
Node-based Scheduling with Provable Evacuation
Time

Bo Ji and Jie Wu
Department of Computer and Information Sciences

Temple University, Philadelphia, PA
Email:{boji, jiewu}@temple.edu

Abstract—This paper studies the link scheduling problem in
multihop wireless networks without future packet arrivals, with
an aim of minimizing the time interval needed for evacuating
all the existing packets. We consider the scenario with single-
hop traffic flows under the one-hop interference model. In this
setting, the minimum evacuation time problem is equivalent to
the classic multigraph edge coloring problem, which is generally
NP-hard. Although many approximation algorithms have been
studied, almost all of them require computing the schedules
(or the colors) all at once, and thus have a complexity that
is dependent on the number of packets in the network. This,
however, renders these algorithms unsuitable for the considered
application of link scheduling for packet evacuation, as they
typically incur an impractically high complexity when there are a
large number of initial packets waiting to be transmitted, even if
the underlying network has a small size (i.e., the node count and
the link count). Instead, it is desirable to compute the schedules
(or the colors) in an online fashion, i.e., to quickly compute
one schedule at a time. Unfortunately, none of the existing
online algorithms can guarantee an approximation ratio better
(or smaller) than 2. To that end, in this paper we suggest two
scheduling algorithms using a node-based approach, and prove
that their approximation ratios are both no worse (or greater)
than 3

2
. In addition, these scheduling algorithms can also serve

as an alternative for achieving Shannon’s bound, which is well
known in the graph coloring literature.

Index Terms—Link scheduling, multihop wireless networks,
evacuation time, node-based approach, provable performance
guarantees, multigraph edge coloring.

I. INTRODUCTION

How to design efficient link scheduling algorithms for
multihop wireless networks has been a vital and challenging
problem (see [1]–[3] and the references therein). In this paper,
we focus on the setting with existing packets in the network
and without future packet arrivals. The performance metric of
interest is the evacuation time, defined as the time interval
needed for completely draining all the existing packets in the
network. Clearly, the evacuation time is a critical performance
metric in the setting without arrivals. Moreover, in the setting
with arrivals, the evacuation time can also be viewed as a
measure of the short-term throughput, which is closely related
to the delay performance. In particular, a scheduling algorithm
being evacuation-time-optimal in the settings without arrivals
is known to be a necessary condition for sample-path delay

optimality1 in input-queued switches [5].
In this paper, we assume that the traffic flows are single-

hop, i.e., the packets waiting to be transmitted over a link,
will leave the network once they are transmitted. We also
assume the one-hop (or node-exclusive) interference model
[2], [6], [7], where two links sharing a common end node
cannot be activated to transmit at the same time. In this
setting, the minimum evacuation time problem is equivalent
to the classic multigraph edge coloring problem. In contrast
to a simple graph that allows at most one edge between any
two vertices, in a multigraph, two vertices may be connected
by more than one edge, which is called a multi-edge. The
edge coloring problem is concerned with finding the minimum
number of colors, also called chromatic index, so that each
multi-edge is assigned a color and no two multi-edges sharing
a common end node have the same color. This is a well-known
NP-hard problem in general [8]. Hence, many approximation
algorithms have been proposed and analyzed in the edge
coloring literature (see [9] and the references therein).

Nevertheless, almost all of these approximation algorithms
rely on the recoloring techniques, and require computing
the schedules (or the colors) all at once, and thus have a
complexity that is dependent on the number of packets in the
network. This, however, renders these algorithms unsuitable
for certain types of applications, such as the link scheduling
problem that we consider in this paper, as they typically
incur an impractically high complexity when there are a large
number of initial packets waiting to be transmitted, even if
the underlying network has a small size (i.e., the node count
and the link count). Instead, it is desirable to compute the
schedules (or the colors) in an online fashion, i.e., to quickly
compute one schedule at a time. Such algorithms are called
online algorithms throughout this paper. For online algorithms,
we require that the complexity of computing a color depend
on the network size only, and is independent of the number of
packets in the system. Note that although we consider a setting
without future packet arrivals in this paper, online algorithms
will still be functional in the settings with arrivals, while the
pure edge-coloring-based algorithms will become less relevant.

To that end, the evacuation time performance of several

1A scheduling algorithm is said to achieve sample-path delay optimality if
it minimizes the total queue lengths over the network in every time-slot and
for any sample path of traffic arrival patterns [4]. This is a very strong notion
of delay optimality, and perhaps is also the hardest to attain.



popular online algorithms in the literature of wireless schedul-
ing has been studied [5], [10], [11]. These algorithms either
take a link-based approach and make decisions based on the
link weight (defined as the queue length at the link), such
as Maximum (edge-)Weighted Matching (MWM) [1], MWM-
α [12], [13], and Greedy Maximal Matching (GMM) [14],
[15], or are queue-length agnostic, such as the Randomized
Maximal Matching (RMM) algorithm [14]. In the settings
with arrivals, these popular scheduling algorithms are either
throughput-optimal, i.e., they stabilize the network under any
arrival rates strictly within the network capacity region, or
have a provable efficiency ratio, i.e., they achieve a non-trivial
and constant fraction of the network capacity region. However,
none of them can guarantee an approximation ratio better (or
smaller) than 2 for the minimum evacuation time problem.

Very recently, a class of Lazy Heaviest Port First (LHPF)
algorithms2 focusing on scheduling nodes with a heavy weight
(or degree, defined as the summed queue length of the links
incident to the node), have been studied in [5], [10] (also see
[16], [17]) for input-queued switches. Note that an important
algorithm called the Maximum Vertex-weighted Matching
(MVM) algorithm (described in Section III), which maximizes
the sum of the weight of the matched nodes, also belongs to
the class of LHPF algorithms. It is remarkable that the LHPF
algorithms are both evacuation-time-optimal and throughput-
optimal for input-queued switches that can be modeled as
bipartite graphs. However, it has largely been an open question
whether one can find online algorithms that guarantee an
approximation ratio better (or smaller) than 2 for the minimum
evacuation time problem in multihop wireless networks with
single-hop traffic flows.

In this paper, we answer the above question, and make the
following contributions.

• First, we prove that the MVM algorithm guarantees an
approximation ratio no greater than 3

2 , by showing that
under MVM, the maximum node weight (or degree) will
decrease by at least two within every three consecutive
time-slots.

• Second, we make an important observation: in order to
achieve an approximation ratio of 3

2 , it suffices to focus on
scheduling the critical nodes (i.e., nodes with a maximum
weight). Then, by using the insights obtained, we pro-
pose a new algorithm that guarantees an approximation
ratio no greater than 3

2 as well, but at a complexity of
O(m

√
n), lower than O(m

√
n log n) of MVM, where n

and m are the node count and the link count, respectively.
This is achieved by reassigning bounded integer weights
to the nodes, while ensuring that the critical nodes are
still given a higher priority.

• Finally, as a byproduct, our proposed algorithms can also

2Consider any given α ∈ (0, 1] and any node i that has a weight within
α-fraction of the heaviest weight over all the nodes. A matching M is an
LHPF matching if node i is not scheduled by M , then there does not exist
any other matching M ′ that can schedule i and all the nodes heavier than i
that are scheduled by M . A scheduling algorithm is an LHPF algorithm if it
produces an LHPF matching in every time-slot [5].

a 
b 

c d 

e 1 1 
2 

2 
2 

(a) Topology

a 
b 

c d 

e 

(b) An MVM

a 
b 

c d 

e 

(c) A CNM

Fig. 1: A size-5 ring topology. The number of packets at
each link is labeled by the link in (a). In this example, the
node degrees are {2, 3, 4, 4, 3} for nodes {a, b, c, d, e}; the
maximum node degree is 4; nodes c and d are the critical
nodes. The node weights of {a, b, c, d, e} under MVM are
{2, 3, 4, 4, 3}. Assume B1 = 1 and B2 = 2, then the node
weights of {a, b, c, d, e} under CNM are {1, 1, 2, 2, 1}. In (b)
and (c), the thick edges denote the links included in the
matching. The matching in (b) is an MVM as well as a CNM,
while the matching in (c) is a CNM but not an MVM.

serve as an alternative for achieving Shannon’s bound
[18], which is well known in the graph coloring literature.

II. SYSTEM MODEL

We consider a multihop wireless network described by a
(simple) graph G = (V,E), where V denotes the set of n
nodes/vertices and E denotes the set of m links/edges. Our
focus is on a setting where there are initial packets waiting to
be transmitted, and there are no future packet arrivals. Time is
assumed to be slotted. We assume packets are of unit length,
and we let Ql(t) denote the number of remaining packets
that need to be transmitted over link l ∈ E in time-slot t.
Without loss of generality, we assume all the links have at
least one packet at the very beginning, i.e., Ql(0) > 0 for
all l ∈ E. In the following time-slots, we remove the links
with no remaining packets. Let L(i) denote the set of links
incident to node i. We let di(t) ,

∑
l∈L(i)Ql(t) denote the

degree of node i in time-slot t accounting for multiplicity,
and let ∆(t) , maxi∈V di(t) denote the maximum node
degree in time-slot t. A node having degree ∆(t) is called
a critical node. For example, in Fig. 1a, the degrees of nodes
{a, b, c, d, e} are {2, 3, 4, 4, 3}; the maximum node degree is
4; nodes c and d are the critical nodes.

We assume that the traffic flows are single-hop, i.e., once a
packet is transmitted over a link, the packet leaves the system.
In each time-slot, only a subset of links conforming to the one-
hop (or node-exclusive) interference constraint can be activated
to transmit packets. Clearly, such a subset of links form a
matching, which we also call a schedule, and is denoted by
M . A matching M is called a maximal matching if no more
links can be added to M without violating the interference
constraint. Let M denote the set of all matchings over graph
G. For ease of presentation, we assume unit link capacity, i.e.,
only one packet can be transmitted over a link if the link is
activated. However, our results can also be extended to the gen-
eral scenario with heterogeneous link capacities by considering
the workload defined as dnumber of packets/link capacitye.



Let TS denote the evacuation time of scheduling algorithm S,
and let X ′ denote the minimum evacuation time over all the
algorithms. Note that X ′ is also called the chromatic index in
the graph coloring literature, and depends only on the network
topology and initial configuration.

III. MVM ALGORITHM

In this section, we analyze the evacuation time performance
of the MVM algorithm, and prove that MVM guarantees an
approximation ratio no greater than 3

2 .
We start by describing the operations of the MVM al-

gorithm. By slightly abusing the notations, we remove the
dependence on t, e.g., we use Ql to denote Ql(t). In each
time-slot, we assign a weight wi to node i as its degree,
i.e., wi = di, and let w(M) ,

∑
i:M∩L(i)6=∅ wi denote the

weight of matching M , i.e., the sum of the weight of the
nodes matched by M . A matching M∗ is an MVM if it
maximizes the sum of the weight of the matched nodes, i.e.,
M∗ ∈ argmaxM∈M w(M). Clearly, an MVM is a maximal
matching when all the nodes have positive weights. Fig. 1b
shows an example of an MVM in a size-5 ring topology,
where the node weights under MVM are equal to the node
degrees, which are {2, 3, 4, 4, 3} for nodes {a, b, c, d, e}, and
the resultant MVM, {(b,c), (d,e)}, has a weight of 14. The
MVM algorithm finds an MVM in every time-slot. It is shown
in [19] that MVM has a complexity of O(m

√
n log n), lower

than O(mn) of its edge-weighted counterpart, MWM. Next,
we state the main result of this paper in the following theorem.

Theorem 1. The MVM algorithm has an approximation ratio
no greater than 3

2 for the minimum evacuation time problem.

Proof. We want to show TMVM ≤ 3
2X
′. If ∆ = 1, this is

trivial as TMVM = X ′ = ∆. Now, suppose ∆ ≥ 2. Then, this
follows immediately from 1) Proposition 1: under the MVM
algorithm, the maximum node degree decreases by at least two
within every three consecutive time-slots, i.e., TMVM ≤ 3

2∆,
and 2) an obvious fact: it takes at least ∆ time-slots to drain
all the packets over the links incident to a node with maximum
degree, i.e., ∆ ≤ X ′.

Therefore, it remains to prove Proposition 1 stated below.

Proposition 1. Suppose the maximum node degree is no
smaller than two. Under the MVM algorithm, the maximum
node degree decreases by at least two within every three
consecutive time-slots.

Before we prove Proposition 1, we restate a useful result
of [20] in Lemma 1, and present an important property of
MVM in Lemma 2. Both lemmas will be used in the proof of
Proposition 1.

Lemma 1 (Theorem 1 of [20]). Consider a graph G. Suppose
that the subgraph of G induced by all the vertices having
maximum degree in G is a bipartite graph. Then, there exists
a matching in G that matches every vertex with a maximum
degree.

Proof. See [20] for the proof.

Lemma 2. Consider a graph G. Suppose that there exists a
matching that matches every vertex with a maximum weight,
then an MVM also matches every such vertex.

Proof. The proof is provided in Appendix A.

Now, we are ready to prove Proposition 1. We provide the
detailed proof in Appendix B, and give a sketch of the proof
as follows. Consider any time-slot t ≥ 0. Suppose that the
maximum degree is ∆ ≥ 2 at the beginning of time-slot t.
Then, we want to show that under the MVM algorithm, the
maximum degree will be at most ∆−2 at the end of time-slot
t+ 2. We use a “1” or “0” to indicate whether the maximum
degree decreases by one or not in a time-slot, respectively,
and use a sequence of “1”s and “0”s to indicate whether the
maximum degree decreases by one or not in a sequence of
consecutive time-slots starting from time-slot t. For example,
“011” means that the maximum degree does not decrease in
time-slot t, but it decreases in both time-slots t+ 1 and t+ 2.
Now, we consider two cases in time-slot t: i) “0” occurs and
ii) “1” occurs. We will focus on Case i), and Case ii) follows
similarly.

In Case i), suppose that in time-slot t, the maximum degree
does not decrease under the MVM algorithm. Then, we show
by contradiction that at the beginning of time-slot t + 1, the
nodes with a maximum degree ∆ must form an independent
set, and thus, the subgraph induced by these nodes is a bipartite
graph. Further, we show that an MVM must match all the
nodes with a maximum degree ∆ in time-slot t + 1. This
is due to the following: (1) if the subgraph induced by the
nodes with a maximum degree is a bipartite graph, then there
exists a matching that matches all the nodes with maximum
degree (Lemma 1), and (2) if there exists a matching that
matches all the nodes with a maximum degree, then an MVM
also matches all such nodes (Lemma 2). Hence, the maximum
degree becomes ∆−1 at the beginning of time-slot t+2. Next,
we show by contradiction that at the beginning of time-slot
t + 2, the subgraph induced by the nodes with a maximum
degree ∆ − 1 is a bipartite graph. Then, in time-slot t + 2
an MVM must match all the nodes with a maximum degree
∆− 1, again from Lemmas 1 and 2.

In Case ii), suppose that “1” occurs in time-slot t, i.e., the
maximum degree decreases by one. If another “1” occurs in
time-slot t+1, then we are done. Now, suppose that “0” occurs
in time-slot t + 1. Then, following the same argument as in
Case i), we can show that it will be followed by a “1” in
time-slot t+ 2.

Combining the two cases, we complete the proof.
Remark: The proof of Proposition 1 follows a similar

argument as in the proof of Theorem 2 of [20]. However, there
is a key difference: we provide an actual online algorithm –
MVM – that achieves Shannon’s bound of 3

2∆ [18], while
in [20] only an existence proof is given without providing an
actual algorithm. To the best of our knowledge, this is also the
first time an online algorithm is proved to achieve Shannon’s



bound. Moreover, we show in the following corollary that the
MVM algorithm actually achieves a bound slightly better than
Shannon’s.

Corollary 1. TMVM ≤ 3
2X
′ − 1

2 .

Proof. The proof is straightforward, and is provided in Ap-
pendix C.

IV. CNM ALGORITHM

From the above analysis for MVM, we make an important
observation: in order to guarantee an approximation of 3

2 for
the minimum evacuation time problem, it suffices to focus
on scheduling the critical nodes. Hence, in this section, using
the insights obtained, we propose a new scheduling algorithm,
called the Critical Node Matching (CNM) algorithm, which
focuses on scheduling the critical nodes. We will show that
the CNM algorithm has a complexity of O(m

√
n), lower than

O(m
√
n log n) of MVM, while guaranteeing an approxima-

tion ratio no greater than 3
2 as well.

Note that the MVM algorithm also gives a higher priority
to the critical nodes, as the node weight is equal to the node
degree, and hence, the critical nodes will have a larger weight.
However, we will be able to reduce the complexity of the CNM
algorithm by assigning bounded integer weights to the nodes.
The specific operations of the CNM algorithm are described as
follows. Consider any fixed integer B > 1. In each time-slot,
we assign the weight of a critical node as B2, and assign the
weight of a non-critical node as B1, where both B1 and B2

are positive integers satisfying 0 < B1 < B2 ≤ B. Note that
the exact values of B1 and B2 are not important. For example,
in Fig. 1a, we assume B1 = 1 and B2 = 2. Hence, the
node weights of {a, b, c, d, e} under CNM are {1, 1, 2, 2, 1},
as nodes c and d are the critical nodes. In every time-slot, the
CNM algorithm finds an MVM with assigned node weights
of B1 or B2. Such a matching is called a CNM. Note that
we restrict the node weights to be positive to ensure that the
resultant matching is maximal. Fig. 1c shows an example of
a CNM but not an MVM, while Fig. 1b shows an example
of both a CNM and an MVM. As we discussed earlier, the
complexity of finding an MVM is O(m

√
n log n) in general.

However, in the case where the maximum weight is a bounded
integer (independent of both m and n), we can find an MVM
with a lower complexity of O(m

√
n) [21], [22]. This can be

implemented by setting the weight of an edge to the sum of
the weight of its two end nodes and finding an MWM with
edge weights being one of the following: 2B1 (neither end
node is critical), B1 + B2 (exactly one end node is critical),
or 2B2 (both end nodes are critical).

Next, we state another main result of this paper in Theo-
rem 2. The proof of Theorem 2 follows from Proposition 2,
which follows from Lemmas 1 and 3. Similarly, we have a
corollary for CNM. We omit all the proofs here, since they all
follow the same line of analysis as in the proofs for the MVM
algorithm.

Theorem 2. The CNM algorithm has an approximation ratio
no greater than 3

2 for the minimum evacuation time problem.

Proposition 2. Suppose the maximum node degree is no
smaller than two. Under the CNM algorithm, the maximum
node degree decreases by at least two within every three
consecutive time-slots.

Lemma 3. Consider a graph G. Suppose that there exists a
matching that matches every vertex with a maximum weight,
then a CNM also matches every such vertex.

Corollary 2. TCNM ≤ 3
2X
′ − 1

2 .

Remark: Note that the CNM algorithm is very similar to
the MVM algorithm, in a sense that CNM also needs to find
an MVM in each time-slot. However, the key difference is
that under CNM, nodes only have a weight of B2 or B1,
depending on whether a node is a critical node or not. This key
difference allows CNM to be able to achieve the same provable
evacuation time performance with a reduced complexity.

V. CONCLUSION

In this paper, we showed that the node-based scheduling
algorithms, such as MVM and CNM, achieve a better ap-
proximation ratio than the known online algorithms that are
either link-based or queue-length agnostic (no worse than 3

2
vs. no better than 2). However, this work is only among
the very first attempts of exploring the idea of the node-
based approach, and the performance limits of the node-based
scheduling algorithms are far from being fully understood.

On one hand, it is well known in the edge coloring literature
that achieving any constant-factor approximation ratio better
than 4

3 is NP-hard [8]. For the MVM algorithm, indeed, we
can construct a counterexample to show that its approximation
ratio is no better (or smaller) than 4

3 [11]. On the other hand,
a (non-online) algorithm that achieves this 4

3 bound is given in
[23], and moreover, if a small additive term is allowed, much
better approximation algorithms and asymptotic approxima-
tion algorithms with polynomial time can be developed (see
[9] and the references therein).

In [11], we made a conjecture that the bound of 4
3 is tight for

the MVM algorithm. In this paper, we made progress towards
proving the conjecture by showing that the approximation ratio
of the MVM algorithm is between 4

3 and 3
2 . It is interesting

to know whether this gap can be closed. This, however,
becomes much more difficult because the MVM algorithm
does not possess a nice property similar to Proposition 1,
when four consecutive time-slots are considered. That is, it
is not generally true that under the MVM algorithm, the
maximum node degree decreases by at least three within every
four consecutive time-slots. Further, it is also interesting and
important to know whether the node-based approach can result
in scheduling algorithms with a better approximation ratio for
the minimum evacuation time problem when a small additive
term is allowed.

Finally, in multihop wireless networks with future packet ar-
rivals, the throughput performance of the node-based schedul-
ing algorithms is not well understood, and is worth further
investigation.



APPENDIX A
PROOF OF LEMMA 2

Proof. We first give some additional notations that will be
used in the proof. Define a path in a graph as a sequence of
edges which connect a sequence of distinct vertices. The length
of a path is the number of edges in that path. For any two
matchings M1 and M2, we let M1	M2 = (M1−M2)∪(M2−
M1) denote the symmetric difference, which is the set of edges
in one of the two matchings, but not in both of them. Given a
matching M and a path P , we let M ⊕P ,M − (M ∩P ) +
(M c∩P ) denote the set of edges obtained by flipping the edges
in P . Then, we define the notions of augmenting path and
absorbing path as in [5], [10]. Consider a given matching M
and any vertex i unmatched by M . A path P is an augmenting
path if it satisfies all the following conditions: i) it has an odd-
length; ii) its every alternate edge is in M ; iii) it starts from
vertex i and ends at another unmatched vertex, say j. Note that
now M⊕P is also a matching, and it matches every vertex of
P , including all the vertices matched by M , as well as i and
j. Thus, we have w(M⊕P ) = w(M)+wi+wj > w(M), i.e.,
matching M ⊕ P has a weight strictly larger than that of M .
A path P ′ is an absorbing path if it satisfies all the following
conditions: i) it has an even-length; ii) its every alternate edge
is in M ; iii) it starts from vertex i and ends at a matched vertex
k that has a smaller weight than i, i.e., wi > wk. Note that
now M⊕P ′ is also a matching, and it matches every vertex of
P ′ except for k, including i and all the vertices of M except
for k. Thus, we have w(M⊕P ′) = w(M)+wi−wk > w(M),
i.e., matching M ⊕P ′ has a weight strictly larger than that of
M .

Now, suppose that matching M is an MVM, and M∗ is a
matching that matches every vertex with a maximum weight
∆. We want to show that M also matches every vertex with
weight ∆. We prove this by contradiction. Suppose that there
exists a vertex i that has a weight of ∆ and is not matched by
M (but is matched by M∗). Consider the symmetric difference
M	M∗. A little thought gives a well-known fact that M	M∗
consists of connected components being one of the following:
1) an isolated vertex; 2) an even-length cycle whose edges
alternate between M and M∗; 3) a path whose edges alternate
between M and M∗, with distinct end nodes. Since vertex i
is not matched by M , it must be an end node of a path P in
M 	M∗, otherwise vertex i must be matched by both M and
M∗. Hence, we only need to consider scenario 3).

In scenario 3) there are two cases: i) path P has an odd-
length and ii) path P has an even-length.

In Case i), path P has an odd-length. Since P begins at
vertex i that is not matched by M and has an odd-length, it
must end at another vertex that is not matched by M either.
Thus, path P is an augmenting path, and hence M ⊕ P will
be a matching with a larger weight than that of M , which
contradicts the fact that M is an MVM.

In Case ii), path P has an even-length. Let vertex j be the
other end node of P . Clearly, path P begins at i with an edge
in M∗ and ends at j with an edge in M , and vertex j is not

matched by M∗. Thus, vertex j cannot have a weight of ∆,
because M∗ matches every vertex with a weight of ∆. Note
that i has a weight of ∆ and thus wi > wj . Then, path P is
an absorbing path, and thus M ⊕P will be a matching with a
weight larger than that of M , which contradicts the fact that
M is an MVM.

Combining both cases, we complete the proof.

APPENDIX B
PROOF OF PROPOSITION 1

Proof. First, note that the original graph G becomes a multi-
graph if we view each packet as a multi-edge. By slightly
abusing the notation, we still use G to denote the multigraph.
Also, note that multigraph G we consider is loopless, i.e.,
there does not exist a multi-edge connecting a vertex to itself,
because a node does not transmit packets to itself.

Now, consider any time-slot t ≥ 0. Suppose that the maxi-
mum degree of G is ∆ ≥ 2 in time-slot t. Let Mi denote the
matching found by the MVM algorithm in time-slots t+ i−1,
for i = 1, 2, 3, respectively. Let G′ , G −M1 −M2 −M3

denote the graph at the end of time-slot t+ 2. Then, we want
to show that the maximum degree of G′ is no greater than
∆−2. We use a “1” or “0” to indicate whether the maximum
degree decreases by one or not in a time-slot, respectively,
and use a sequence of “1”s and “0”s to indicate whether
the maximum degree decreases by one or not in a sequence
of consecutive time-slots starting from time-slot t. We then
consider the following two cases in time-slot t: i) “0” occurs
and ii) “1” occurs.

In Case i), suppose that “0” occurs in time-slot t, i.e., the
maximum degree does not decrease in time-slot t. We want to
show that it will be followed by “11” in time-slots t+ 1 and
t+ 2 under the MVM algorithm.

Note that any MVM must be a maximal matching when all
the nodes have a positive weight; otherwise, one can obtain
another matching with a larger weight by adding more edges to
make it maximal. Since M1 is an MVM, and is thus a maximal
matching, the vertices of degree ∆ in G−M1 must form an
independent set. We prove it by contradiction. Suppose that
there exist two adjacent vertices, say i and j, with degree ∆
in G −M1. Then, none of the edges touching either i or j
was in matching M1 in time-slot t. This implies that the edge
between i and j can be added to matching M1 in time-slot
t, which, however, contradicts the fact that M1 is a maximal
matching. Therefore, the vertices of degree ∆ in G − M1

must form an independent set. Clearly, the subgraph induced
by these vertices is a bipartite graph. Then, by Lemma 1, there
exists a matching that matches all the vertices with degree ∆
in G−M1 in time-slot t+ 1. Note that M2 is an MVM over
G −M1. Then, by Lemma 2, matching M2 also matches all
the vertices with degree ∆ in G−M1. This means that a “1”
occurs in time-slot t+ 1.

Now, let H , G − M1 − M2 denote the graph at the
beginning of time-slot t+2. From the above analysis, we know
that the maximum degree of H is ∆−1. Let H∆−1 denote the
subgraph of H induced by all the vertices having degree ∆−1



in H . If H∆−1 is a bipartite graph, then again by Lemmas 1
and 2, following the same argument above, we can show that
matching M3 matches all the vertices with degree ∆ − 1 in
time-slot t+ 2. Therefore, it remains to show that H∆−1 is a
bipartite graph. We prove this by contradiction. Suppose that
H∆−1 contains an odd cycle, say C. Then, no two adjacent
vertices of C were matched by M2 in time-slot t+ 1. This is
true due to the following. Suppose that there exist two adjacent
vertices of C, say i and j, were matched by M2. Since i and j
both have a degree of ∆−1 in H , then they both have degree ∆
in G−M1. This contradicts what we have shown earlier - the
vertices of degree ∆ in G−M1 form an independent set, given
that i and j are adjacent. Therefore, no two adjacent vertices
of C were matched by M2 in time-slot t+1. This, along with
the fact that cycle C is of odd size, implies that cycle C must
contain two adjacent vertices that were not matched by M2 in
time-slot t+1. This further implies that the edge between these
two adjacent vertices can be added to M2, which contradicts
the fact that M2 is a maximal matching. Therefore, H∆−1 is
a bipartite graph.

So far, we have shown that if “0” occurs in time-slot t, it
will be followed by “11” in time-slots t+ 1 and t+ 2.

In Case ii), suppose that “1” occurs in time-slot t, i.e., the
maximum degree indeed decreases by one in time-slot t. If
another “1” occurs in time-slot t+ 1, then we are done. Now,
suppose that “0” occurs in time-slot t + 1. Then, following
the same argument as in Case i), we can show that a “1” will
occur in time-slot t+ 2.

Combining both cases, we complete the proof.

APPENDIX C
PROOF OF COROLLARY 1

Proof. We consider the following two cases: i) X ′ = ∆
and ii) X ′ ≥ ∆ + 1. In Case i), it implies that in each
time-slot, including the very first time-slot, there exists a
matching that matches all the vertices with a maximum degree.
Hence, by Lemma 2, the MVM algorithm also matches all
the vertices with a maximum degree in the first time-slot.
Therefore, by applying Theorem 1 to the remaining graph,
we have TMVM ≤ 1 + 3

2 (X ′ − 1) = 3
2X
′ − 1

2 . In Case ii), it
follows from Proposition 1 that TMVM ≤ 3

2∆ ≤ 3
2 (X ′ − 1).

Combining the two cases, we complete the proof.

ACKNOWLEDGMENT

This work was supported in part by the NSF under Grants
CNS-1449860, CNS-1065444, and ECCS-1231461. The au-
thors would like to thank the reviewers for their valuable
comments and suggestions. The first author also thanks Prof.
Richard Beigel at Temple University for helpful discussions
on this work.

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936–1948, 1992.

[2] X. Lin, N. Shroff, and R. Srikant, “A tutorial on cross-layer optimization
in wireless networks,” IEEE Journal on Selected Areas in Communica-
tions, vol. 24, no. 8, pp. 1452–1463, Aug. 2006.

[3] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Foundations and Trends in
Networking, vol. 1, no. 1, pp. 1–144, 2006.

[4] L. Tassiulas and A. Ephremides, “Dynamic scheduling for minimum
delay in tandem and parallel constrained queueing models,” Annals of
Operations Research, vol. 48, no. 4, pp. 333–355, 1994.

[5] G. R. Gupta, “Delay efficient control policies for wireless networks,”
Ph.D. thesis, Purdue University, 2009.

[6] B. Hajek and G. Sasaki, “Link scheduling in polynomial time,” IEEE
Transactions on Information Theory, vol. 34, no. 5, pp. 910–917, 1988.

[7] G. Sharma, R. Mazumdar, and N. Shroff, “On the complexity of
scheduling in wireless networks,” in Proceedings of the 12th annual
international conference on Mobile computing and networking. ACM
New York, NY, USA, 2006, pp. 227–238.

[8] I. Holyer, “The NP-completeness of edge-colouring,” Siam J. Comput,
vol. 10, no. 4, pp. 718–720, 1981.

[9] P. Sanders and D. Steurer, “An asymptotic approximation scheme for
multigraph edge coloring,” ACM Transactions on Algorithms, vol. 4,
no. 2, pp. 1–24, 2008.

[10] G. R. Gupta, S. Sanghavi, and N. B. Shroff, “Node weighted schedul-
ing,” in The 11th ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS). ACM, 2009, pp. 97–
108.

[11] B. Ji, “Design of Efficient Resource Allocation Algorithms for Wireless
Networks: High Throughput, Small Delay, and Low Complexity,” Ph.D.
thesis, The Ohio State University, 2012.

[12] A. Stolyar, “Maxweight scheduling in a generalized switch: State space
collapse and workload minimization in heavy traffic,” Annals of Applied
Probability, vol. 14, no. 1, pp. 1–53, 2004.

[13] D. Shah and D. Wischik, “Optimal scheduling algorithms for input-
queued switches,” in The 25th IEEE International Conference on Com-
puter Communications (INFOCOM), 2006.

[14] X. Lin and N. Shroff, “The impact of imperfect scheduling on cross-
Layer congestion control in wireless networks,” IEEE/ACM Transactions
on Networking, vol. 14, no. 2, pp. 302–315, 2006.

[15] C. Joo, X. Lin, and N. Shroff, “Greedy Maximal Matching: Performance
Limits for Arbitrary Network Graphs Under the Node-exclusive Interfer-
ence Model,” IEEE Transactions on Automatic Control, vol. 54, no. 12,
pp. 2734–2744, 2009.

[16] A. Mekkittikul and N. McKeown, “A practical scheduling algorithm to
achieve 100% throughput in input-queued switches,” in The 17th IEEE
International Conference on Computer Communications (INFOCOM),
1998, pp. 792–799.

[17] V. Tabatabaee and L. Tassiulas, “MNCM: a critical node matching
approach to scheduling for input buffered switches with no speedup,”
IEEE/ACM Transactions on Networking, vol. 17, no. 1, pp. 294–304,
2009.

[18] C. Shannon, “A theorem on coloring the lines of a network,” J. Math.
Phys, vol. 28, pp. 148–151, 1949.

[19] T. H. Spencer and E. W. Mayr, “Node weighted matching,” in Automata,
Languages and Programming. Springer, 1984, pp. 454–464.

[20] R. P. Anstee and J. R. Griggs, “An application of matching theory of
edge-colourings,” Discrete Mathematics, vol. 156, no. 1, pp. 253–256,
1996.

[21] C.-C. Huang and T. Kavitha, “Efficient algorithms for maximum weight
matchings in general graphs with small edge weights,” in Proceedings
of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algo-
rithms. SIAM, 2012, pp. 1400–1412.

[22] S. Pettie, “A simple reduction from maximum weight matching to
maximum cardinality matching,” Information Processing Letters, vol.
112, no. 23, pp. 893–898, 2012.

[23] D. Hochbaum, T. Nishizeki, and D. Shmoys, “A better than ‘best
possible’ algorithm to edge color multigraphs,” Journal of Algorithms,
vol. 7, no. 1, pp. 79–104, 1986.


