MOPS: Providing Content-based Service in
Disruption-tolerant Networks

Feng Li and Jie Wu
Department of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL 33431

Abstract—Content-based service, which dynamically routes
and delivers events from sources to interested users, is extremely
important to network services. However, existing content-based
protocols for static networks will incur unaffordable maintenance
costs if they are applied directly to the highly mobile environment
that is featured in disruption-tolerant networks (DTNs). In this
paper, we propose a unique publish/subscribe scheme that utilizes
the long-term social network properties, which are observed in
many DTNs, to facilitate content-based services in DTNs. We
distributively construct communities based on the neighboring
relationships from nodes’ encounter histories. Nodes within a
community directly communicate when events and interests
match since they have strong intra-community relationships.
Brokers are deployed to bridge the communities, and they
adopt a locally weighted pub/sub scheme which combines the
structural importance with subscription interests, to decide what
events they should collect, store, and propagate. Different trade-
offs for content-based service can be achieved by tuning the
closeness threshold in community formation or by adjusting
the broker-to-broker communication scheme. Extensive real-trace
and synthetic-trace driven simulation results are presented to
support the effectiveness of our scheme.

Index Terms—Broker, community, disruption-tolerant net-
works (DTNs), forwarding process, localized algorithms, pub-
lish/subscribe, social network analysis.

I. INTRODUCTION

Content-based service [1] is a novel style of communication
that associates source and destination pairs based on the actual
content and interests, rather than by letting source nodes
specify the destination. Content-based networking allows ad
hoc and autonomous access to content. The decoupling of in-
formation producers and receivers allows for greater scalability
and a more dynamic network topology, which makes content-
based service suitable for many possible network applications.
In this paper, we adopt the publish/subscribe (pub/sub for
short) scheme, which is an asynchronous messaging paradigm,
to provide the content-based service. The subscribers, which
are the information consumers, express their interest in certain
events without knowledge of what publishers there may be.
The publishers, which are the information producers, issue
newly detected events without having to specify the receiver.
The brokers, which match events with interests, are deployed
as the interface between the publisher and subscriber.

OThis work was supported in part by CNS 0422762, CNS 0434533, CNS
0531410, and CNS 0626240. Email: jie@cse.fau.edu

ﬂu /ﬁ
Bt
‘ @

/\//Broker\

D A

Broker
Time11:50 AM

(@) (b)

Time 10:50 AM

Fig. 1. Example pub/sub services in the DTN.

In highly mobile environments, such as disruption-tolerant
networks (DTNs) [2], the network topology constantly changes
and end-to-end paths can hardly be sustained. On one hand,
pub/sub schemes can provide a high degree of flexibility and
adaptability to change by decoupling the source and desti-
nation, which can greatly facilitate information dissemination
in the DTN. Guided by the interests, events are replicated
and propagated. No end-to-end path is needed in the pub/sub
scheme. On the other hand, with the increasing popularity of
mobile handheld devices, which have ad hoc wireless com-
munication abilities (e.g. Bluetooth), the DTN also became
more and more attractive. There is a pressing need to extend
pub/sub to DTNs. An example pub/sub service where students
can share campus news videos over the network composed by
their mobile devices is shown in Fig. 1. In Fig. 1, nodes labeled
“brokers” can be publishers or subscribers, and other nodes are
publishers and subscribers.

Most existing pub/sub research [3], [4], [S] concentrates on
fixed networks or networks with very limited mobility. In these
schemes, the brokers are deployed according to connectivity
metrics and the topology is dynamically maintained if needed.
However, when the networks are highly dynamic, maintenance
costs will be higher than acceptable, thus rendering these
schemes inapplicable to the DTN. As illustrated in Figs. 1(a)
and (b), the connectivity can dramatically change and the
relationships among publishers, subscribers, and brokers, as
determined by traditional connectivity metrics, break.

Based on multiple sets of real DTN traces, such as Hag-
gle [6] and Reality Mining [7], we observed that a long-term



closeness metric can be abstracted to depict the neighboring
relationship between nodes. Based on this inherent property
of the DTN, we propose a Mobile cOmmunity-based Pub/Sub
scheme (MOPS), to facilitate the content-based service.

In the pub/sub scheme, two extremes can be adopted. One
is the pure push strategy, which can achieve a short latency
and high delivery ratio at the cost of high network traffic. The
other is the direct pull strategy, which reduces the total number
of event forwardings at the cost of large latency and small
delivery ratio. Since applications in DTNs usually operate best
under a moderate trade-off between latency, delivery ratio, and
redundancy, a combination of both push and pull strategies is
needed in the design. Therefore, the challenges of the MOPS
include designing the pub/sub protocol which combines push
and pull, determining the interface known as the push-pull
boundary, and deploying brokers to bridge the boundary.

We first propose a community construction scheme to
determine the push-pull boundary. Nodes in the DTN dis-
tributively construct clique-style communities based on limited
hops of local information. These communities have desirable
properties of controllable diameter and strong intra-community
connections which can eventually facilitate the pub/sub ser-
vice.

Within the community, nodes broadcast interests and pub-
lishers send events directly to the nodes that expressed interest
in the category of the event. The brokers are deployed on the
boundaries of communities to bridge the events and interests
inside and outside the community. The internal interests of a
community are aggregated by each broker in that community,
and propagated to the one-hop neighboring communities.

When a broker meets another node, it collects events from
the node according to the order of the aggregated interests,
which is decided by the weight of the interests’ category. In
MOPS, the weight is uniquely designed so that it combines
the brokers’ structural importance together with the aggregated
subscription interests. By structural importance, we mean the
importance of node position in network topology. Moreover,
by setting different default weights for the categories without
current subscriptions, the brokers’ push or pull strategy can be
controlled and the performance trade-off can be further tuned.

The contributions of this paper are summarized as follows:

1) We present a closeness metric to depict the relationship
between each pair of nodes in the DTN. It captures the
core of temporal and spacial encounter information.

2) We design a local community based pub/sub scheme. A
closeness threshold can be turned to adjust the property
of the local communities. The pub/sub service utilizes
the efficient intra-community communication. Brokers
are deployed on the boundaries of the communities.

3) We propose a weighted pub/sub scheme to improve the
communication efficiency. The brokers aggregate inter-
ests and efficiently collect the events according to the
weight that combines the brokers’ structural importance
together with the aggregated subscription interests.

4) We verify the effectiveness of our schemes based on real
mobile traces and simulations.

II. PRELIMINARY

We discuss the basic DTN model used in this paper, link
abstraction, and general pub/sub process in this section.

A. Network model

DTNs attempt to route packets via intermittently connected
nodes. Many store-and-forward style schemes [8], [9], [10],
[11] are proposed to deliver packets in this challenging en-
vironment. In existing DTNs, such as UMass DieselNet [12]
and MIT Reality Mining [7], real objects’ movements usually
follow patterns that are repetitive to a certain extent. In this
paper, we consider the DTN where nodes are constantly
moving and the topology is highly dynamic. However, we
also assume the nodes’ movements are random but statistically
repetitive to a certain extent. Therefore, the encounter history
can be used to predict the future contacts.

Moreover, we focus on data-centric communication rather
than IP- or other-identity-based. Users want to obtain content
of particular categories such as music, news, or photos on
their communication devices. Similar network settings are also
studied in recent works [13], [14], [15], but with a different
focus. Two nodes can exchange information when moving
into each others’ communication ranges. We also assume the
contact duration is limited due to nodes’ movement, and it is
possible that only partial content can be exchanged before two
encountered nodes depart from each other.

Some recent studies [16], [17], [18], [19], [20], [21] based
on real mobile traces reveal that DTNs show certain social
network properties. For example, two important metrics, fa-
miliarity and centrality, are measured based on nodes’ direct or
indirect observed encounters and used to guide the forwarding
in [17]. In this paper, a closeness metric is also abstracted from
the encounter history to represent the long-term relationship
between each pair of nodes.

B. Relationship abstraction

In DTNs, each node can record the encounter time and
duration whenever it meets another node. However, nodes’
original knowledge, which includes both temporal and spacial
information, is abstracted into a single closeness metric ¢, €
[0,1] for nodes w and v. The closeness metric abstracts the
time-space relationship and indicates the prediction towards
the forwarding opportunities between nodes. Larger closeness
cyp indicates a better future contact opportunity.

To measure c,,,, a training time window should be adopted,
and ¢, is determined by u and v’s encounter history in this
training time window. The average separation period, which is
represented as AV G(D,,), is a comprehensive metric to start
the time-space abstraction since it reflects both the frequency
and length of the encounters. Smaller AV G(D,,) indicates
shorter communication latency between u and v. We apply the
Gaussian similarity function [22] to normalize AV G(D,,) as
follows and denote the resulting metric as closeness cy.:

(AVG(Dyy))?

202

) (D

Cup = exp(—



Here, o is a scaling parameter [22] for the separation period.

We model the neighboring graph of a DTN as GG, where each
vertex u in G corresponds to a node in the DTN; each edge
< u,v > in G represents that two nodes have encountered,
and it is associated with a closeness metric c,,. We use d,, to
denote the degree of node ¢, which is the sum of the closeness
of all edges connecting <.

An example is shown in Fig. 2. Fig. 2(a) illustrates the
encounter history of the DTN in Fig. 1, and the transient
scenarios in Fig. 1 correspondent to two dotted lines. The
links in Fig. 2(b) are derived from Fig. 2(a). The length of the
training time window is 100 and ¢ = 25. Since node 5 and 8
met twice at 20 and 50 and the durations are both 20, we can
derive that css = 0.7 as shown in Fig. 2(b).

C. Pub/Sub process

Each node in a DTN may take the responsibility of pub-
lisher, subscriber, or broker. In MOPS, each data unit is marked
with some metadata describing its content. For the sake of
simplicity, we assume that each event report X; is marked
with one single category X, describing its content. The set
of possible categories is assumed to be finite. Since pure
push and pull can only produce extreme performance, we
define the scope called the push/pull boundary and only allow
subscribers(publishers) to directly pull(push) in the boundary.

1) Subscription: In MOPS, a subscriber broadcasts its sub-
scriptions to other nodes in its pull boundary. The interests
may change over time. A node wu’s interest list includes
{(X,w)}:. Here X represents a specific category of interest,
and the weight w is in the range (0, 1] expressing the level of
interest; ¢ is the list’s generation time.

2) Publication: Having detected new events, nodes gener-
ate event reports and publish them to their associated push
boundary. Each event report includes (X, ¢, TTL), where ¢
is the content generation time and 7TT'L is the event report’s
time-to-live (TTL).

Each message will include the node ID of the source,
the destination, and the next hop when these messages are
wrapped for forwarding. Each node has an event buffer. When
the TTL has expired, the event will be removed from the
buffer. We are not assuming any constraint on the nodes’ buffer
since buffer management is not the focus of this paper. Each
publisher has a pub list which contains the forwarding record
of each event.

Brokers are deployed to expand the push and pull boundary.
Brokers aggregate the interests inside the boundary and collect
events from outside the boundary to satisfy the interests. They
also help to further propagate the events published inside the
boundary to the outside.

All communications are based on the gossip style data
exchange rules for each encounter duration in the DTN: when
node u meets node v, u sends a query message containing its
interest list. Node v checks the availability of such content in
its event buffer and transmits the new events which match the
received interest, in decreasing order of weight. v follows the
same process during the encounter.

land3

land4
land5 H
land8

2and5
2and 6

2and8

Sand 7

L
L
L
2and7 L
L
L
L

5and 8

7and9

9and 10 L H §
0 10:50AM time

i L
11:50 AM 100

(a) Encounter history

(b) Neighboring graph

Fig. 2. An example neighboring graph abstracted from the encounter history
of the DTN in Fig 1.

To accommodate the above pub/sub process in challenging
DTN environments, several points need to be further discussed.
First is the definition of local association which determines the
push/pull boundary. Since the network topology is transient,
the locality should have a new definition. Second is broker
assignment and communication. Broker nodes should work
in a way that efficiently utilizes the locality to enhance the
pub/sub performance.

III. GENERAL MOPS SCHEME

In MOPS, clique-style communities are constructed to
determine the local association. Different intra- and inter-
community pub/sub schemes are then applied on top of the
communities.

A. Local community

The community is a reflection of locality. As a criterion
to determine whether the relationship between two nodes is
strong enough to claim they are local neighbors, we adopt a
threshold 7' on the closeness metric ¢ associated with each
link in the neighboring graph. For two nodes u and v in the
DTN, if there is an edge < u,v > in G and ¢, > T, we
consider u and v to be local neighbors. Based on Equation (1),
the expected delay between local neighbors u and v has the
upper-bound —+/2 - In T'- o with this threshold-based filtering.

In graph theory [23], a clique is a subgraph in which every
vertex is connected to every other vertex in the graph. We
extend the idea and define local community in the DTN as
follows:

Definition 1: Local community: For any pair of nodes in
the community, they are local neighbors to each other, i.e. a
link exists such that the closeness c of the link is larger than
the threshold value 7'

However, the above definition is too restrictive. Two nodes
without a direct relationship may have a common neighbor that
has a close relationship with both nodes. From the angle of
data forwarding in the pub/sub, we should also consider such a
multi-hop neighboring relationship. Therefore, we extend the
idea of local neighbors and define a virtual link as follows:



Fig. 3.  Threshold 7" decides local community property. Dashed boxes
represents community, and numbers in small squares are the community IDs.

Definition 2: Virtual link: If at least one path up to k-hops
between nodes u and v exists, a virtual link can be used to
represent © and v’s neighboring relationship. The virtual link
will be associated with ¢, = IHaXpep{H<i7j>ep ¢i; }, where
P represents the set of all paths between u and v which are
less than or equal to k-hops.

Here the path closeness for path p is [ <ij>ep Cij» Which
is a product of all the edge closenesses along the path. The
path closeness indicates the expected delay along that path.
Based on Equation (1), the path closeness naturally reflects
the upper-bound of the combined delay on edges < ¢, >€ p.

We use the maximum value to represent the virtual link
closeness, as opposed to the sum of all paths, since c¢,,,, should
reflect the shortest expected delay between nodes u and wv.
Similar to direct links, only when the closeness on the virtual
link ¢,, > T will v and v be considered local neighbors
to each other. For a pair of local neighbors, the path with
the largest closeness between them is denoted as a local
connection. A community construction scheme which only
utilizes the local information is presented in the Appendix.

The distribution of the closeness metric in real DTNs
indicating the closeness of a virtual link is usually decided
by a path with a very small number of hops. As case studies,
we analyzed data from the Haggle project dataset [6] and
MIT Reality mining [7]. It is clearly indicated that closeness
between two nodes is mainly decided by a direct link (60.8%
in Reality and 12.2% in Haggle) or a 2-hop link (30.9%
in Reality and 83.3% in Haggle). Therefore, we can have
a restriction of k£ (2 or 3) and only consider the paths up
to k-hops when calculating the virtual link closeness. Fig. 2
contains several example virtual links, such as the one between
nodes 3 and 4. The 2-hop virtual link is associated with
c3a = 0.72.

By adjusting 7', the community shows different properties
that we can use to achieve desirable trade-offs. Figs. 3(a) and
(b) illustrate the results of our distributed algorithm with & = 2
when 7' = 0.5 and T' = 0.7. With higher T, the total number
of communities clearly increases and the internal links are
stronger. Therefore, T is the first controllable parameter that
MOPS can utilize to achieve desirable trade-offs.

Virtual 4
Brokers /Origin‘\x I \
Communities i !

S =<7 . \
3 SN2 NS \ / \
-7’7 g \ Y i /

'

Voo

\ -
e
<

N

S “_1st Fendi3rd
(a) Broker mapping

(b) Three scenarios

Fig. 4. Inter-community pub/sub.

B. Intra-community pub/sub

Each node, with the role of the subscriber or broker, will
first prepare its own interest list. The subscriber or broker will
send its interest list to every other node in the community
through the local connection, i.e. the interest list is broadcast
throughout the community.

When a publisher u detects an event, it checks the stored
interest lists of other nodes in the same community. « should
send the event report to all matching subscribers/brokers
through the local connection.

If the local connection is a direct link, the data will be
exchanged directly. Otherwise, when the sender meets the first
node on the local connection of a virtual link, it will mark
its data with the intended destination and the data will be
propagated towards the destined local neighbor.

Fig. 5(a) shows an example of the intra-community pub-
sub process for the DTN shown in Fig. 3(a). Subscriber 1
broadcasts its interest list {(A4,1),(C,1)}; in community 1.
When publisher 3 detects event C1, it will send C to node 1
according to the stored interest list.

Since each pair of nodes in a community has a strong
connection between them, the delivery rate will be high and the
latency will be small using the above scheme when publisher
and subscriber reside in the same community. However, the
publisher and subscriber of an event can reside in different
communities. Brokers are needed in the event forwarding
process in this situation.

C. Inter-community pub/sub

We assign the duty of inter-community communication
to the brokers. The broker is responsible for matching and
disseminating internal and external events and interests.

The definition of local community guarantees the strong
connection within community. The communities can now be
regarded as the units to conduct the pub/sub. Therefore, each
community can be regarded as one virtual broker that handles
subscription aggregation, event collection, and propagation,
as shown in Fig. 4(a). In the MOPS scheme, the internal
subscription interest of community A will be aggregated
and propagated to its one-hop neighboring communities. The
brokers in A’s direct neighboring communities will help to
collect the events and send them back to A. The interest is
not further propagated for two main reasons. First, each node’s
pub/sub scope is largely expanded and the community level



two-hop path is long enough to collect most of the interested
events in most DTN settings. Second, the complexity of the
scheme increases to an impractical level since loops need to
be avoided when the interest is further propagated.

The virtual broker’s responsibility will be distributively
shared by a select group of gateways. Gateways are nodes
that have direct neighboring relationships with nodes in other
communities. There are three possible scenarios as illustrated
in Fig. 4(b) of gateway communication, which need to be con-
sidered when we distributively implement the virtual broker.

Each gateway should summarize the interest lists of the
nodes in its own community into an internal interest list, then
collect the matching events from outside of the community.
This intra-community non-gateway to gateway communication
is considered to be the first scenario in Fig. 4(b). An example
is broker 5 in Fig. 5(b).

The second scenario in Fig. 4(b) is the direct communication
between gateways from different neighboring communities.
Each gateway will summarize the interests of other commu-
nities and form the external interest list set. The gateway will
then represent the external community to collect events from
its own or other neighboring communities. The communication
between gateways 2 and 5 in Fig. 6(a) belongs to this scenario.
Gateway 2 needs to aggregate the interest list from community
1 in its external interest list. Then gateway 2 can collect events
in community 2 according to its external interest list.

Moreover, a gateway u may propagate its external interest
lists to (and request help from) another gateway v in its own
community but connects to other neighboring communities
that are unreachable from u. This is considered to be the third
scenario. Gateway v needs to setup a relay interest list set.
The difference between an external and a relay interest list
is that the relay interest list won’t be considered when the
gateway collects events from its own community. Gateway 2
will request 7 to collect events for community 1 in Fig. 6(b).
Gateway 7 considers gateway 2’s external interest list of
community 1 as the relay interest list.

Since gateways are the physical nodes that distributively
implemented the pub/sub interface among communities, We
use the term broker in the subsequent discussion to refer to
gateway. An efficient broker communication mechanism can
greatly improve the performance of the pub/sub scheme in
DTNs. Therefore, we present a unique weighted scheme with
more detail in the next section.

IV. WEIGHTED BROKER COMMUNICATION

In the MOPS scheme, the brokers are guided by a unique
weighted scheme. The scheme includes four components:
weight calculation, interest propagation, default weight deter-
mination, and broker pruning.

A. Weight calculation

Since the contact duration is usually limited, we need to
differentiate the importance of the subscription interest, which
is reflected by the weight in MOPS. There are several rules
that we can derive before we design the weight. First, the

! publisher %9
| Event: C1

Fig. 5. Intra-community pub/sub examples. Shadowed nodes are the broker.

internal interests should have higher priority than external
interests when a broker collects events from other commu-
nities. Second, an event category should have higher priority
when more nodes or communities are requesting the category
simultaneously. Third, the weight should decay and reflect the
closeness between the broker and the subscriber. The broker
should put more strength towards collecting events for nodes
that are closer to it. Before the interest propagation starts,
each node sets weight w = 1 for all the categories in its own
subscription list. We consider the three scenarios in Fig. 4(b).

Internal weight calculation. Brokers should aggregate the
interests from their own community and assign weight I to
each category X in the first scenario in Fig. 4(b). For a broker
u, the weight of a category X in the internal interest list of
broker u is the sum of u’s closeness to all the subscribers of
X in the same community. Each broker v will form its own
internal interest list. More formally, the weight I of a category
X in u’s internal interest list should be calculated as:

I, = ZC“U' ()

Here, v is in the same community as w, and v expressed
interest in X.

Take broker 5 in Fig. 5(b) as the example. It aggregates the
interest lists of nodes 1, 3, 4, 8, and 5 to generate the internal
interest list of community 1. Assuming that event category C
is included in both 1 and 8’s interest list, 5 will set I5 for C
as 1-0.8+1-0.7=1.5.

External weight calculation. For the second scenario, a
broker u’s external interest list set should include the internal
interest lists from any broker v in u’s neighboring community.
A broker u may have a neighboring relationship with multiple
brokers in w’s neighboring community A. The maximum
decayed weight is used to characterize the category since
it represents broker u’s best possible contribution to the
propagation of events in this category. The summarized weight
E of each category X in its external interest list should be
calculated as follows:

E, = Z Igleaf}x{{cuv I} 3)
A

Here, A is the distinct community and v is a broker of A in
u’s collected external interest list set. In other words, for each



community A in u’s collected external interest list set, one
broker v in with largest c,,, - I,, for a category X is selected.

As shown in Fig. 6(a), broker 2 will construct its external
interest list based on both broker 5’s and broker 8’s internal
interest list of community 1. Taking Fs for event category C
as the example, 5 = max{0.5-1.5,0.4- (1 + 0.8)} = 0.75.

Relay weight calculation. In the third scenario, a broker
v may forward an aggregated external interest list for each
neighboring community A to broker u. As an example, broker
2 in Fig. 6(b) forwards its external interest list of community
1 to broker 7. The broker u will store the lists in the relay
interest list set and calculate the weight R, (A) of the relay
interests R, (A) = max{cy, - E,(A)} for each community A.

Broker u then combines its external interest lists set with the
relay interest lists set. For each community A in the expanded
set, a maximum decayed weight max{E,(A), R,(A)} will
be found. ER,, is the sum of this weight for all neighboring
communities. F'R,, is used when broker w is collecting events
from another neighboring community.

ER, =Y max{E,(A), Ry,(A)}}. 4)
A

Here, broker u € community B and A is the distinct neigh-
boring community in u’s collected external interest list set.

The example can be found in Fig. 6(b). Broker 7 receives a
relayed interest list from 2 and constructs its external interest
list based on the lists from 8 and 9. For event C, assume Iy =
1.7, the FR7; = 0.3- 1.7 + max{0.8 - 0.75,0.3 - 1.8} = 1.11.

To subscribe to the events produced in its own community,
the broker will broadcast an interest list combining its self
and external interests, with the weight for each category X
calculated as:

w=a-S+5-F. (®)]

Here, S =1 if category X is in the broker’s self interest list;
otherwise S =0; a+ 8 =1and a >> (.

To subscribe the events produced in other communities, the
broker will send an interest list combining its internal and
external interests to each broker it encounters that belongs to
another community, with w calculated as:

w=a«a-I+p-ER. (6)

The event exchange between two brokers from different
communities is guided by the weight. Events in the category
with higher weight will be exchanged earlier, and events with
low weights may not get a chance to be transmitted.

B. Interest propagation.

When a broker u meets another node v, they will exchange
interest lists and events based on their role and guided by
the calculated weight. Before the communication begins, the
broker u will prepare a self interest list and assign the same
default weight to all the categories in its external interest list.
When wu encounters another node v, u decides its interests
propagation steps based on the type of v. Therefore, if v is a:

! Publisher °
: Event: C1

Fig. 6. Inter-community pub/sub examples.

o Non-broker node from the same community, v sets
w = «a-S+ [ FE, and sends the interest list. After
receiving the self interest list from v, u aggregates it into
w’s internal interest list.

o Broker from the same community, u sets w = «- S +
B - E, and sends the interest list. u also aggregates its
external interest list set and sends a relay interest list for
each of its direct neighboring communities. Broker u also
adds or updates received relay interest lists from v.

o Broker from other communities, v sets w = «-S+3-
FER, and sends the interest list. u also sends its internal
interest list to v. u will add or update received internal
interest list of v into its external interest lists set.

After the interest list has been exchanged, u will send new
event reports in the buffer to v in an order decided by the
weight of each category. Events in the category that feature a
larger w will be sent earlier. Only events with non-zero weight
in v’s interest list will be sent.

C. Default weight

For the events in the categories that are not currently
subscribed by any nodes in the brokers’ own and neighboring
communities, the brokers can select to ignore these events, or
adaptively collect them after the events with subscription have
been exchanged. In MOPS, this selection is realized by setting
the default weight of the unsubscribed categories.

If the default weight is a non-zero value, the broker will
choose to receive the events in the unsubscribed categories
when the meeting duration is long enough. These events
will be stored for future subscriptions or being collected by
the brokers from the communities that have external interest
towards them. The default weight should be a small value
such that it will not disrupt the order of subscribed events.
The advantage of the non-zero default weight is that it would
be more adaptable to interest change in nodes’ subscrip-
tion. It also helps in the rare situation where brokers in
the subscriber’s own and one-hop neighboring communities
cannot reach the event’s publisher. However, it also induces
unnecessary event forwarding.

Another possibility is to set the default weight to zero. The
pros and cons of this scheme are opposite to the above. The
broker will only collect events that are subscribed by nodes in



TABLE 1
Characteristics of three datasets

Dataset Haggle Reality | Synthetic
Device iMotes Phone N/A
Network type Bluetooth | Bluetooth N/A
Duration (days) 3 246 10
Number of nodes 41 97 200
Number of contacts 22,459 54,667 Vary

its own or one-hop neighboring communities. The unnecessary
event forwarding is reduced. However, the spare forwarding
opportunity will be wasted after the subscribed events have
been transmitted and the interest change in the subscriptions
need a long time to be satisfied.

D. Broker pruning

Not all gateways are needed in the inter-community for-
warding since this may create unnecessary redundancy. In
MOPS, the actual brokers are selected from gateways using a
pre-pruning scheme.

Multiple links in the neighboring graph between a pair
of communities A and B may exist. However, to achieve
a desirable trade-off, some of the links can be trimmed to
avoid redundant transfers of the same event report between
the communities for excessive number of times. A gateway
should mark itself as the broker if and only if at least one of
the inter-community links it connects to is not pruned.

Each gateway calculates its betweenness centrality for the
community pair A and B it connects to. The betweenness
centrality is a measurement of the structural importance of
a node [24]. bz, which represents the combined forwarding
capability of the gateways with higher betweeness centrality
than wu, is also calculated. If the combined forwarding capabil-
ity satisfies the delivery requirement, v will be able to prune
itself to reduce the redundancy without violating the desirable
trade-off. More specifically, if both of the following conditions
are satisfied, gateway u prunes itself from being the broker for
the community pair A and B:

o u’s centrality b, is not the highest among the gateways;

o For other gateways with higher centrality, the combined

similarity by is equal to or larger than a threshold B.

After the brokers are selected from the gateways, they can
start to act as the bridges between communities. The details
of the betweenness calculation are given in the Appendix.

V. SIMULATION ANALYSIS

We have conducted simulations to evaluate the effectiveness
of the MOPs scheme with both real and synthetic DTN traces.

A. Simulation setup

In our simulations, we compare the effectiveness of our
scheme with three other techniques: pure push, direct pull,
and k-nearest-neighbors [15] (Neighbors for short). In pure
push, a node replicates an event it stores to every node it
encounters that has not received a copy. In direct pull, a node
only collects events that it has interest in from its directly-
encountered nodes. Nodes in the Neighbors scheme aggregate

I T R
< B
0.3 07
|~(i: =
LN0.2 L O\
AN 703
! 01 S 02
' e _-" |
| .~ '
04 05 b ;
1 7 !
1 P 1’
i< 0 /
\ 01 y
\ , o 03/
;.06 ,

RS ?:/ -
(a) FAU map (b) CS graduate

Fig. 7. The synthetic mobility traces are generated from map of FAU.

the interests from the k nearest neighbors, and associate weight
according to the popularity among the k nearest neighbors to
each category of interest. Nodes then collect events according
to the weights.

We primarily focused on two parameters: 1) Utility: for
each event, the utility is reflected in the proportion of nodes
interested in the event’s category that receives the event; and 2)
Efficiency: for each event, efficiency is defined as the number
of interested nodes that receives the event to the total number
of nodes infected by the event. We also investigate the latency
and the cost in terms of total number of forwards.

DTN environment. We ran trace-driven simulations with
two different datasets: Haggle project [6] and MIT Reality
Mining [7]. In Haggle project, 41 iMotes were distributed to
students attending Infocom 2005. In Reality, 97 smart phones
were deployed to students and staff at MIT. In both datasets,
bluetooth contacts were logged and provided. Each contact
record includes the start time, end time, and ID of the nodes in
contact. For each round of simulation, a portion (default 40%)
of the dataset is used as the contact history. The remaining
portion is used to evaluate the performance of pub/sub after
the community detection and gateway pruning.

We generated synthetic traces according to a community
mobility model proposed in [18], which is considered to be
more realistic than i.i.d. models. The traces were generated
using maps of the Florida Atlantic University (FAU) buildings
as shown in Fig. 7(a). The class schedules and enrollment
information of 200 graduate and undergraduate students from
four departments were collected. The trace of a node, which
represents a network device carried by a student, was gener-
ated according to a Markov chain as illustrated in Fig. 7(b).
The states and probabilities were determined by the students’
class schedules and enrollment information. If two nodes were
in the same building at the same time, they had a probability
(default 0.8) of contacting each other. The contact length
follows a power-law distribution. We also assume there is no
constraint on the nodes’ event buffer.

Events and interests. We simulated the scenario of campus
video news sharing. We assumed each event is 5 Mb of size
and that the contact data rate is 500kb/s (Bluetooth). For each



Push —+—

Push —+— n

D
o

‘Push ——

w0l Pull /? 0 Pull 50 _ Pull
Neighbors - 60 | Neighbors — o & Neighbors
- MOPS & / — MOPS & 40|  MOPS
30+ /4 850 1 o —% g
2 240 | 7 a 1 230
520 E 530 /D ¥ 1 S0l
E 20 *o i
10 ) ; |
Tk 10 — ] 10
0 bR ‘ 0 e F ‘ ‘ ‘ ‘ 0 ] ‘ ‘ ‘
10min 1h 3h 6h 1d 3d 10mn 1h 3h 6h 1d 3d 10min 1h 3h 6h 1d 3d
Expiration TTL Expiration TTL Expiration TTL
(a) Reality (b) Haggle (c) Synthetic
Fig. 8. Performance comparison on utility.
100 . . 100 : 100 . .
Push —+— Push —+— Push —+—
80 1 Pull ] 80 1 Pull ] 80 Pull
S Neighbors - o S Neighbors - S Neighbors -
S 60} MOPS & ] < 60 | MOPS & _ = 4 < 60 MOPS 0
o (5] & o
g q:’ 5] " 5 B i)
S 40 = 'S 40 'S 40 =
20 5 g « 1 20 = X 20 * s K
. s S
e g i e
10min 1h 3h 6h 1d 3d 10mn 1h 3h 6h 1d 3d 10min 1h 3h 6h 1d 3d
Expiration TTL Expiration TTL Expiration TTL
(a) Reality (b) Haggle (c) Synthetic
Fig. 9. Performance comparison on efficiency.

simulation, nodes were uniformly selected to be the publisher
of an event. Events were generated by a Poisson process,
where the rate parameter A is adjustable in the simulation.

The subscription interests and event categories were simu-
lated by the the Number Interval model in [25]. In specific,
an event is randomly associated with an integer value within
the interval [1, 100] after being generated. Each category of
events is represented by a random but distinct range within
[1, 100]. For each category, a subscriber may have interest
in it with a uniform probability p (default 0.2). An event
matches a subscription only when the event’s value falls into
the subscription categories’s range.

All packets had an expiration TTL, which represents the
delay requirement. Each node knew only the contact history
of itself before the community detection. Each simulation was
repeated 30 times with different random seeds for statistical
confidence. At each round, default « = 0.99, £ = 2, B =
0.8, A = 10 events/hour, and TTL = 1 day. We adopted the
average separation period of all nodes as o.

B. Simulation results

In the first experiment, we set the parameters 7' = 0.5
and default value = 107°, and compare MOPS with three
other schemes. As shown in Figs. 8 and 9, the utility and
the efficiency both increase as the delay requirement on the
packet lessens. The three datasets represent three different
DTN scenarios.

The Reality dataset is a scenario that contains many com-
munities and the frequency of contacts is also lower than in
the other two cases. All four schemes can only achieve a
utility of less than 40% when the expiration TTL is three

days. As expected, in this low contact rate environment, the
most aggressive method, which is the pure push, produces the
highest utility. The utility in the direct pull strategy is very
low because the subscribers have only a very slight chance to
meet the publisher directly in this environment.

The MOPS scheme achieves a utility close to the upper
bound indicated by the curve for pure pull, and clearly
outperforms Neighbors in this case. The reason for this is that
a packet will be broadcast at the community level in MOPS if
the source and destination are in different communities in this
low contact rate environment. Therefore, for the case where the
packet forwarding is within a community, the source and des-
tination may meet more than once; otherwise, the community
level broadcast has a good chance of including the path with
the shortest delay. The replication strategy in Neighbors which
only depends on 2-hop paths is too conservative in this case,
therefore it produces a lower utility as illustrated in Fig. 8(a).

The Haggle dataset contains fewer nodes and fewer commu-
nities. Nodes meet more frequently in this dataset, therefore,
the utility of all four schemes is also higher in Fig. 8(b)
than in the other two datasets. When the T'T'L is small, the
pure push strategy still outperforms the other three schemes.
However, when the T'T'L is larger, the utility does not increase
much for the pure push because the nodes may buffer many
events and unnecessary propagations waste the bandwidth in
each exchange. The MOPS scheme shows a clear superiority
over the other schemes. The weight guided inter-community
communication in MOPS can relay events for a long path if
necessary, while direct pull restricts to 1-hop and Neighbors
restricts to 2-hops. The utility for the MOPS is also higher
in this case than in Fig. 8(a) and (c). The reason for this



N
o

Default=0 —+—
Default>0 -

N W W
o o ua
/
*
Latency (1000s)
©
\\

Num of forwards (1000)
N
o

HH

o u

-

Vi

Vi

*’é\K

w o

\

* %
\
\
\
X 4
\
% 4
E 3
%

o u

0.1 02 03 04 05 06 07 08 09 1
Threshold T

(a) Number of forwards

Fig. 10. Performance comparison by adjusting 7".

is because the communication involving brokers has a higher
success rate in this scenario.

For the synthetic dataset, we observe contact frequency
between that of the Haggle and Reality datasets. In Fig. 8(c),
the MOPS scheme still shows a clear improvement in utility
towards other schemes except pure push. When the events’
TTL is long, MOPS is even better than pure push because
the contact bandwidth is efficiently utilized as the brokers
will first relay events that they can contribute more, and
the weight helps brokers to avoid blind event propagation.
MOPS also shows the largest margin of utility towards the
Neighbors scheme in this scenario because the difference in
nodes’ centrality is larger. The Neighbors scheme is biased
towards nodes with smaller centrality. Subscribers with low
centrality may not receive the corresponding events since they
may not be the k-nearest neighbor for any node. These nodes
have a low chance of being infected even when the TTL is
long enough in this scenario.

In all three scenarios in Fig. 9, the efficiency of the MOPS
scheme is higher than that of Neighbors and pure push. In
the MOPS scheme, only the necessary brokers would be
infected among those nodes which are not the subscriber. Intra-
community communications are directly conducted between
subscribe and publisher. The brokers will be infected to satisfy
the subscription interests only when the subscriber and pub-
lisher reside in different communities. Moreover, the weight
which combines the structural importance and subscription
interests makes the brokers differentiate events, which further
increases efficiency. The efficiency of the Neighbors scheme
is lower than MOPS because the neighbors of a subscriber
with high centrality get infected repeatedly and the subscriber
with low centrality may not have neighbors to help. Pure push
shows very poor efficiency in all cases due to the completely
blind diffusion. The efficiency of the direct pull strategy is
always 1 since there is no relay in this scheme.

Figs. 10(a) and (b) illustrate the effect of adjusting the
threshold 7" using the synthetic trace with TT'L = 1 day. We
observe that a moderate 7" of about 0.5 in this scenario makes
the MOPS scheme produce a moderate latency at the smallest
cost in terms of total number of forwardings. The total number
of forwarding is high when T' is small because most of the
nodes are included in a very small number of communities,
and the interest lists are broadcast in the community. When

Default=0 —+—— 50
Push —+— ]
Default>0 % 50 Neighbors - x " 1
MOPS t=0.5 default=0 - 40 f = 1
=40 MOPS t=0.5 default>0 & 5 Push —+—
- e . 30 Neighbors
— 230 = 2 MOPS t=0.5 default=0 -
£ % 2 MOPS t=0.5 default>0 &
S50 N R 2 g g20 | \
~ S
10 = o e
— ]
o P 0 . . . o . . .
0. 02 03 04 05 06 0.7 08 09 1 5 10 20 30 40 50 5 10 20 30 40 50
Threshold T Event rate (/h) Event rate(/h)
(b) Latency (a) Utility (b) Efficient
Fig. 11. Strategy comparison with different event generation rate.

T is close to 1, most of the communities will contain only
one node which makes the MOPS scheme downgrade to the
Neighbors scheme. We also compare the choice of the default
weight in this setting. With the default value 0, the events that
are not matching a brokers’ own and one-hop neighboring
communities’ interests won’t be collected and stored. Thus,
the MOPS scheme shows larger latency in this case, with a
smaller number of forwards. The situation is opposite when
the default value > 0 (10~° in the simulation).

We investigate the performance of different schemes with
varying event generation rates and the result is shown in
Fig. 11. Both the efficiency and utility for all schemes
decreases when the event generation rate increases. Some
events may not reach the interested nodes when the event
generation rate is high because the contact length between
nodes is limited. However, we see that the curves of the MOPS
scheme are less affected by the increasing in event generation
rate, since the weight guided inter-community communication
reduces the waste of precious bandwidth in DTNs.

In summation, MOPS outperforms the Neighbors scheme
and simple strategies pure push and direct pull when we
consider the utility and efficiency at the same time. Improve-
ment is consistently shown in scenarios with different contact
patterns. This indicates that MOPS can achieve satisfactory
performance in a variety of DTNs. Considering that nodes only
need local information of limited hops to form communities
and determine the weight of each interest category, MOPS is
certainly an efficient distributed pub/sub scheme for providing
content-based service in the DTN.

VI. CONCLUSION

In this paper, we seek to utilize the community struc-
ture, which is based on long-term neighboring relationship
between nodes in the DTN, to efficiently implement the
pub/sub service. We define the similarity metrics based on
nodes’ encounter history to depict the neighboring relationship
between nodes. The community is defined as a clique of
nodes where any neighboring relationship is stronger than an
adjustable threshold. Brokers are then deployed as the interface
to match the interests and events among communities. The bro-
kers utilize a unique weighted scheme to propagate interests
and collect events. Extensive real- and synthetic-trace-driven
simulation results are presented to support the effectiveness of



MOPS. In the future, we plan to study the weighted event
propagation for pub/sub services in DTNs. Events will be
attached with time-variant weight and the event exchange is
based on both the aggregated interests and event weight.

REFERENCES

[1] P. Marshall. From self-forming mobile networks to self-forming mobile
content services. ACM Mobicom Keynote Speech, 2008.

[2] S. Jain, K. Fall, and R. Patra. Routing in a Delay Tolerant Network. In
Proc. of ACM SIGCOMM, 2004.

[3] H. Jafarpour, S. Mehrotra, and N. Venkatasubramanian. A fast and
robust content-based publish/subscribe architecture. In Proc. of IEEE
NCA, 2008.

[4] E. Yoneki and J. Bacon. Distributed multicast grouping for pub-
lish/subscribe over mobile ad hoc networks. In Proc. of IEEE WCNC,
2005.

[5] Q. Yuan and J. Wu. Drip: A dynamic voronoi regions-based pub-
lish/subscribe protocol in mobile networks. 2008.

[6] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chain-
treau. CRAWDAD data set cambridge/haggle (v. 2006-09-15).
http://crawdad.cs.dartmouth.edu/cambridge/haggle, September 2006.

[71 N. Eagle and A. Pentland. CRAWDAD data set mit/reality (v. 2005-07-
01). http://crawdad.cs.dartmouth.edu/mit/reality, July 2005.

[8] A. Vahdat and D. Becker. Epidemic routing for partially connected ad
hoc networks. In Technical Report CS-200006, Duke University, 2000.

[9] T. Spyropoulos, K. Psounis, and C. Raghavendra. Spray and wait: an

efficient routing scheme for intermittently connected mobile networks.

In Proc. of ACM SIGCOMM Workshop on DTNs, 2005.

J. Burgess, B. Gallagher, D. Jensen, and B. Levine. Maxprop: Rout-

ing for vehicle-based disruption-tolerant networks. In Proc. of IEEE

INFOCOM, 2006.

A. Lindgren and A. Doria. Probabilistic routing protocol for intermit-

tently connected networks. draft-lindgren-dinrg-prophet-03, 2007.

A. Balasubramanianm, B. Levine, and A. Venkataramani. Dtn routing

as a resource allocation problem. In Proc. of ACM SIGCOMM, 2007.

E. Yoneki, P. Hui, S. Chan, and J. Crowcroft. A socio-aware overlay for

publish/subscribe communication in delay tolerant networks. In Proc.

of ACM MSWiM, 2007.

I. Leontiadis. Publish/subscribe notification middleware for vehicular

networks. In Proc. of Middleware doctoral symposium, 2007.

I. Carreras, F. Pellegrini, D. Miorandi, D. Tacconi, and I. Chlamtac.

Why neighbourhood matters: interests-driven opportunistic data diffu-

sion schemes. In Proc. Of ACM CHANTS, 2008.

A. Chaintreau, P. Hui, C. Diot, R. Gass, and J. Scott. Impact of human

mobility on opportunistic forwarding algorithms. IEEE Transactions on

Mobile Computing, 6(6):606-620, 2007.

E. Daly and M. Haahr. Social network analysis for routing in discon-

nected delay-tolerant manets. In Proc. of ACM MobiHoc, 2007.

W. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy. Modeling time-

variant user mobility in wireless mobile networks. In Proc. of IEEE

INFOCOM, 2007.

N. Djukic, M. Piorkowski, and M. Grossglauser. Island hopping:

Efficient mobility-assisted forwarding in partitioned networks. In Proc.

of IEEE SECON, 2006.

P. Hui, J. Crowcroft, and E. Yoneki. Bubble rap: Social-based forwarding

in delay tolerant networks. In Proc. of ACM MobiHoc, 2008.

P. Hui, E. Yoneki, S. Chan, and J. Crowcroft. Distributed community

detection in delay tolerant networks. In Proc. of MobiArch, 2007.

U. Luxburg. A tutorial on spectral clustering. Statistics and Computing,

17(4):395-416, 2007.

J. Bondy and U. Murty. Graph theory with applications.

Elsevier Publishing Company, 1976.

P. Marsden. Egocentric and sociocentric measures of network centrality.

Social Networks, 24(4):407-422, October 2002.

Y. Huang and H. Garcia-Molina. Publish/subscribe tree construction in

wireless ad-hoc networks. 2003.

[10]

[11]
[12]

[13]

[14]

[15]
[16]

(17]

[18]
[19]

[20]
[21]
[22]
[23] American

[24]

[25]

APPENDIX

Local community construction. To construct the community,
each node collects (2k + 1)-hops of information, which can
be collected via 2k rounds of encounter information exchange

10

Algorithm 1 Local community formation

1: for each node ¢ in N (init) do

2 if ¢ & any clique formed by init then

3 init starts a new clique with{init,};

4 for each node j in Ni(init) do

5: if for VI € current clique, j € Ni(l) then
6: Add j to current clique;

7 end if

8 Calculate Ncut(A, A)

9: end for

10:  end if

11:  Choose the clique with minimum Ncut(A, A) value;
12:  Set the label of this clique as the ID of initiator;

13:  Inform initiators’ visible neighborhood Ny (N (init));
14: end for

_ _ YicAjeAtid
Yiea ZvEG,u#u Cuv’

among neighbors. In the [-th round, a node sends its [-hop
neighbor set and corresponding closeness value in the hello
message to each of its encountered neighbors in this round.
After collecting closeness from all its encountered neighbors
in that round, the node now has (I + 1)-hops of information.

Each node ¢ constructs its local neighborhood Ny (7). Each
node in Ng (i) has a direct link or virtual link (including
paths up-to-k-hops) with closeness ¢ > T'. Node ¢ also knows
N (N (4)), which includes all the nodes and direct or virtual
links in its local neighbors’ local neighborhood.

In MOPS, a node should select itself as the initiator if
its degree d; is the highest within its visible neighborhood
Ni(Ng(7)). If two nodes with the same degree are visible to
each other, node ID will be used to break the tie. Each initiator
inst performs Algorithm 1 to form a local community with the
nodes in N (init).

Algorithm 1 aims to maximize the communities while
keeping strong links inside the community. Thus it adopts the
normalized cuts in the k-hop neighborhood division. Note that
the local normalized cut value Ncut(A, A) is computed based
on the weights of the direct links, which are based on the
initiator’s 2k-hop information. Here A denotes nodes in the
N (N (init)) range but outside the community.

The initiator should propagate the formed community to
its local neighbors. Nodes that haven’t been included in the
communities will exclude nodes in the formed communities
and continue with local community formation process.

Betweeness calculation. The betweenness centrality of a
gateway [ in community A connecting the community B is
calculated as follows:

by = 2 ven(Cw Diea ZjEB(Cil * Cuj)) 7

D uea 2oven(Cuv e EjeB(Ciu “cyj))’

A gateway [ knows all other gateways in community A
connecting to B, and also knows their centrality values from
the (2k + 1) hops of local information collected in the com-
munity detection step. A gateway [ calculates a measurement
br =3 i (ilbi>bi} b; to evaluate those gateways, which belong
to the same community, have higher betweeness centrality than
[, and connect the same pair of communities A and B.




