Node-based Scheduling with Provable Evacuation Time

Bo Ji
Dept. of Computer & Information Sciences
Temple University
E-mail: boji@temple.edu

Joint work with Jie Wu@Temple
Link Scheduling for Minimum Evacuation Time

Evacuation time: time needed for draining all the existing packets

- A critical metric in settings without future arrivals
 - Goal: minimize the evacuation time
- In settings with arrivals, a good measure of short-term throughput & closely related to the delay performance
Multigraph Edge Coloring Problem

- The problem is generally NP-hard [Holyer’81]
- Approximations
 - Shannon’s theorem [Shanon’49], Vizing’s theorem [Vizing’64], …
 - Any constant-factor approximation ratio better than 4/3 is NP-hard [Holyer’81]
 - If a small additive term is allowed, much better approximations (exact or asymptotic) [Sanders & Steurer’08,…]
- A survey book on graph edge coloring [Stiebitz et al.’12]

- Limitations
 - All rely on recoloring-based techniques
 - The colors (or schedules) are computed all at once
 - The complexity depends on # of multi-edges (or # of packets)
 - Could be impractically high
 - Unsuitable for link scheduling and packet evacuation
 - More limited applications to settings with arrivals
Online Algorithms

- Quickly compute one color (or schedule) at a time
 - Complexity is only dependent on network size
 - Link count and node count
 - High complexity is distributed over time
 - Desirable for applications such as link scheduling
 - Functional even if packet arrivals are considered

- Example algorithms
 - Maximum Weighted Matching (MWM) algorithm
 - MWM-α algorithm
 - Greedy Maximal Matching (GMM) algorithm
 - Randomized Maximal Matching (RMM) algorithm

- Existing online algorithms all have an approximation ratio no better than 2! [Gupta et al.’09]
Node-based Approach

- Input-queued switches
 - Modeled as bipartite graphs
 - A class of Lazy Heaviest Port First (LHPF) algorithms [Gupta et al.’09]
 - Maximum Vertex-weighted Matching (MVM), also known as Longest Port First algorithm [Mekkittikul & McKeown’98]
 - Maximum Node Containing Matching algorithm [Tabatabaee & Tassiulas’09]
 - LHPF is both evacuation-time-optimal and throughput-optimal

- Multihop wireless networks
 - Modeled as general graphs
 - Evacuation-time performance is largely unknown
 - Our focus: develop and analyze node-based scheduling algorithms with provable evacuation time and lower complexity
Our Contributions

- Prove that MVM has an approximation ratio no greater than 3/2 in multihop wireless networks

- Propose a new node-based algorithm – Critical Node Matching (CNM) algorithm
 - CNM guarantees an approximation ratio no greater than 3/2 as well
 - CNM has a lower complexity of $O(m \sqrt{n})$ than $O(m \sqrt{n \log n})$ of MVM, where m and n are the link count and the node count, respectively

- As a byproduct, these algorithms serve as an alternative for achieving Shannon’s bound of $3/2 \Delta$, where Δ is the maximum node degree
MVM

- $Q_l(t)$: # of packets waiting to be transmitted over link l
- $L(i)$: set of links incident to node i
- $d_i(t) = \sum_{l \in L(i)} Q_l(t)$: degree of node i
- M: matching
- \mathcal{M}: set of all the matchings

MVM:
- $w_i(t) = d_i(t)$: weight of node i
- $w(M) = \sum_{i:L(i) \in M \neq \emptyset} w_i(t)$: weight of matching M
- $MVM \arg\max_M w(M)$: Maximum Vertex-weighted Matching
- The MVM algorithm finds an MVM in each time slot
- MVM has a complexity of $O(m \sqrt{n \log n})$
MVM - Example

\[d_i = 2 \quad Q_i = 2 \]

\[w_i = 2 \]

MVM, GMM, MWM-\(\alpha \) with \(\alpha > 0 \)
Main Result

Theorem 1: MVM has an approximation ratio no greater than 3/2.

Proof Sketch:

- Minimum evacuation time \geq maximum node degree $= \Delta$
- MVM achieves Shannon’s bound
 - Evacuation time of MVM $\leq 3/2 \Delta$ (Proposition 1)

Proposition 1: Suppose the maximum node degree is no smaller than two. Under the MVM algorithm, the maximum node degree decreases by at least two within every three consecutive time-slots.
Proposition 1: Suppose the maximum node degree is no smaller than two. Under the MVM algorithm, the maximum node degree decreases by at least two within every three consecutive time-slots.

Proof Sketch:

- If the maximum node degree does not decrease in a time-slot, it will decrease in both of the following two time-slots
 - **Critical node**: Node having a maximum degree
 - **Lemma 1**: If the subgraph induced by all the critical nodes is bipartite, then there exists a matching that matches all the critical nodes [Anstee & Griggs’96]
 - **Lemma 2**: If there exists a matching that matches all the critical nodes, then MVM will match all of them as well
 - In both of the following two time-slots, the subgraph included by all the critical nodes is indeed bipartite

Observation: in order to achieve 3/2, it is sufficient to focus on scheduling the critical nodes
Critical Node Matching (CNM) algorithm

- Motivated by the key observation, focus on scheduling the critical nodes
- Assign node weights as follows:
 - \(w_i(t) = B_2 \), if \(i \) is a critical node
 - \(w_i(t) = B_1 \), otherwise
 - \(0 < B_1 < B_2 \leq B \), both \(B_1 \) and \(B_2 \) are bounded positive integers
- Find an MVM based on the new weights in each time-slot

An implementation with \(O(m \sqrt{n}) \) complexity for bounded integer weights [Huang & Kavitha’12, Pettie’12]

Theorem 2: CNM has an approximation ratio no greater than 3/2.
CNM - Example

\[d_i = 2 \quad Q_i = 2 \]

\[w_i = 1 \quad w_i = 2 \]

CNM (\(B_1 = 1, B_2 = 2\))

MVM (also CNM)
Lower Bound of $4/3$

First time-slot, second, third, and fourth.
Throughput & Delay Performance

Simulation settings
- 4X4 grid network
- unit link capacity
- A flow with arrival rate λ at each link

Observations
- MVM & CNM both empirically achieve good throughput performance
- MVM empirically achieves best delay performance
Conclusion

- Proved that MVM achieves an approximation ratio no greater than 3/2 for the minimum evacuation time problem

- By making a key observation that it is sufficient to focus on scheduling the critical nodes for achieving an approximation ratio no greater than 3/2, we proposed a lower-complexity algorithm – CNM – with a same performance guarantee

- These algorithms serve as an alternative for achieving Shannon’s bound

- Node-based approach is less studied
 - Performance limits of the node-based algorithms?
 - Conjecture: 4/3 is tight for MVM (and CNM) – much more challenging
 - If an additive term is allowed, can we develop node-based algorithms with better approximations (exact or asymptotic)?
 - Throughput performance in settings with arrivals?
Thank You!

Questions?

E-mail: boji@temple.edu