Embedding of Binomial Trees in Hypercubes with Link Faults

Jie Wu, Eduardo B. Fernandez, and Yingqiu Luo
Department of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL 33431

Abstract

We study the embedding of binomial trees with vari-
able roots in n-dimensional hypercubes (n-cubes) with
faulty links. A simple embedding algorithm is first pro-
posed that can embed an n-level binomial tree in an
n-cube with up to n—1 faulty links in log(n—1) steps.
We then extend the result to show that spanning bi-
nomial trees exist in a connected n-cube with up to
[§@2;12] — 1 faulty links. Our results reveal the fault
tolerance property of hypercubes and they can be used
to predict the performance of broadcasting and reduc-
tion operations, where the binomial tree structure is
commonly used.

1 Introduction

The binomial tree [5] is one of the most frequently
used spanning tree structures for parallel applications
in various systems, especially in hypercube systems.
Lo et al. [4] have identified the binomial tree as an
ideal computation structure for parallel divide-and-
conquer algorithms. Hsu [3] showed the use of the
binomial tree in prefix computation. The binomial
tree structure also has been widely used in perform-
ing data accumulation (also called reduction) and data
broadcasting.

As the number of processors in a computer system
increases, the probability of processor failure also in-
creases. In a spanning binomial tree of a hypercube, if
any link used to connect two nodes becomes faulty, the
tree will be disconnected. This might jeopardize appli-
cations that use this tree. The challenge is to identify
a spanning binomial tree that connects all the nodes
in the system using only healthy links.

The above problem resembles an embedding prob-
lem that deals with mapping a host graph (the bino-
mial tree) into a target graph (the hypercube). There
are two types of embedding problems [2]: specified root
embedding and variable root embedding . In the spec-
ified root embedding problem the root of the binomial
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tree must be mapped to a specified node in the hyper-
cube, while in the variable root embedding problem
the root of the binomial tree can be mapped to any
node in the hypercube.

Algorithms for embedding binary trees into healthy
hypercubes have been developed by Wu [6] and Bhatt
and Ipson [1]. Clearly, algorithms for embedding bi-
nomial trees into a specified root of hypercubes with
faulty links might not exist even when there is only
one faulty link. This is because any faulty links that
are adjacent to the root node will destroy all the pos-
sible binomial trees originated from that root node.
Among variable root embedding algorithms, Chan [2]
studied embedding binary trees into hypercubes with
faulty nodes, but relatively little work has been done
on embedding of binomial trees in faulty hypercubes.
Wu [7] proposed an embedding of incomplete spanning
binomial trees into hypercubes with faulty nodes.

In this paper, we focus on finding spanning bino-
mial trees in faulty hypercubes with faulty links only.
First, a simple embedding algorithm is given that can
tolerate n — 1 faulty links in an n-cube. We then
determine a lower bound on the degree of fault tol-
erance in hypercubes with faulty links. The bound

is fgnz—"ll] — 1 in a connected n-cube. We also pro-
vide a embedding scheme based on two simple con-
struction schemes, ezlending scheme and connecting
scheme (proposed in this paper), to identify spanning
binomial trees in the given n-cube. Due to the space
limitation, all the proofs of the theorems are omitted,
they can be found in [8].

2 Preliminaries

The n-dimensional hypercube (n-cube), @, is
a graph having 2" nodes labeled from 0 to 2" —
1. Two nodes are joined by an edge if their ad-
dresses, as binary integers, differ in exactly one bit.
More specifically, every node a has a bit sequence
Unln_1---a4---a1 and aq is called the d-th bit (also
called the d-th dimension) of the address. Let node
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Figure 1: A Q4 with three faulty links

a? be the neighbor of node a along dimension d. Ev-
ery m-dimensional subcube @Q,, (m-subcube, or sim-
ply m-cube) has a unique address gngn—1---qa---¢1
with ¢4 € {0,1 %}, where exactly m bits take the value
*, a don’t~care symbol representing either 0 or 1. For
example, 10 * * denotes a 2-cube with four nodes:
1000,1001,1011,1010. Sequence anan—q-:-ag+1 ~
a4y -+ a1 represents a dimension d link connecting
two nodes that differ in the d-th bit. Figure 1 shows
a (J4 with three faulty links —000, 0 — 10, and 111—.

A partition of @, along the d-th dimension gener-
ates two (n — 1)-cubes, denoted by di_)l and Q;(f)l.
In our later discussion, we will omit d in both cubes if
it does not cause confusion.

The spanning binomial tree is a special spanning
tree in a hypercube. A 0O-level binomial tree (Bg) has
one node. An n-level (B,,) is constructed out of two
(n = 1)-level binomial trees by adding one edge be-
tween the roots of the two trees and by making ei-
ther root the new root. A B,, can also be constructed
from Bp-1,Bp-2,...,B1,By by using a node s (the
root node) to connect the root nodes of these trees.
To embed a spanning binomial tree in an n-cube, each
B; should be a spanning binomial tree of an i-cube.
More specifically, B, .1, Bn_», ..., By, Bo are spanning
binomial trees in subcubes Q;_l, Q;_z, - Q1’ Q;,, re-
spectively, where these subcubes constitute a partition
of Qn (excluding the root node s). The above parti-
tion can be generated using the following procedure:
Q», is split into two (n—1)-cubes, @n-1(s € Qn-1) and
Q._(s ¢ Q.,_,), along the d;-th dimension. Qn_;
is further divided into two (n — 2)—cubes along the
do-th dimension. This process continues until Q; is
divided into two 0—cubes, Q:) and (g = s, along the
d,-th dimension. The dimension sequence did,...d,
that determines the partition is called the splitting se-
quence (ss) associated with the node s performing the
partition. The above process is also called a splitting
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process. The set {Q;_l,Q;wz,...,Qé,Qo = s} is a
partition of @,,. The splitting sequence is also called
coordinate sequence (cs) which determines a spanning
binomial tree. Each node in the cube has its own coor-
dinate sequence (which can be the same ¢s). The co-
ordinate sequence at a node with respect to a specific
root node is a subsequence of the associated e¢s and
this subsequence includes only the dimensions of the
largest subcube Q;l_i in which the node is a root node
of the spanning binomial tree of Q,,_,. Basically, the
coordinate sequence decides how the subcube should
be partitioned. In Figure 1, each node has the same
¢s = 3412, the coordinate sequence of each node with
respect to the root node 0001 is listed under the node
address.

There are two basic constructing schemes for a bi-
nomial tree. The extending scheme is normally used if
there is a fault-free dimension, otherwise the connect-
ing scheme is applied.

e Extending Scheme: If @, can be divided into
two (n — 1)-cubes @,-1 and @, _; along a fault-
free dimension d, we can construct an (n—1)-level
binomial tree B, _; in one of these two subcubes,
say Qn-1. By extending along dimension d, we
can construct an n-level binomial tree B, from
B, _.;. The root node remains unchanged and all
the leaf nodes in B,,_, are connected to the corre-
sponding nodes in Q;;—r That is, each connection
is a link along dimension d. '

Connecting Scheme: Suppose (), is divided
into two (n — 1)-cubes Q,_; and @,,_,. with two
(n — 1)-level binomial trees B,_, and B,_, in
Q-1 and Q;_l, respectively, and their roots are
connected by a healthy link in dimension d (this
dimension may or may not be fault-free). We
can construct an n-level binomial tree B, by ran-
domly choosing one of two roots as the new root
of B, and connecting roots of B,,_; and B, _, by
that healthy link in dimension d.

Note that in the extending scheme, ¢s is the reverse
of the splitting sequence, while the splitting sequence
derived by recursively applying the connecting scheme
is cs. Figure 1 shows a spanning binomial tree with
root node 0001. This spanning tree can be interpreted
in different ways: (1) It is constructed using the ex-
tending scheme by expanding a spanning binomial tree
in * % 0% (with root 0001) to include # * 1*. (2) The
tree is generated by combining two spanning binomial
trees in #0 * % (with root 0001) and *1 * % (with root
0101) through the connecting scheme, i.e., by connect-

ing roots 0001 and 0101 with 0001 being the new root.



3 Embedding in n-cubes with up to n—
1 Faulty Links

In an n-cube only 27 —1 out of n-2" ! links are used
for embedding an n-level binomial tree. This provides
many ways of selecting a spanning binomial tree in
n-cubes even in the presence of faulty links.

Theorem 1: An n-level binomial tree can be em-
bedded using at most log(n — 1) subcube splits in an
n-cube Q, in the presence of up to n — 1 faulty links.

The extending scheme can be used to construct a
spanning binomial tree in an n-cube with up ton — 1
faults. The coordinate sequence of a potential root
node a will be a randomly-selected splitting sequence
of one of the fault-free subcubes that contains node
a concatenating the reverse of a splitting sequence,
where the splitting sequence defines the order of di-
mensions along which the n-cube is split into small
cubes until the subcube that contains node «a 1s fault-
free.

procedure BT(fx, Qx,rss) return (a root and its cs)
/* fr is the set of faulty links in Q& */
/* rss is the reverse of a ss before reaching Qr */
if Q; is fault-free then
{ randomly choose a node in Qy as the root;
select ss as a permutation of dimensions in Qx;
cs 1= ss || rss [/* cs at the root node */ }
else
{ Qr = Qi_1 + Q)_, along a fault-free dimension d;
fr = fr—1+ fi_q, where fi_1 € Qi—1, fi1 € Qi1;
rss = d || rss; /* insert d to the front of rss */
if | fe-1] < |fezal
then BT(fk..l, Qk..], TSS)
else BT(fi_;,Qk_1,75s) }

The root and its ¢s for a binomial tree can be lo-
cated by a call BT(f,Qn,¢), where f is the fault set
in the target cube @, and ¢ is the empty set. Note
that BT generates only one root node and a global cs
(in the sense that each node in the cube has the same
es). The BT algorithm can be easily extended to a
general one, where each node in a fault-free @)}, can be
a root node and selects different splitting sequences of
dimensions in @, and then the reverse splitting se-
quence is attached to obtain different ¢s’s for different
root nodes. The time complexity of BT is ©(n)

We use the example in Figure 1 to explain how the
BT algorithm works. As dimension 2 is fault-free, we
split Q4 into * * 0% and * * 1%, and each node will
carry a reverse splitting sequence 2. Because * x 0x
contains fewer faults than * * 1%, the BT algorithm
chooses # * 0 for further splitting. Both dimensions
1 and 3 are fault free in * * 0x and we assume that
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dimension 1 is chosen. Thus * % 0* is split into * * 00
and *x01. The reverse splitting sequence of each node
in * * 0% Is updated into 12. As x %01 is fault-free, we
can randomly choose a node, say 0001, to be the root
node and construct a 2-level binomial tree in * x 01
by randomly choosing splitting sequence 34. We then
extend it into a 4-level binomial tree by combining the
splitting sequence and the reverse splitting sequence
into a coordinate sequence 3412 = 34]]12.

4 Embedding in Connected n-cubes
with up to fi(-”—z“—ll] — 1 Faulty Links

When the number of faulty links is more than n,
a spanning binomial tree may not exist if there is an
isolated node. Even for a connected n-cube, if a split-
ting dimension is not carefully selected, the subcubes
can be disconnected. Therefore it is rather complex
to construct an n-level binomial tree in a connected
n-cube when the faulty links are more than n. The
following results show that by carefully choosing root
nodes and the coordinate sequence at each node, we
can still find spanning binomial trees in n-cubes in the
presence of up to [g%"—ll] — 1 faulty links.

Theorem 2: Given n > 4 and 6 = |f| —n > 0,
there exist at least 27~ — 2541 _ 2% nodes that can
be chosen as the root of an n-level binomial iree in a
connected n-cube @, with |f| link faults, where n <
|1 < TP,

Theorem 3: Given n > 4, there exist n-level bino-
mial trees in a connected n-cube @, in the presence of
up to I’-‘X%_—ll] — 1 faulty links.

In order to obtain the correct coordinate sequence
for each node (instead of one global ¢s as in BT), we
consider separately the splittings along fault-free di-
mensions and the ones along faulty dimensions. In
BT1 we use ssp to record the splitting on fault-free
dimensions and ss; to record the splitting on faulty
dimensions. In ssp, a new splitting dimension is in-
serted as the first element of the sequence, while in
ssy it is appended as the last element of the sequence.
The final splitting sequence cs is obtained by concate-
nating ssy and ssp, i.e., cs = ssy||ssp.

procedure BT1(fx, Qk, ss¢’s and ssp’s in Qx)
return(rootg, )
/* fis the set of faulty links in Qx */
/* ssn’s and ssf’s are ss’s before partitioning Qx */
if | fi| < 2521 then
{ if there exist fault-free dimensions then

{ @ = Qi—1 + Q)_, along fault-free dimension d;

frx = fre—1 4 fi_y, where fr—1 € Qr—1, fi_y € Qk_y;



ssp=d || ssn }
else
{ Qx = Qx—1 + Qj,_; along a dimension d’ such
that each subcube has at least one link fault
or dimension d has at least two link faults ;
assume fi_1 € Qr—1 and fi_; € Qk_;;
85y = ssy || d /* ssy is for each node except for
the ones with an adjacent faulty link along d ¥}
if Qi-y is fault-free then
{ rootg, = all the nodes in Qk—1;
ssp= a splitting sequence of Qi1 || ssp
/* nodes in @k may have different ssp’s
using different splitting sequences */ }
else
rootg,_, =BT1(fs—1, Qr-1, ssf’s and ssp’s In Qk—1);
if Q}_; is fault-free then
{ rootg, = all the nodes in Q}_;;
ssp= a splitting sequence of Q}_; || ssr}
else
rootg =BT1(fi_1, Qk_1, $57’s and ssp’s in Q%_;);
if there exist fault-free dimensions then
rootq, = rootg, _, U root%_1
else
rootg, = { a,b|(a,b) is a healthy link, where
a € rootg,_, and b € TOOtQ;c—l} }
=¢

else rootg,

The coordinate sequence cs of each root node is in-
cluded in the return messages rootg, through a call
BT1(f, Qn, ss;’s = ¢ and ss;’s = ¢). For fault-free
dimensions, we use the extending scheme to calculate
ssp and root nodes. For faulty dimensions, we use the
connecting scheme to calculate ssy and root nodes.
The time complexity of BT1 is ©(n®). Once a spe-
cific node is chosen as the root of the binomial tree,
we need to calculate coordinate sequences for all the
nodes with respect to this root node. The following
procedure CS (coordinate sequence calculation) pro-
duces a coordinate sequence of each node which is a
subsequence of the associated ¢s. At each node, it
basically deletes some dimensions from the associated
¢s which have already been used during the splitting
process.

Procedure CS(rx, Q) /* 7 is the root of @y */
ifk > 1 then
{ choose the first element d of cs associated with rx,
which has not been chosen; delete d from all ¢s’s
in Qy, except the one associated with ry;
split @ into Qx—_1 and @} _; along dimension d;
CS(rk, Qx-1);
CS(TIiQ;c—l) }
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5 Conclusion

We have determined a lower bound on the number
of link faults that can be tolerated to ensure the exis-
tenre of spanning binomial trees in a connected hyper-
cube. Qur bound is [QQ;—Q] ~— 1 faults in a connected
n-cube. Note that the actual bound can be higher.
However, with more faults included the probability
of generating a connected hypercube will be reduced,
making the assumption of the bound unrealistically
restrictive. Therefore, a better bound can be only of
theoretically interest. Two embedding schemes have
been proposed based on the number of faulty links in
the given n-cube.
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