transmission with multiple enve-
lopes constructed by a sender, with the address of the first mix
to be on the outermost envelopes, and the last mix’s address on
the innermost envelope. These envelopes are implemented
through encryption using public keys of the mixes. The idea of cas-
caded envelopes is called onion in onion routing [22]. In this case,
it suffices that one of the mixes is trustworthy.

Upon receiving the message, the first mix peels off its envelope,
or layer of the onion, to get the second envelope through decryp-
tion using its private key. The second envelope will provide the ad-
dress of the second mix that it can forward the message to. The
message will be encrypted using the public key of the second
mix that only the second mix can decrypt. This process will be re-
peated until the last mix decrypts the message and removes the fi-
nal envelope. Then, the recipient’s destination address and the real
message will be exposed, and the message can be delivered by the
last mix.

In [23], Pfitzmann and Pfitzmann have proved that Chaum’s
scheme [1] may not provide necessary unlinkability. In Chaum’s
scheme, the encryption function was assumed to be deterministic.
As a result, everybody can take an output message, encrypt it again
and check with the input messages they obtain. In this way, the
mix can be reversed. To prevent this re-encryption and possible
size matching of the incoming flow and output flow, all packets
will be made the same size through random string padding. The
output messages from the mix will be indistinguishable to adver-
saries, and therefore we can prevent traffic analysis of network
transmissions. This will also ensure that no item is processed more
than once. By discarding the repeated input messages, replay at-
tacks can also be prevented. Otherwise, an attacker can repeat
the input message and observe which output message is repeated.
In this way, the relation of input messages and output messages
can be discovered.

Chaum also proposed to use digital pseudonyms to provide
untraceability for return addresses. However, it has been analyzed
in [23] that in case RSA [24] is used for public-key encryption, the



J. Ren, J. Wu / Computer Communications 33 (2010) 420–431 423
resulting mixes can be broken by an active attack that is feasible in
a typical mix-environment.

Chaum’s mix was extended in Babel [25]. Unfortunately, Babel’s
replies for forward messages are only indistinguishable to passive
observers. Although Pfitzmann–Pfitzmann [23] showed an attack
against the RSA implementation of Chaum’s mix scheme, the con-
cept itself was not broken, but was refined. In fact, if the ElGamal
public-key cryptosystem [26] is used in the mixnet design, this at-
tack is no longer feasible [27] since the ElGamal public-key scheme
can provide semantic security. Almost all mixnets proposed from
then on are based on the ElGamal public-key scheme.

Intensive research has been done to realize a robust mixnet that
withstands the malicious behavior of servers and users. Much of
the research focuses on publicly verifiable mixnets [28,29]. A pri-
vately convincing mixnet was introduced in [30], where only the
mix servers can convince themselves of correctness. In exchange
for this limitation, this kind of mixnet can provide better efficiency.
Unfortunately, this particular construction can lose anonymity in
the presence of a malicious user even when all servers are honest
[31,33]. However, the principle has been adopted by several of the
latest schemes [32].

Another interesting attempt is described in [34], where the pro-
cessing is very fast as long as the mix servers are honest. If a mal-
functioning server is detected, the input data is processed by a full-
fledged robust mixnet. However, a malicious user colluding with
the first mix-server can break anonymity at the risk of having
the server accused [33,35].

Several mixnets have also been designed based on zero-knowl-
edge proofs and stronger security assumptions to guarantee deliv-
ery or to detect and exclude misbehaving participants. These
schemes include flash mixes [36], hybrid mixes [37,38], and prov-
able shuffles [39,40]. Recently, the concept of anonymity under
chosen ciphertext attacks (CCA-anonymity) for mixnets was pro-
posed by Abe and Imai in [33]. CCA-anonymity allows an adversary
to use multiple mixing rounds to mount a chosen ciphertext attack
on the mixnet. A scheme that can achieve CCA-anonymity was pro-
posed in [41].

4.2. Anonymous remailer

Cypherpunk remailers [42,43] are the first widespread public
implementation of mixnet. They are also called Type I remailers.
Type I remailers attempt to limit the feasibility of traffic analysis
by providing an anonymous store and forward architecture. Type
I remailers forward messages between several systems before
reaching their destinations with identities stripped at each link.
In addition, to prevent replay attacks, each Type I remailer keeps
a log of sent messages, but they never create a database of identi-
ties. Later on, Cottrell implemented the Mixmaster systems
[44,45], or Type II remailers. Type II remailers assume that every
network connection is being monitored. In order to protect emails
from network traffic monitoring, Type II remailers include message
padding, message pools, and other mix features. Type II remailers
are much more resistant to traffic analysis, unreliable nodes, and
other attacks than Type I remailers.

However, Type II remailers still implement reusable reply
blocks, such as those in the Cypherpunk remailer and in Babel.
They pose a security risk – by their very nature they let people send
multiple messages through them. An attacker can use this property
to trace the recipient’s path: if two incoming batches both include
a message to the same reply block, then the next hop must be in
the intersection of both outgoing batches.

Mixminion proposed in [46] is called a Type III remailer. It uses a
free-route mixnet just like Mixmaster [45] and Babel [25] to pro-
vide strong anonymity, and to prevent eavesdroppers and other
attackers from linking the senders and the recipients. Every E-mail
passes through several mixes, and no single mix can see any more
of the path besides the immediately adjacent mixes; therefore, no
mix can link the message senders with the recipients.

Messages in Mixminion are composed of a header section and a
payload. Each header is split into a main header and a secondary
header, encrypted under the public keys of intermediary mixes.
Miximinion allows messages to be sent from the message sender
to the recipient in one of three ways: forward, direct reply, and
anonymized reply. In the message forward, only the sender will
be anonymous. In the direct reply, only the recipient will be anon-
ymous. In the anonymized reply, both the sender and the recipient
will be anonymous.

The Mixminion breaks each message into uniformly-sized pack-
ets, pads the packets to a uniform size, and chooses a path through
the mix network for each packet. The Mixminion does not imple-
ment reusable reply blocks. Instead, Mixminion provides only sin-
gle-use reply blocks (SURBs) to allow anonymous recipients. The
Mixminion protocol makes reply messages indistinguishable from
forward messages even for the mix nodes. Thus forward and reply
messages can share the same anonymity set. However, by making
the forward messages and replies indistinguishable, it also makes
it more difficult to prevent a tagging attack, which is an active at-
tack in which a message is modified by altering part of it so that
an attacker can recognize the tag and trace the message later on
in the path. This is because the author of the SURB cannot predict
the message that will be attached to it, and a hash of the entire
message cannot be included in the SURB. Mixminion uses crypto-
graphic checksums to protect the headers to ensure that the ad-
dress information contained in the headers is destroyed if the
payload is modified by an adversary.

Unlike Type I and Type II remailers that use SMTP [47] as their
underlying transport mechanism, Mixminion clients and nodes
communicate using a forward secure encrypted channel based on
TLS [48]. TLS allows the establishment of an ephemeral shared secret
session key and an encrypted tunnel using Diffie–Hellman key ex-
change [49]. To ensure that the receiving end is the one intended
by the sender of the anonymous message, the receiving node needs
to sign the ephemeral key. As soon as the session key has been estab-
lished, the parties destroy their Diffile–Hellman keys and begin
sending messages through the tunnel. The parties will perform a
standard key update operation to generate a fresh session key and
delete the old key material after each message. Key updates do not
require any public-key encryption, which can be relatively fast.

Link encryption can provide forward secrecy in that, once the
ephemeral link keys have been deleted, not even the nodes that ex-
change messages can decrypt or recognize the messages inter-
cepted on the links. Additionally, link encryption makes active
and passive attacks on the network links more difficult. Since each
message specifies the identity of its successor mix in the path, it is
difficult for an attacker to mount a man-in-the-middle attack to
modify messages, inject messages to a node, or delete messages. A
TLS tunnel can also be used to complicate message delaying attacks.

However, the link encryption offers only limited protection
against traffic analysis. Though the encrypted links between honest
nodes prevent an adversary from recognizing even his own mes-
sages, without padding, the adversary can still measure the traffic
that is being transmitted.

The implementation of Mixminion also brings some practical is-
sues [50]. Since the message transmission in Mixminion is unreli-
able, it is important to implement mechanisms for retransmission
and forward error correction (FEC). Such schemes are not trivial to
implement; in addition, these schemes may lead to traffic analysis.
The security of this issue requires all clients to have full knowledge
of the network remailer, which has been proven to be a scalability
problem, and a distributed directory service has to be specified to
distribute this information.
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4.3. Onion routing

Onion routing was developed by Reed, Syverson, and Goldsch-
lag [22,51,52]. It is a distributed overlay network designed to anon-
ymize TCP-based communications over a computer network
according to the principle of Chaum’s mix cascades [1]. Since onion
routing provides an anonymous socket connection through the
mixes, it can be easily used by many applications like Web brows-
ing, secure shell, and instant messaging.

The onion data structure, or simply onion, is composed of layer
upon layer of encryption wrapped around payload, see Fig. 2. Each
onion router is a store-and-forward device that accepts fixed-
length messages, performs cryptographic operations on the mes-
sages, and then forwards the messages to the next node in the rout-
ing path, called onion router or OR. When an onion router receives a
message, it knows the immediate predecessor of this message and
to whom it should be passed. Each onion router removes a layer of
encryption using its own private key, which will also uncover rout-
ing instructions of the next onion router. This process will be re-
peated until the message is being delivered to the final onion router.

Although onion routing may be used for anonymous communi-
cations, it differs from anonymous remailers [25,44] in that onion
routing provides real-time and bidirectional communications,
without requiring that the network nodes know the message
source identity or location. Onion routing provides application
independent anonymous connections, such as anonymous mail,
as well as other applications. In onion routing, the clients choose
a path through the network and build a circuit, in which each net-
work onion router knows its predecessor and successor, but no
information of other nodes in the circuit. In this way, the interme-
diary nodes will have no knowledge of the origin, destination, and
content of the message.

Although Chaum’s mixnet could store messages for an indefi-
nite amount of time while waiting to receive an adequate number
of messages to mix together, the onion routing is designed to pass
information in real time, which limits mixing and potentially
weakens the protection.

Note that at each hop, the onion shrinks as a layer is peeled off.
To prevent route information inferring from the monotonically
diminishing size, a random bit string in the size of the peeled off
layer is appended at the end of the payload before forwarding. Only
the last onion router knows how much of the payload he receives is
padding and how much he receives is the message. In fact, even a
constant size onion might be traced unless all onions have the
same size. To solve this problem, in onion routing, the size of the
onion is fixed. This requires the initiator proxy to pad the central
payload according to the size of the onion. When the onion arrives
at the recipient’s proxy, the size of the onion and the padding will
remain the same.

Onion routing’s overhead is relatively small. Connection setup
overhead is typically much less than one second and appears to
be no more noticeable than other delays [52], such as normal
Web connection setup on the Internet. The computationally expen-
sive public-key cryptographic operation is required for the onion
routers only during the connection setup phase.

Onion routing provides a strong degree of unlinkability so that
an eavesdropper cannot easily determine the sender and receiver
of a given message. Onion routing’s network of core onion routers
Fig. 2. Onion routing.
is distributed, and under the control of multiple administrative do-
mains, so no single onion router can bring down the network or
compromise a user’s privacy. However, onion routing does not pro-
vide perfect sender or receiver anonymity against all possible
eavesdroppers. In fact, it is possible for a local eavesdropper to ob-
serve the activities of an individual node for message transmission
and receiving. It does not provide any absolute guarantee of pri-
vacy; rather, it provides a continuum in which the degree of pri-
vacy is generally a function of the number of participating
routers versus the number of compromised or malicious routers.

4.4. Tor: the second-generation onion router

Tor was developed in 2004 by the onion router project team as
the second-generation of the onion router [53,54]. It was devel-
oped to address the limitations of onion routing. Tor provides per-
fect forward security so that users can connect to Internet sites
without revealing their logical or physical locations to those sites
or to observers. It also provides location-hidden services via ren-
dezvous points, so that servers can support authorized users with-
out giving an effective vector for physical or online attackers. Tor
also provides congestion control, directory servers, integrity check-
ing and configurable exit policies. Tor provides these protections
even when a portion of its infrastructure is compromised without
requiring any special privileges or kernel modifications.

One of the major vulnerabilities for a hidden service in Tor is the
server’s selection of the first and last node in the communication
path. To a first approximation, if an adversary can watch the edges
of a Tor circuit, then he can confirm who is communicating.

Tor differs from other deployed systems for traffic analysis
resistance in security and flexibility. Mixnets, such as Babel [25],
Mixmaster [45] and Mixminion [46], provide anonymity at the ex-
pense of introducing comparatively large and variable latencies,
making them unsuitable for applications such as Web browsers.
Tor was designed to provide communication anonymity for low-la-
tency and interactive network traffic by frustrating attackers from
linking communication partners, or from linking multiple commu-
nications to or from a single user. Tor can handle a variety of bidi-
rectional protocols.

Tor network is an overlay network. Tor uses a traditional net-
work architecture through a list of volunteer servers downloaded
from a directory service. Each onion router runs as a normal
user-level process without any special privileges. Each onion rou-
ter also maintains a TLS [48] connection to every other onion
router.

The simplest low-latency designs are trusted single-hop proxies
such as the Anonymizer [55] and Web MIXes (known as cascades)
[56]. They are easy to implement, but their designs require all users
to trust the single anonymizer proxy. Though concentration of traf-
fic to this single proxy expands the anonymity set, this approach is
vulnerable to traffic analysis if the adversary can observe all traffic
entering and leaving the proxy [57]. Tor is a distributed-trust, cir-
cuit-based anonymizing system. As a distributed-trust anonymiz-
ing system, Tor needs to prevent attackers from adding too many
servers and thus compromising user paths. Tor relies on a small
set of well-known directory servers, which are run by independent
parties, to decide which nodes can join.

Establishing circuits is computationally expensive and typically
requires public-key cryptography. However, because a circuit
crosses several servers, and each server only knows the adjacent
servers in the circuit, no single server can link a user to his commu-
nication partners.

Circuit-based designs must choose which protocol layer to
anonymize. Making this protocol-layer decision requires a compro-
mise between flexibility and anonymity. Application-level anony-
mizers can accept application-level protocols and relay the
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application requests themselves. However, a system that under-
stands the application can strip identifying information from re-
quests, limit the number of requests that leave the network, and
even possibly minimize the number of connections. On the other
hand, an IP-level anonymizer can handle nearly any protocol, even
ones unforeseen by its designers. The problem is that these sys-
tems are more complex and less portable, since they require ker-
nel-level modifications to some operating systems. Tor is
designed to provide TCP-level anonymity which presents a middle
approach. It is application neutral by treating application connec-
tions as data streams rather than raw TCP packets, meanwhile
avoiding the inefficiencies of tunneling TCP over TCP.

Onion routers communicate with one another, and with users’
onion proxies, via TLS connections. A user’s onion proxy uses an
iterative mechanism to construct circuits, negotiating a symmetric
key with each onion router on the circuit. The bi-directional chan-
nel is used at each stage to perform an authenticated Diffie–Hell-
man key exchange. TLS conceals the data in the connection with
perfect forward secrecy, and prevents an attacker from modifying
data on the wire or impersonating an onion router [58].

Each onion router maintains two keys: a long-term identity key
and a short-term onion key. The identity key is used to sign TLS
certificates, router descriptors, and directories, while the onion
key is used to decrypt requests from users to set up a circuit and
negotiate ephemeral keys. The TLS protocol also establishes a
short-term link key when communicating between onion routers.
Short-term keys are rotated periodically and independently to lim-
it the impact of key compromise.

One of the notable differences between Tor and previous re-
search is that Tor does not claim to offer security against even pas-
sive global observers. Tor opts to provide security services through
being highly usable and cheap to operate [53]. However, vulnera-
bility to passive adversaries has made Tor fragile against possible
routing and connection recovery [59,60].

Tor also proposed to use location-hidden services via rendez-
vous points. In Tor, clients negotiate rendezvous points to connect
with hidden servers. Reply onions are no longer required. One of
the major vulnerabilities for a hidden service in Tor is the server’s
selection of the first and last node in the communication path [61].
An attack against this early architecture was demonstrated by
Øverlier and Syverson [61]. If an adversary can watch the edges
of a Tor circuit, then he can confirm who is communicating due
to the low-latency of traffic flowing over the circuit. The main idea
behind this attack is that an adversary can open multiple connec-
tions to the hidden server, sequentially or in parallel, and control
the flow of traffic towards the server. Through a single hostile
Tor node, it is possible to reveal the location of a hidden server.
Fortunately, they also recommended fixes in [61]. These changes
require no operational increase in network overhead and are sim-
ple to make. Recently, an IO-automata formal model of an onion-
routing protocol was proposed [62] to characterize when anonym-
ity and unlinkability are guaranteed.

4.5. Web MIXes

Web Mixes was proposed by Berthold, Federrath, and Köpsell in
[56]. It was designed for anonymous and unobservable real-time
Internet access that can prevent traffic analysis as well as flooding
attacks.

The complete system of Web Mixes consists of three logical
parts: the Java Anon Proxy (JAP) on the client-side, the MIXes,
and the cache-proxy on the server-side. The JAP is a program that
is installed locally on each user’s computer. A MIX scrambles the
order of data streams and changes their coding using cryptographic
techniques to make traffic correlation attacks difficult. The MIXes
are simple computers connected via the Internet. They form a log-
ical chain, called MIX-cascade. The first MIX receives data sent by
the JAPs. The last MIX sends the data to the cache-proxy. By means
of constant dummy traffic, all senders send messages at any time
to create the same anonymous group. If necessary, random data
indistinguishable from genuine encrypted traffic is generated.
The cache-proxy sends the data to the Internet and receives an-
swers from the servers. These three parts are concatenated into a
chain to build an anonymous tunnel. All network traffic to be anon-
ymized is sent through this tunnel.

Several attacks against the basic concept of MIXes have been
proposed to obtain user information or stop the service. To prevent
passive attacks, MIXes proposed that dummy messages would be
sent from the client of a communication into the MIX network to
make traffic analysis harder. Sending of dummy messages guaran-
tee that all users send the same amount of data during each time
slice. The encryption of traffic also makes it infeasible for the
attackers to distinguish between dummy and real information.
MIXes also proposed that each MIX sends dummy messages to
the user if the user does not receive real data. This ensures that
each user receives the same amount of data during each time slice.

The MIXes also proposed a chop-and-slice algorithm so that
large messages are chopped into short pieces of a specific constant
length slice. Each slice is transmitted through an anonymous MIX
channel. When there is no active communication request, the ac-
tive users send dummy messages so that nobody can get the infor-
mation of the starting time or duration of a communication, since
all active users start and end their communications at the same
time. This design can prevent an adversary from determining the
active anonymous channel and the communication parties.

5. DC-net systems

DC-net was first proposed by Chaum in [21]. It allows partici-
pants to send and receive messages in an arbitrary network anon-
ymously. Under the assumption of a reliable broadcast network,
the anonymity of the senders is proved to be unconditional. DC-
net is a secure multi-party computation protocol. It provides prov-
able sender and receiver anonymity without relying on a trusted
third party. A very attractive feature of the basic DC-net is its
non-interactivity. This means that any party in the group can pub-
lish its message in a single broadcast round, with no party to party
communications required. This feature is not possible for mixnet-
based communication protocols.

Mixnets have seen broad exploration in literature and have
served as the basis for several anonymous systems. However, by
contrast, DC-nets have remained relatively neglected, apart from
a small scattering of papers [63–67]. One possible reason for this
is that DC-nets cannot operate in proxy like mixnets.

The main idea of DC-net is that each participant shares secret
coin flips with other participants in pairs. The parity of the flips a
participant has seen is then broadcasted to the entire group of par-
ticipants. Since each flip is broadcasted twice, the total parity is,
therefore, even. If a participant needs to send a message, he delib-
erately flips the parity and broadcasts. This causes the total parity
to be odd, which indicates transmission of a bit. Unless all of the
nodes who flipped coins with the sender reveal their coin flips
among themselves, no one except for the initiator knows who sent
the message.

The basic techniques for the sender untraceability can also be
described using superposed sending, which was first proposed by
Waidner and Pfitzmann in [66]. The main idea is that between each
pair of participants there is a shared secret key k over a finite group
Fp. One participant will use the key as k, and the other participant
will use the key as p� k. For message sending, each participant
adds his messages and all his secret keys and broadcasts to every
participant. Since each secret key has been added and subtracted
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exactly once, the global sum is just the sum of all message charac-
ters. In particular, if only one of these is non-zero, the global sum is
this character.

The untraceability of the message senders is proved to be
unconditional. This means that the sender is untraceable, even if
the attacker is computationally unbounded, able to eavesdrop on
communications between any two of the participants, and can con-
trol an arbitrary subset of the set of participants.

Waidner and Pfitzmann also pointed out that it is unrealistic to
require a reliable broadcast network in some networks. Waidner
proposed an improvement in [67] to remove this requirement by
using the fail-stop Byzantine key generation protocol. The resulting
DC-net is called DCþ-net.

Unfortunately, DC-nets suffer from the transmission collision
problem through straightforward jamming by malicious players.
The malicious players can launch a denial-of-service attack by
choosing to send a message every round of coin flips, or by simply
dropping out of the protocol to disrupt the entire DC-net without
being identified. In this way, he can prevent the honest participants
from delivering the messages. This attack cannot be detected easily
since each node is as anonymous as any initiator.

To solve this problem, Chaum proposed to detect dishonest
players via a system of traps in a multi-round protocol. Prior to
message transmission, a reservation protocol takes place. In this
protocol, each participant must reserve exactly one slot in each
reservation phase. Before each reservation phase, he decides
whether to use this slot to send a real message or to send a trap.
To jam the DC-net, a dishonest player must transmit a message
in a slot that was not assigned to him. But if the slot that he tries
to transmit is a trap, then the attacker may be detected during a
decommitment phase.

Unfortunately, even a computationally limited attacker can
forge a trap for an arbitrary slot. In [66], Waidner and Pfitzmann
presented a multi round solution. It is based on the idea of setting
traps during a reservation phase. However, similar to the Chaum’s
protocol, this scheme can only identify one dishonest player for a
given trap. It seems that no obvious method for fault recovery is
available, apart from re-broadcasting.

In [65], Bos and den Boer proposed a collision resolve scheme.
In their solution, a different header is added to each message so
that the participants know whether a message is already in the
transmission to prevent further message transmission. However,
this scheme is very complex since the size of the field must be suf-
ficiently large to give a reasonable probability that the header mes-
sages are different.

In [64], von Ahn, Bortz, and Hopper considered a constant-
round anonymous broadcast protocol. Their scheme was essen-
tially a DC-net variant with an initial partitioning of players into
autonomous groups. The secret distribution of each invocation is
accomplished through a secret-sharing protocol. The correction
of pads is proven via a cut-and-choose protocol. In the optimal case,
the protocol requires three broadcast rounds, and has computa-
tional complexity Oðn2Þ where n is the total number of parties in
the DC-net. In the presence of cheating players, the communica-
tional complexity rises to Oðn4Þ [63,64].

Herbivore is a peer-to-peer scalable anonymous communication
system [68]. It was introduced in 2002 by Goel et al. There are two
components in the Herbivore system. At the lower level, a round
protocol governs how bits are sent among the participating nodes.
Herbivore also employs a global topology control algorithm to divide
the network into smaller anonymizing cliques. Users from the small
cliques communicate within them using DC-nets. Herbivore guar-
antees that each clique will have at least k nodes, where k is a pre-
determined constant that describes the degree of anonymity
offered by the system. Later on, in [63], Golle and Juels proposed
asymmetric constructions to detect cheating and make DC-net ro-
bust to disruption. Their scheme is similar to the approach de-
scribed in [64] in that they employed cryptographic proofs of
correctness rather than traps to detect cheating. However, a differ-
ent strategy for padding computation was employed. Their protocol
may be completed in just two broadcast rounds and with computa-
tions complexity Oðn2Þ even in the presence of faults.

Other protocols based on DC-net also include Xor-trees [69,70].
Xor-trees was proposed by Dolev and Ostrovsky to provide sender-
, receiver-, and sender–receiver anonymity. Xor-trees only allows a
single user to send at any one time in a Xor-tree. Therefore, it is
also subject to performance degradation due to collisions as the
number of users increase.

6. Network routing-based techniques

In this section, we will describe some routing-based anonymous
communications schemes.

6.1. Crowds

Crowds was designed by Reiter and Rubin [71] to defend against
internal attackers and a corrupt receiver. It provides users with a
mechanism for anonymous Web browsing. Crowds introduced
the concept of users blending into a crowd of computers, and many
of the concepts are used in newer systems (e.g. Tarzan [72]). The
main idea behind Crowds’ anonymity protocol is to hide each
user’s communications within the actions of many others by rout-
ing them randomly within a group of similar users. Crowds makes
it hard for a corrupt group member or local eavesdropper to tell
whether the user is the actual sender, or is simply routing another
user’s message. In addition, Crowds was designed to offer security
against attacks from collaborating Crowds members, and the end
server.

In the Web transaction model, a user first joins a ‘‘crowd” of
other users. The user’s request to a Web server is first passed to
a random member of the crowd. That member can either submit
the request directly to the end server or forward it to another ran-
domly chosen member, and in the latter case this process can be
repeated in the next members. When the request is eventually sub-
mitted, it is submitted by a random member. This design prevents
an adversary, or even the crowd members, from identifying its true
initiator, since the initiator is indistinguishable from a member
that simply forwards a request from another.

Comparing to proxy-based anonymous web transactions, such
as Anonymizer [55], Crowds provides protection against a wider
range of attacks than proxies do. In particular, proxy-based sys-
tems are vulnerable to passive attackers in control of the proxy
and single point failure attacks.

Crowds works by collecting a group of nodes into a geographi-
cally diverse Crowds that performs Web transactions on behalf of
its members. Each node servers as a proxy for a given initiator from
the group. Each node in the crowd can employ the crowd to issue
requests to Web servers in a way that prevents Web servers and
other crowd members from determining who initiated those
requests.

An initialization message is routed from the initiator to a series
of nodes in the crowd, forming a path for all future messages from
the initiator. Whenever a crowd member receives a request from
another node in the crowd, it makes a random choice to either for-
ward the request to another crowd member it chooses randomly,
or to submit the request to the end server. The random choice is
biased in favor of forwarding. That is, there is a system parameter
larger than 1/2 that indicates the probability with which a node
will choose to forward. The value of this parameter also impacts
the anonymity of this system. This path is maintained for a limited
period of time, after which all paths must be reformed.



J. Ren, J. Wu / Computer Communications 33 (2010) 420–431 427
Based on random forwarding, Crowds can provide communica-
tion anonymity when the adversary is the end server or even a
node on the routing path, since the node is unable to learn the ini-
tiator of a request sent along that path. The use of a crowd offers
receiver anonymity against eavesdroppers who can observe all
communications involving the user’s machine.

Crowds provides no anonymity against a global attacker or a lo-
cal eavesdropper. The anonymity of initiators is based on the
assumption that the members in the crowd cannot know if the pre-
vious node was the actual requester or was just passing the request
along. However, it has been demonstrated that Crowds is vulnera-
ble to predecessor attacks [73,74]. This is because, if a node repeat-
edly requests a particular resource, they can eventually be linked.

6.2. Buses for anonymous delivery

Anonymous communication that can be viewed as a bus system
was first introduced by Bos and den Boer in [65]. This idea was fur-
ther extended by Beimel and Dolev in [75] for messages to travel
on the network so that each piece of information is allocated a seat
within the bus. Routers are chosen and buses traverse these routes
either through deterministic or randomized schedules. Since the
buses traverse the network in fixed routes, the adversary cannot
learn whether there is any communication between the nodes or
not.

Since time and communication complexity are two conflicting
design issues, Beimel and Dovel proposed both a communication
optimal protocol and a time optimal protocol. In the communica-
tion optimal protocol, the message complexity is 1, time complex-
ity is OðnÞ, and the buffer complexity is Oðn2Þ. In each time unit,
only one node sends a message to another node, which means only
one bus traverses the communication graph. The bus rotates
through the ring that has n2 seats, where n is the number of nodes.
Seat si;j is used to communicate a message from node i to node j en-
crypted either using the symmetric key shared between these two
nodes, or the public key of node j.

Each time the bus gets to node i, node i checks which mes-
sages were sent to it by decrypting the n messages located in
the ith column and ignoring the ones containing dummy informa-
tion. Then it changes the message in its seat ði; jÞ to either a mes-
sage it wants to send to node j or a dummy. The semantic
security of encryption makes the passive adversary unable to tell
whether a seat contains a real message, and therefore, whether
two nodes are communicating.

In the time optimal protocol, the time complexity is the dis-
tance between the two nodes. In this protocol, two buses travel
through every node in each direction. The nodes transfer seats
from one bus to another according to the shortest path criteria.
Similar to the previous protocol, privacy is provided through, first,
all messages are encrypted before they are assigned to seats, and
second, dummy messages are sent if there is no real message. This
protocol has optimal time for message arrival, which is the number
of links in the shortest path between the receiver node and sender
node. The communication complexity is the number of buses, i.e.,
2m, where m is the number of edges in the graph.

For routing-based anonymous communication protocols, a gen-
eral routing selection strategy was described in [76]. In this re-
search, the concept of anonymity degree was defined and used to
evaluate an optimal route selection strategy. A natural result is that
variable path-length strategies perform better than fixed-length
strategies.

7. Peer-to-Peer networks

In this section, we briefly describe two representative peer-to-
peer anonymous communications systems. In [1], Chaum pointed
out that if each participant in the mix acts as a mix for others, then
the overall security can be improved. This has been implemented
in both systems.

7.1. Tarzan

Tarzan was designed by Freedman and Morris in 2002 [72]. It is a
peer-to-peer anonymous IP network overlay. A message initiator
chooses a path of peers pseudo-randomly in a way that adversaries
cannot easily influence. It achieves its anonymity with a layered
onion encrypted connection, replayed through a sequence of inter-
mediate nodes. Each intermediate node acts as a mix for others. In
addition, a scalable cover traffic is used to prevent global adversaries
from identifying the communication source through traffic analysis.

Tarzan uses a somewhat restricted network topology for packet
routing. Each node maintains persistent connections with a small
set of other nodes, called a mimics. Routes of anonymous messages
are created only through mimics and between mimics to avoid
traffic analysis through links with insufficient traffic. In this way,
it provides a tradeoff between efficiency and security.

Tarzan enables client applications on participating hosts to
communicate with non-participating Internet servers through spe-
cial IP tunnels. The two ends of a tunnel are a Tarzan node running
a client application and a Tarzan node running a network address
translator (NAT), which is also responsible for forwarding the cli-
ent’s traffic to the ultimate Internet destination.

Tarzan operates in three stages. First, a node running a client
application selects a set of nodes and establishes a routing path
through the overlay network. Second, the source routing node
establishes a tunnel using these nodes. Finally, it routes data pack-
ets through this tunnel. Unfortunately, a security weakness of Tar-
zan is that the selection of neighboring nodes for the mimic’s
structure is done on the basis of a network identifier or address,
which is vulnerable to spoofs.

In a preliminary version of the Tarzan [77], each node is re-
quired to know a random subset of other nodes in the peer-to-peer
network. Since the network is very large, the nodes have a high
churn rate. As a result, any single node only knows a small subset
of other nodes. An adversary node can distinguish the source node
of the connection with a very high probability if it can corrupt one
node and also get knowledge of its successor and predecessor
nodes [78]. This problem has been fixed in the final version by
requiring each node to know all others. However, this version is
clearly less practical.

7.2. MorphMix

MorphMix is another peer-to-peer system for anonymous Inter-
net usage. It was developed by Rennhard and Plattner also in 2002.
The architecture and the threat model of MorphMix is similar to
Tarzan. A crucial difference between MorphMix and Tarzan is that
in Tarzan, the route is specified by the source, while in MorphMix,
the route is chosen by the intermediate nodes. The initiator only
selects the first intermediate node. Each node along the anony-
mous tunnel then picks the following node. The advantage of this
design is that each node only has to manage its local environment
consisting of its current neighbors, which is nearly independent of
the system size.

MorphMix is an application-level mixnet using TCP between
mixes. It operates completely in the user space. In MorphMix, each
participant is also a mix at the same time. In other words, all par-
ticipants are peers. The set of mixes is a dynamic system of unre-
liable nodes that may join and leave at any time.

In MorphMix, each node does not know if the previous node in
the path is the initiator or if that node is merely a relaying node.
Therefore, MorphMix can provide plausible deniability. MorphMix
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allows intermediate nodes to choose the route through the net-
work. This design makes MorphMix vulnerable to colluding attacks
since the first colluding mix on the path can choose only colluding
mixes. For this reason, MorphMix employs a collusion detection
mechanism to identify the misbehavior of any cliques in the selec-
tion of nodes in the path. This prevents subverted nodes from rou-
tinely running attacks on the network, but does not provide
security in every case.

Tabriz and Borisov presented an attack on the collusion resis-
tance mechanism of MorphMix [79]. They demonstrated that col-
luding adversaries can compromise a significant fraction, or even
a majority in some case, of all anonymous tunnels. Their results
suggest that mechanisms based solely on a node’s local knowledge
of the network are not sufficient to detect colluding adversarial
behavior in a peer-to-peer system.
8. Verifiable mixnets and applications to E-voting

Verifiable mixnets are specially designed mixnets which are ro-
bust against subverted servers from denying service. The correct
functioning of any given mix can be verified with a proof of its cor-
rect functions. The primary motivation of verifiable mixnets is to
enhance the security of mix-based election protocols, where both
universal verifiability of vote delivery and privacy are of great
importance.

Most of the design of verifiable mix is implemented through a
cascade of mixes. The first verifiable scheme was proposed in
1993 by Park et al. [27]. In this scheme, messages are encrypted
using the ElGamal public-key cryptosystem. Unlike Chaum’s origi-
nal mixes for anonymous channels, in which the message length is
proportional to the number of mixes, in this scheme, all messages
have the same fixed length that is irrelevant to the number of
mixes. They used the proposed cut-and-choose strategy to provide
fairness in e-voting, which means that if some vote is disrupted, no
one can obtain any information about all the other votes. This
property assumes that partial results will not affect a re-election.
For this scheme, the computational complexity for verification is
proportional to the number of mixes, more precisely, Oðm log eÞ,
where m is the number of mixes, and e is the acceptable error prob-
ability (� 280).

In 1994, Pfitzmann proposed two attacks to the scheme pro-
posed in [27] against the anonymous channels and the secrecy of
the voter in the election scheme [80]. In the first attack, the effi-
cient channel was broken completely. This attack is based on anal-
ysis of the invariants at different mixes, which is similar to the
attacks discussed in Section 4.1 [23]. The second attack is a chosen
ciphertext attack. The main idea is that if a dishonest sender Alice
wants to find out what Bob sends, she can raise a ciphertext of Bob
to a power of some random number and transmit the message as
her own message, and the received final output will also be raised
to this power. By comparing the final list of messages, the source of
the message can be discovered. As a result, the mixnet is not secure
even if all mixes are honest. However, this attack can be easily
fixed by adding redundancy into the encrypted messages.

An active attack was also presented in [23]. In addition, Pfitz-
mann also pointed out that the threat model is somewhat weaker
than the original mixnet proposed by Chaum. In particular, a dis-
honest sender can disrupt the whole network.

In 1995, Sako and Kilian proposed a receipt-free voting scheme
[28] by adding universal verifiability to the mixnet proposed by
Park, Itoh, and Kurosawa in [27]. The universal verifiability is ob-
tained by requiring each center to prove that they correctly pro-
cessed their messages. The result can be verified by any
interested party to confirm that the messages have been handled
correctly. This design helps to thwart the security attack proposed
in [80] without adding extra redundancy. Sako and Kilian’s scheme
is based on chameleon blobs, which is a zero-knowledge bit-com-
mitment scheme [81] with an additional property that the verifier
knows how to open a blob in two ways. In their scheme, each mix
needs to commit to their inputs and outputs, and prove in zero-
knowledge that they performed the decryption and shuffle cor-
rectly. Since this scheme is based on [27], the voters’ work can
be independent of the number of mixes. However, the verifier must
verify that each server behaved correctly using the cut-and-choose
strategy. In this way, the verifier’s complexity to prove the correct-
ness of a shuffle remains to be Oðm log eÞ [82], or roughly 642n for n
input data [39]. An attack was discovered by Michels and Horster
in 1996 [83] that the scheme is not receipt-free if a sender collab-
orates with a mix. This is because the attack proposed by Pfitz-
mann [80] can still be applied. In fact, if one sender colludes
with a mix, then they can even see together what Bob has sent.

In 1998, Abe [82] proposed a universally verifiable mixnet. In
this scheme, the verification is independent of the number of
mix-servers and the computation of each mix-server is constant
against the number of mix-servers except for some negligible tasks
like addition. In this scheme, the users first post their messages en-
crypted using ElGamal encryption with the public key of the mixes
to the bulletin board. The mix system works in two phases. The
first phase is randomization and permutation, and the second
phase is threshold decryption. The verification complexity for this
system is Oðlog eÞ [82], or 22n log n [39]. In the subsequent year,
Abe [84] proposed two universally verifiable mixnets for small to
middle-scale secret-ballot electronic elections to improve the effi-
ciency by eliminating the cut-and-choose protocol proposed in
[64]. The construction is based on a permutation network com-
posed of a network of switches that transposes two inputs. For n
inputs and t tolerable corrupt mixes, the complexity for computa-
tion and communication is Oðtn log nÞ. However, it was proved la-
ter on that the original construction yields biased permutation.
This means the adversary can get advantage in violating anonymity
that is more efficient than random guessing [29]. In this paper, an
alternative solution was also proposed to achieve uniform distribu-
tion over all permutations.

In 2001, Furukawa and Soka proposed a new protocol for prov-
ing the correctness of a shuffle, without leaking how shuffle was
performed [39]. This protocol can prove the correctness of a shuffle
of n data with 18nþ 18 exponentiations [40]. The proposed proto-
col will be a building block of an efficient, universally verifiable
mixnet, whose application to the voting system is prominent.
The construction is based on a permutation by a matrix. Also in
2001, Neff presented a mathematical construction to verifiably
shuffle a sequence of n modular integers [40]. This construction
provides a linear size proof of correctness for the output sequence
that can be checked by any verifiers. This protocol is shown to be
honest-verifier zero-knowledge in a special case, and is computa-
tionally zero-knowledge in general. The number of exponentia-
tions required to construct the proof is 8nþ 5.

The systems that provide universal verifiability based on proofs
of permutations, and general zero-knowledge proofs are computa-
tionally very expensive. Some design tradeoffs have been proposed
in the literature. Boneh and Golle [85] proposed a two-phase veri-
fication scheme in 2002. In the first phase, a design tradeoff be-
tween efficiency and correctness was presented for scenarios
where a guarantee of almost entirely correct mixing may be suffi-
cient for the result of a large election. This phase guarantees that
the mixnet processes all inputs correctly with a high, but not over-
whelming, probability. The technique consists of computing the
product of a random subset of inputs to a mix server, then requires
the mix server to produce a subset of outputs of equal product. The
cost of this phase requires only a constant number of exponentia-
tions independent of the number of inputs mixed. In the second
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phase, the correctness of the result can be verified beyond a doubt
using any of the existing proofs of perfect correctness, which is
generally much slower. For this phase, even the fastest proofs of
perfectly correct mixing require computation of the number of
exponentiations linear in the number of inputs.

Another design tradeoff is the exit-poll mix designed by Golle
et al. in 2002 [34]. The exit-poll mix is a general ciphertext-to-
ciphertext scheme. In this scheme, the mixnet is efficient and pro-
duces an output only if no server cheats. When one or several mix
servers cheat, the inputs are converted to a format and verified
using any of the proposed mixnet. However, a series of attacks
for this scheme have been identified [50]. The first two attacks
[86,87] are closely related to [80] and can break the anonymity
of any user. The second attack is related to [31] and can break
the anonymity of all users and compromise the robustness. The
last attack is based on improperly checking the ElGamal elements
[88].

In 2002, Jakobsson et al. proposed a mixnet design based on
randomized partial checking (RPC) [89]. In this scheme, each mix
server provides a strong evidence of its correct operation by reveal-
ing a pseudo-randomly selected subset of its input/output rela-
tions. This design works with mixnets based on any encryption
scheme and also with Chaum’s original mixnet. This scheme pro-
vides voter privacy as a global property of the mixnet. It also pro-
vides high assurance of a correct election result, since a corrupt
server is very likely to be caught if it attempts to tamper with even
a couple of ballots.

In 2004, Golle and Juels proposed a parallel mixing design [90].
The proposed re-encryption mixnet allows servers to mix inputs in
parallel so that the overall mixing time can be reduced for moder-
ate-to-large numbers of servers. More precisely, for n inputs and M
servers, the parallel re-encryption mixnet produces output in time
at most 2n, and only around n assuming a majority of honest serv-
ers. Though their techniques can drastically reduce the latency of
mixing, Borisov [91] proves that when multiple input messages
are known to the adversary, the anonymity provided by this tech-
nique is far from optimal.

Finally, we consider a universal re-encryption technique that
permits universal re-encryption of the ciphertexts [92]. This
scheme relies on a new public-key re-encryption primitive to elim-
inate the requirement of the public key. The mix servers hold no
public or private keying material, and may therefore dispense with
the cumbersome requirements of key generation, key distribution,
and private-key management. Since then, many schemes have
been developed based on the newly developed primitive [93–97].
Unfortunately, its mathematical properties were found to be vul-
nerable to tagging attacks by Danezis in 2006 [98].

9. Other systems

A number of other systems have also been proposed through
the years. P5 was proposed by Sherwood et al. in 2002 for anony-
mous communications over the Internet [99]. P5 stands for Peer-
to-Peer Personal Privacy Protocol. It uses broadcast-trees to
achieve anonymity. P5 provides individual participants a tradeoff
between degree of anonymity and communication efficiency,
which can be used to scalably implement large anonymous groups.

P5 creates a broadcast hierarchy so that different levels of hier-
archy provide different levels of anonymity, at the cost of commu-
nication bandwidth and reliability. Users of the systems locally
select a level (mask) of anonymity and communication efficiency
based on their expected performance. The P5 logical broadcast
hierarchy is a binary tree constructed using the public keys of each
user. Each node of the tree consists of a bitstring of a specific length
to represent its hierarchy level (in horizontal) and also the group
(in vertical). By applying a secure public hash function on the pub-
lic key of each user, the user is being mapped to a node and a
group. For a user A to send messages to user B, A could try to send
messages on to some groups towards the root direction. If B re-
ceives the message, B replies back to A. However, in doing so, B sac-
rifices some anonymity since A can map B to a smaller set (branch)
of users in the hierarchy. In P5, the user always has the flexibility to
decrease their level of anonymity in order to increase their
performance.

ISDN-mixes [100] was proposed in 1991 to provide communi-
cation untraceability for ISDN networks with small bandwidth
overhead. ISDN-mixes is a combination of Chaum’s mixes, dummy
traffic on the subscriber lines, and broadcasts of incoming-call
messages in the subscriber-area. It is based on mix-channels using
cascades of mixes to make sure that each message is processed by
all mixes in the same order. Each mix-channel consists of a mix-
sending channel from the sender and a mix-receiving channel from
the recipient. Each half of a mix-channel protects only the partici-
pant who has established it. Thus, to prevent both the sender and
the recipient from being able to trace each other, the two halves
are connected to generate a mix-channel through their respective
channel labels and also the routing information to the mix cascade
on the sending side.

Real-Time MIXes [101] was generalized from ISDN-mixes as a
bandwidth-efficient anonymity protocol with real-time con-
straints. It was proposed by Jerichow et al. in 1998. Real-Time
MIXes essentially presents protocols for narrow-band ISDN based
on mixes. Similar to the ISDN-mixes, it is also based on mix-chan-
nels, which distinguish mix-sending channels that keep the sender
anonymous and mix-receiving channels that keep the recipient
anonymous. In the real-time mixes, each user is connected to a lo-
cal exchange via an exclusive wire, whereas the bandwidth is
shared in the long-distance network.

The route setup messages are separated from the actual data
traveling in the network. The signaling channel is used to transmit
the onion encoded message that contains the session keys for each
intermediary mix.

In both schemes, each connection is divided into a sequence of
time-slide channels, that look completely unrelated to everybody
except for the respective sender and recipient. With each new time
slice, users can release connections and/or establish new ones.
Each participant who does not need a channel during a time slice
establishes a dummy time-slice channel instead. This costs no
additional bandwidth because this channel is on the subscriber line
only.

Within each time slice, each subscriber maintains two mix-
sending channels and two mix-receiving channels through the
mixes at the local exchange. To set up a call, the sender needs to
deliver a connection-setup message to the recipient so that dum-
my channels can be stopped. The recipient may hide his real loca-
tion address from the sender by allowing implicit addresses and
broadcasting short connection-setup messages in his anonymity
set.

Hordes [102] is a multicast based protocol that provides initia-
tor anonymity on the Internet. Hordes was proposed by Levine and
Shields in 2002. It uses forward mechanisms similar to those used
in previous protocols for sending data, but it is the first protocol
that makes use of multicast routing to anonymously receive data.

Hordes employs multiple proxies similar to those used in the
Crowds protocol to anonymously route a packet towards the re-
sponder. However, Hordes makes use of multicast communication
for the reverse path of anonymous connections, which can provide
additional initiator privacy protection. The asymmetry of the for-
ward and reverse paths in Hordes poses a challenge for providing
TCP service, since the forward path has a higher latency and an in-
creased chance for packet loss as compared to the reverse path.
Overall, it was shown that this design results in shorter transmis-
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sion latencies and requires less work from protocol participants, in
terms of messages processed while providing anonymity to a de-
gree similar to that of Crowds and Onion Routing.

In addition, traffic analysis is a powerful tool in attacking anon-
ymous communication systems. A robust anonymous communica-
tion system should be able to safeguard traffic analysis. The
research in this area includes traffic flow confidentiality [103–
105] and traffic flow analysis [106–109].
10. Conclusions

In this survey, we reviewed the major techniques in the field of
anonymous communications. We focused on cryptographic primi-
tives, mixnet-based systems, DC-net-based systems, network rout-
ing based systems, and peer-to-peer networks. We also briefly
described the applications of verifiable mixnets and applications
to electronic voting.

Though research in anonymous communications has been
going on extensively for nearly three decades, it is still a very
new and active research area. Design of practical, low-latency,
and robust anonymous communication systems is of high practical
importance. As portable wireless devices and wireless sensor net-
works continue to grow and become more common, scalability
and efficiency are becoming the next impetus and the most chal-
lenging design issues in this area. We expect anonymous commu-
nications will have a much wider arena of applications in the near
future.
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