
 1

Stream Input/Output
The header file <iostream> includes definitions for the classes*:
 ios // the base class

 streambuf // defines the buffer

 istream // input

 ostream // output

It also includes definitions of the following objects
 extern istream cin

 extern ostream cout

 extern ostream cerr;

* This is a functionally equivalent simplification.

 2

operator>>
The operator >> is defined within the class istream for the following types:
 char* /* strings signed and unsigned*/

 char& /* signed and unsigned */

 short& /* signed and unsigned */

 int& /* signed and unsigned */

 long&

 float&

 double&

 long double&

 istream& /* used for i/o manipulators */

The action performed by these operators is as follows:

1) Skip white space characters. (space, tab, newline)

2) Read characters that conform to the format of constants defined for the
type. (For char* read characters until the next white space character,
for char& read the next character.)

3) Convert the read string into the target type.

 3

operator<<
The operator << is defined within class ostream for the following types:
 char* /* signed and unsigned */

 char /* signed and unsigned */

 short /* signed and unsigned */

 int /* signed and unsigned */

 long

 float

 double

 long double

 ostream& /* used for i/o manipulators */

The action of these operators is as follows:

1) Convert the argument to a character string in accordance with the
format flags.

2) Output the result.

 4

Format Flags
The format flags are defined within the base class (ios) as follows:

Flag Name Meaning if set

left left-adjust output

right right-adjust output

internal padding after sign or base indicator

showbase use base indicator on output

showpoint force decimal point and trailing zeros (floating output)

uppercase upper-case hex or scientific output

scientific use 1.2345E2 floating notation

fixed use 123.45 floating notation

 5

I/O Manipulators
The I/O manipulators are defined in header file iomanip.h. They provide an
eligant way to set the format flags. The following manipulators are defined:

Manipulator Argument Effect

dec Output integers in base 10

hex Output integers in base 16

oct Output integers in base 8

resetiosflags long Turns off the flag bits corresponding to those
set in the argument

setiosflags long Turns on the flag bits corresponding to those
set in the argument

setfill int Sets the fill character to the argument. The
defalult is the space character.

 6

Manipulator Argument Effect

setprecision int Sets the precision to the argument. The
default is 6.

setw int Sets the width to the argument. Only affects
the next output value, after which the width
returns to the default of 0.

ws Eat white space

endl Write a new-line character and flush the
buffer

left Place the fill character after the value to pad
up to the width.

right Place the fill character before the value to
pad up to the width.

 7

Manipulator Argument Effect

internal Place the fill character between the sign and
the value.

fixed Output float values as xxx.xxx. Default is
general.

scientific Output float values as x.xxxxxenn. Default is
general.

showpoint For float values, always output the decimal
point and trailing zeros (as defined by the
precision).

Note: some of these manipulators are defined in the standard, but not
available in some compilers. Use of setiosflags and resetiosflags is a
possible workaround.

 8

Example
// FILE: PrntDemo.cpp
// A DEMONSTRATION OF FORMATTED OUTPUT USING MANIPULATORS
#include <iostream>
#include <iomanip>

int main ()
{
 using namespace std;
 int value = 0x68BF;
 short short_value = -1;
 long long_value = 123456789L;
 float x = -78.4569;
 double pi = 3.1415926536;
 cout << "Plain decimal integer value: " << value << '\n';
 cout << "Decimal integer value with forced sign: "
 << setiosflags(ios::showpos) << value
 << resetiosflags(ios::showpos) << '\n';
 cout << "Decimal integer -- right justification: "
 << setiosflags(ios::right) << setw(10) << value
 << resetiosflags(ios::right) << '\n';
 cout << "Decimal integer -- zero fill on left: "
 << setfill('0') << setw(10) << value
 << setfill(' ') << '\n';
 cout << "Decimal integer -- left justification: "
 << setiosflags(ios::left) << setw(10) << value
 << resetiosflags(ios::left) << '\n';
 cout << "Hexadecimal with no preface: " << hex << value << '\n';
 cout << "Hexadecimal with preface: "
 << setiosflags(ios::showbase) << value << '\n';

 9

 cout << "Uppercase hexadecimal with preface: "
 << setiosflags(ios::uppercase) << value
 << resetiosflags(ios::uppercase) << '\n';
 cout << "Octal (base 8) with preface and field width of 6: "
 << oct << setw(6) << value
 << resetiosflags(ios::showbase) << dec << '\n';
 cout << "Unsigned short decimal integer: "
 << (unsigned)short_value << '\n';
 cout << "Signed long decimal integer: "
 << setiosflags(ios::showpos) << long_value
 << resetiosflags(ios::showpos) << '\n';
 cout << "Floating point, width 10, one place precision: "
 << setiosflags(ios::fixed | ios::showpoint)
 << setprecision(1) << setw(10) << x << '\n';
 cout << "Floating point scientific notation: "
 << resetiosflags(ios::fixed) << setiosflags(ios::scientific)
 << setprecision(0) << pi << '\n';
 cout << "Floating point, precision 10: "
 << resetiosflags(ios::scientific) << setiosflags(ios::fixed)
 << setprecision(10) << pi << '\n';
 return 0;
}

 10

Plain decimal integer value: 26815
Decimal integer value with forced sign: +26815
Decimal integer -- right justification: 26815
Decimal integer -- zero fill on left: 0000026815
Decimal integer -- left justification: 26815
Hexadecimal with no preface: 68bf
Hexadecimal with preface: 0x68bf
Uppercase hexadecimal with preface: 0X68BF
Octal (base 8) with preface and field width of 6: 064277
Unsigned short decimal integer: 4294967295
Signed long decimal integer: +123456789
Floating point, width 10, one place precision: -78.5
Floating point scientific notation: 3.141593e+000
Floating point, precision 10: 3.1415926536

 11

Other members of istream
get(); Extracts a single character and returns it
get(char * pch, int
nCount, char delim =
'\n');

Extracts characters from stream until delim
is found, the limit nCount is reached, or the
end of file is reached. The characters are
stored in the array pch followed by a null
terminator. If delim is found it is neither
extracted nor stored. Note: pch must point to
an array that has space for at least nCount
characters.

get(char& rch); Extracts a single character from the stream
and stores it in rch.

getline(char *pch, int
nCount, char delim =
'\n');

Extracts characters from stream until either
delim is found, the limit nCount-1 is
reached, or the end of file is reached. The
characters are stored in the array pch
followed by a null terminator. If delim is
found, it is extracted, but not stored. Note:
pch must point to an array that has space for
at least nCount characters..

 12

ignore(int nCount=1,
int delim = EOF);

Extracts and discards up to nCount
characters. Extraction stops if delim is
extracted or if the end of file is reached.

int peek(); Returns the next character without
extracting. Returns EOF if at end of file or if
an error is detected.

putback(char ch); The character ch is put back; must be the
character previously extracted. May only be
called once after a character is extracted.

read(char *pch, int
nCount);

Extracts bytes from the stream unit limit
nCount is reached or until end of file. Used
for binary streams. Note: pch must point to
an array that has space for at least nCount
characters.

eof() Returns true if the last read operation failed
because no more data is available.

operator void*()

bool operator!()

An istream object may be used as a Boolean
expression. Result is true if the stream is in
the good state.

 13

Other members of ostream
flush(); Flushes the output buffer.
put(char ch); Inserts the single characher ch into the

output stream.
write(const char* pch,
int nCount);

Inserts the specified number of bytes from the
array pch into the output stream. If in text
mode '\n' (a single character) may be
converted to ‹cr›‹lf› (two characters). This is
operating system dependent.

operator void*()

bool operator!()

An ostream may be used in a Boolean
expression. Result is true if the stream is in
the good state.

 14

ifstream
The class ifstream (input file stream) is defined in the header file
<fstream>. It provides the definition of an istream that is associated with
an external file.
ifstream(); Constructs an ifstream object without

opening a file.
ifstream(const char*
szName, int nMode =
ios::in);

Constructs an ifstream object, opening the file
given in the character array szName. The
default mode is input. The possible additional
mode flags are:

ios::binary opens file in binary mode
(default is text)

bool is_open(); Returns true if the file is open.
open(const char*
szName, int nMode =
ios::in, int nProt =
filebuf::openprot)

Opens a file. Same arguments as if the file
name was specified in the constructor.

int setmode(int nMode
= filebuf::text);

Returns the previous mode and sets the mode
to nMode. Must be used only on open files.

close(); Closes the ifstream.

 15

ofstream
The class ofstream (output file stream) is defined in the header file
<fstream>. It provides the definition of an ostream that is associated with
an external file.

Same member functions as ifstream. More options for nMode as follows:
ios::app Seek to the end of file. New bytes are

appended to the end, even if the position is
moved with ostream::seekp.

ios::ate Seek to the end of file. The first byte is
appended. Subsequent bytes are written to
the current position, which may be changed
using ostream::seekp.

ios::in Stream is used for both input and output.
ios::out Default if ofstream.
ios::trunc If the file already exists, its contents are

discarded. This is the default for ios::out,
unless ios::in, ios::app, or ios::ate are
specified.

ios::binary Opens the file in binary mod (default is text).

 16

Detecting errors and eof
There are three flags to indicate the error state:

Flag Meaning
badbit Indicates a loss of integrity in an input or output sequence

(such as an irrecoverable read error from a file).
eofbit Indicates that an input operation reached the end of an

input sequence. Only set after an input has been
attempted. Reading the last value does not set this bit.

failbit Indicates that an input operation failed to read the
expected characters, or that an output operation failed to
generate the desired characters. Generally indicates that
the input data does not match the expected format.

operator void*() will return a non-zero value if none of these flags is set.

bool operator!() will return true if any of these flags is set.

 17

Detecting eof or error
If an input fails, the resulting value is undefined, and the stream is frozen.
Thus subsequent inputs will also fail – leading to an infinite loop.

Therefore, one should always check to see if an input succeeded.

Examples:
while (in >> x) {

// do something with x

// loop will terminate at eof, or if there is an error
}

while (true) {

 if (!(in >> x)) break;

 // do something with x
}

 18

Case Study: Preparing a Payroll File
Problem Statement:
Write a program to read a data file consisting of employee salary data. The
input consists of a series of input lines containing the employee’s first name,
last name, hours worked, and hourly rate. An example is as follows:
Jim Baxter 35.5 7.25
Adrian Cybriwsky 40.0 6.50
Ayisha Mertens 20.0 8.00

Output shall consist of the employee’s name on one line followed the
employee’s gross salary on a separate line. Example corresponding to the
previous input is as follows:
Jim Baxter
$257.38
Adrian Cybriwsky
$260.00
Ayisha Mertens
$160.00

When processing of all employees is completed, the total payroll amount
should be displayed.

 19

// File: Payroll.cpp.
// Writes each employee's name and gross salary to an
// output file and computes total payroll amount.

// INCLUDE FILES...
#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
using std::cerr;
using std::string;
using std::istream;
using std::ostream;
using std::ifstream;
using std::ofstream;

int main(int argc, char* argv[])
{
 // FUNCTIONS USED...
 // PROCESS ALL EMPLOYEES AND COMPUTE TOTAL
 float process_emp
 (istream&, // IN: employee file
 ostream&); // OUT: payroll file

 // LOCAL DATA...
 ifstream ins; // input: input employee data file
 ofstream outs; // output: output employee data file
 float payroll; // output: total payroll

 // Check for proper number of arguments
 if (argc != 3) {

 20

 cerr << "Usage payroll employee_file payroll_file\n";
 return 1;
 }

 // Prepare in_emp and out_emp files.
 ins.open(argv[1]);
 if (!ins) {
 cerr << "Cannot open " << argv[1] << " for input.\n";
 return 1;
 }
 outs.open(argv[2]);
 if (!outs) {
 cerr << "Cannot open " << argv[2] << " for output.\n";
 ins.close();
 return 1;
 }

 // Process all employees and compute payroll title.
 payroll = process_emp (ins, outs);

 // Display result.
 std::cout << "Total payroll is " << payroll << std::endl;

 // Close files.
 ins.close();
 outs.close();

 return 0; //Normal return from main
}

// PROCESS ALL EMPLOYEES AND COMPUTE TOTAL

 21

float process_emp (
 istream& ins, // IN: employee file
 ostream& outs) // OUT: payroll file
 // PRE : inp and out_data are prepared for input/output.
 // POST: All employee data are copies from inp to out_data
 // and the sum of their salaries is returned.
{

 // LOCAL VARIABLES
 string first_name; // input: employee first name
 string last_name; // input: empolyee last name
 float hours; // input: hours worked.
 float rate; // input: hourly rate.
 float salary; // output: gross salary.
 float payroll = 0.0; // return value - total company payroll

 // Set format flags for output
 outs << std::fixed << std::showpoint << std::setprecision(2);

 // Read and process each employee's record
 while (ins >> first_name >> last_name >> hours >> rate) {
 salary = hours * rate;
 outs << first_name << " " << last_name << '\n';
 outs << salary << '\n';
 payroll += salary;
 } // end while

 return payroll;

} // end process_emp

 22

Total payroll is 677.375

Jim Baxter
257.38
Adrian Cybriwsky
260.00
Ayisha Mertens
160.00

 23

Revised Problem Statement
The input consists of the employee’s full name on one line followed by the
hours and rate on a separate line. Employee’s full name may include a middle
name or middle initials. Example of input:

Jim Andrew Baxter
35.5 7.25
Adrian Cybriwsky
40.0 6.50
Ayisha W. Mertens
20.0 8.00

 24

Limitation on operator>>
istream& istream::operator>>(string&);
Is defined as follows:

1. Skip leading white space characters.

2. Extract characters until a white space character is encountered.

3. Place the extracted characters in the rhs argument.

Thus the statement:

ins >> first_name >> last_name;
when applied to the input line

Jim Andrew Baxter
will result in
first_name : Jim

last_name : Andrew

and leave the input stream ready to read Baxter. When the statement
ins >> hours >> rate;

is executed the value of hours and rate will be left undefined and the input
stream will be frozen in an error state.

 25

If the statement:

ins >> first_name >> middle_name >> last_name;
when applied to the input line

Jim Andrew Baxter
will result in
first_name : Jim

middle_name : Andrew

last_name : Baxter

and leave the input stream ready to read the hours and rate. When the
statement
ins >> hours >> rate;

is executed the value of hours and rate will be read correctly.

 26

However, if the statement

Thus the statement:

ins >> first_name >> middle_name >> last_name;
when applied to the input lines

Adryian Cybriwsky
40.0 6.50
will result in
first_name : Adryian

middle_name : Cybriwsky

last_name : 40.0

and leave the input stream ready to read the hours. When the statement
ins >> hours >> rate;

is executed the value of hours will get the value 6.5 and rate will be left
undefined and the input stream will be frozen in an error state.

 27

The function getline

The following function is defined in the <string> header file as a friend of the
string class:
void getline(istream& is, string& str, char delim = '\n');*

Which extracts characters from is and places them in str until delim is
encountered. The delimiter character delim is extracted but not placed in
str.

Thus,
getline(ins, full_name, '\n');

will read either
Jim Andrew Baxter

or
Adrian Cybriwsky

into full_name and leave ins ready to read the hours and rate.

* This function does not work for cin on Microsoft Visual C++ version 6.

 28

Need to Skip Leading White Space
The statement
ins >> hours >> rate;

Leaves ins ready to read the newline character that follows the rate.

Thus when the statement
getline(ins, full_name, '\n');

is next encountered, full_name will be set to blank and the input stream
will now be ready to read the next name. However, the program will attempt
to read the name into hours and rate resulting in the input being frozen in
an error state.

The statement
ins >> ws;

will skip white space and leave the input stream ready to read the next non-
white space character.

 29

float vs. int
Note that the program produced the output:

Total payroll is 677.375

Jim Baxter
257.38
Adrian Cybriwsky
260.00
Ayisha Mertens
160.00

Jim Baxter worked 35.5 hours at the rate of $7.25 per hour. Thus, his total is
$257.375. When output, this is correctly rounded to 275.38, but the total is
output as 677.375. Had there been others with fractional cents, the total
would not be the sum, even if rouned.

To avoid this, the salaries should be computed in cents as long int, and then
converted back to float for output.

 30

Revised version of process_emp
// PROCESS ALL EMPLOYEES AND COMPUTE TOTAL
float process_emp (
 istream& ins, // IN: employee file
 ostream& outs) // OUT: payroll file

// PRE : ins and outs are prepared for input/output.
// POST: All employee data are copies from ins to outs
// and the sum of their salaries is returned.
{
 // LOCAL VARIABLES
 string name; // input: employee first name
 float hours; // input: hours worked.
 float rate; // input: hourly rate.
 long salary; // output: gross salary.
 long payroll = 0; // return value - total company payroll
 // Set format flags for output
 outs << std::fixed << std::showpoint << std::setprecision(2);
 // Process each employee's record
 while (true) {
 ins >> std::ws;
 std::getline(ins, name);
 if (!(ins >> hours >> rate)) break;
 salary = long(hours * rate * 100.0 + 0.5);
 outs << name << '\n';
 outs << salary/100.0 << '\n';
 payroll += salary;
 } // end while
 return payroll/100.0;
} // end process_emp

 31

Array Declaration
An array is a collection of objects having the same data type.

Form: element-type array-name [dimension]

Example:� char my_name [5]

Interpretation: The identifier array-name describes a collection of array
elements each of which may be used to store an object of type element-type.
The dimension, enclosed in brackets, [], specifies the number of elements
contained in the array. The dimension value must be a constant expression;
that is, it must be possible to compute the value of the expression at compile
time. This value must be an integer and must be greater than or equal to one.
There is one array element for each value between 0 and the value dimension
- 1, and all elements of an array are the same type, element-type, which may
be one of the fundamental C++ types or a user-defined type.

 32

Array Access
 ‹postfix expression› ::= ‹postfix expression›[‹expression›]

 In general ‹postfix expression› is either an array name or a pointer type,
and ‹expression› is an integer (or converted to an integer).

Form: name �subscript�

Example: x[3 * i - 2]

Interpretation: The subscript must be an expression with an integral value.
If the expression value is not in range between 0 and the dimension of x -1
(inclusive), a memory location outside the array will be referenced. If
referenced in an expression, the value is unpredictable. If referenced on the
left-hand-side of an assignment, some other variable, or even the program
code, may be modified unexpectedly.

 33

EXAMPLE
 float x[8]

declares an array x to contain 8 floating point numbers.

������x�

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

16.0 12.0 6.0 8.0 2.5 12.0 14.0 -54.5

first
element

second
element

third
element

 ... eighth
element

 34

Statement Explanation

cout << x[0]; Displays the value of x[0] or 16.0.

x[3] = 25.0; Stores the value 25.0 in x[3].

sum = x[0] + x[1]; Stores the sum of x[0] and x[1] or 28.0
in the variable sum.

sum = sum + x[2]; Adds x[2] to sum. The new sum is 34.0.

x[3] = x[3] + 1.0; Adds 1.0 to x[3]. The new x[3] is 26.0.

x[2] = x[0] + x[1]; Stores the sum of x[0] and x[1] in
x[2]. The new x[2] is 28.0.

������x�

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

16.0 12.0 28.0 26.0 2.5 12.0 14.0 -54.5

first
element

second
element

third
element

 ... eighth
element

 35

Statement Effect

cout << 3 << x[3]; Displays 3 and 26.0 (value of x[3]).

cout << i << x[i]; Displays 5 and 12.0 (value of x[5]).

cout << x[i] + 1; Displays 13.0 (value of 12.0 + 1).

cout << x[i] + i; Displays 17.0 (value of 12.0 + 5).

cout << x[i+1]; Displays 14.0 (value of x[6]).

cout << x[i+i]; Illegal attempt to display x[10].

cout << x[2*i]; Illegal attempt to display x[10].

cout << x[2*i-3]; Displays -54.5 (value of x[7]).

cout << x[floor(x[4])]; Displays 6.0 (value of x[2]).

x[i] = x[i+1]; Assigns 14.0 (value of x[6]) to x[5].

x[i-1] = x[i]; Assigns 14.0 (new value of x[5]) to
x[4].

x[i] - 1 = x[i-1]; Illegal assignment statement.

 36

// FILE: ShowDiff.cpp
// Computes the average value of an array of data and prints
// the difference between each value and the average.

#include <iostream>
#include <iomanip>
using namespace std;
const int max_items = 8;
float x[max_items]; //array of data
int i; //loop-control variable
float average, //average value of data
 sum; //sum of the data

int main()
{
 // Set output format for float.
 cout << setiosflags(ios::fixed | ios::showpoint);
 // Enter the data
 cout << "Enter " << max_items << " numbers: ";
 for (i = 0; i < max_items; i++)
 cin >> x[i];

 37

 // Compute the average value
 sum = 0.0; //initialize sum
 for (i = 0; i < max_items; i++)
 sum += x[i]; //add each element to sum
 average = sum / max_items; //get average value
 cout << "The average value is "
 << setprecision(1) << setw(3) << average << "\n\n";

 // Display the difference between each item and the average
 cout << "Table of differences between x[i] and the average.\n";
 cout << setw(4) << "i" << setw(8) << "x[i]" << setw(14)
 << "difference" << '\n';
 for (i = 0; i < max_items; i++)
 cout << setw(4) << i << setw(8) << x[i] << setw(14)
 << (x[i] - average) << '\n';
 return 0;
}

 38

Enter 8 numbers: 16.0 12.0 6.0 8.0 2.5 12.0 14.0 -54.5
The average value is 2.0

Table of differences between x[i] and the average.
 i x[i] difference
 0 16.0 14.0
 1 12.0 10.0
 2 6.0 4.0
 3 8.0 6.0
 4 2.5 0.5
 5 12.0 10.0
 6 14.0 12.0
 7 -54.5 -56.5

 39

Pointers
A pointer is an object that can be used to access another object. A pointer
provides indirect access rather than direct access.

Real life examples:

• If someone asks for directions, but you do not know the answer, you may
reply “Go to the gas station and ask them.”

• If someone asks for a phone number, but you do not know the answer, you
may reply “Let me look it up in the phone book.”

• A professor says “Do problem 1.1 in the textbook.” This is an indirect
address of the problem.

 40

Pointer Type Declaration

Form: ‹type› *‹variable›�

Example: float *px;

Interpretation: Pointer variable px is of a data type whose values may be
thought of as memory cell addresses. A data variable
whose address is stored in this variable must be type
‹type›.

Pointer-to Operator
Form: The prefix operator & will generate a pointer to its operand.

Example:

 float x = 5.8;
 float *px = &x;
results in the following:

 41

De-Referencing Operator
Form: The prefix operator * when applied to a pointer will evaluate to the
pointed-to object.

Example:

 cout << *px;
will result in the output 5.8.

 42

The value of a pointer
Pointers should be thought of as abstract objects. However, for ease of
understanding, one can think of them a containing the memory address of the
first addressable memory unit containing the object pointed to.

Example:

P tr x y

5 7

Variable
(object)

Address Contents

X 1000 5

Y 1004 7

� � �

Ptr 1200 1000

 43

References vs. Pointers
A reference is an alias (i.e., alternate name) for an object. Once it is declared,
it cannot be changed. Under some circumstances a reference is a constant
pointer what is automatically de-referenced. Under other circumstances, it is
merely a notation convenience and has no representation in your program.

A pointer is an object in its own right, and its value can be changed.

Example:

 float x = 5.8;
 float y = 7.9;
 float z = 3.5;
 float *px = &x; // px now points to x
 float &ry = y; // ry refers to y
 float *pz = &z; // pz now points to z
 pz = px; // pz now points to x
 ry = px; // ILLEGAL
 ry = x; // the value of y is now 5.8
 *px = z; // the value of x is now 3.5
 float* py = &y; // py points to y
 float* pry = &ry; // pry == py it does not point to ry

 44

The null pointer
There is a special pointer that points to nothing. This is called the null
pointer. The exact bit pattern is implementation defined.

The integer constant 0 when used as a pointer is converted to the null
pointer.

When used in a Boolean expression, the null pointer is converted to false
and all other pointers are converted to true.

The header file <cstdlib> contains the macro definition NULL that is
defined to be 0. However, its use is deprecated.

Examples:
px = 0; // px is the null pointer

if (px == 0) // test is true if px is null

if (px == NULL) // test is true if px is null

if (!px) // test is true if px is null

if (px != 0) // test is true if px is not null

if (px != NULL) // test is true if px is not null

if (px) // test is true if px is not null

 45

new operator

Form: new ‹type›

Example: new�float

Interpretation: Storage for a new data variable is allocated from a pool of
storage known as the heap, and the address of this data
variable is result of the operator. The internal
representation and size of the new data variable is de-
termined from the declaration of the type (or is known by
the compiler for built-in types). If storage is not available,
an exception is raised.

 46

new[] operator

Form: new ‹type›[‹size›]

Example: new�float[10]

Interpretation: Storage for a new data array is allocated from a pool of
storage known as the heap, and the address of the first
data variable is result of the operator. The internal
representation and size of the new data variable is de-
termined from the declaration of the type (or is known by
the compiler for built-in types). If storage is not available,
an exception is raised.

 47

The “Equivalence” of Arrays and Pointers

• The operator[] is defined for pointers in terms of operator* as follows:

a[i] ≡ *(a+i)

• Thus, the results of the new[] operator can be used as if it was an array.

 48

Limitations of arrays
• An array is of fixed size. You must specify the size of the array as a

constant when the program is compiled, and the size cannot be changed.

• There is no checking done during program execution that the index in an
array access is valid.

• An array cannot be copied using a simple assignment operation.

• Arrays are passed to functions as constant pointers to their first element.

 49

The vector class
C++ is an extensible language. Programmers can extend the language by
defining new types, called classes that behave almost the same as the built-in
types. There is an extensive library of classes defined in the standard. To
allow users to only get those portions of the library they want, individual
components are grouped and defined in various headers. The objects cin and
cout are defined in the iostream header as objects of the classes istream
and ostream respectively.

The standard library contains the header vector that defines the class
vector with all of the features of an array, but without the limitations.

 50

Vector vs. Array
Feature array vector

Capacity Fixed at
declaration

Grows as
necessary

Size Must be known
by the user

Provides current
size function
size()

Random access without bounds
checking

via operator[] via operator[]

Random access with bounds checking not available via function at()

Assignment via function
memcpy

via operator=.

Change the size Not Available. via function
resize().

 51

Changing size and capacity
The size of a container (such as an array or vector) represents the number of
objects stored in the container. The capacity of a container represents the
maximum value of size without a re-allocation. For the array, size equals
capacity and neither can be changed. For the vector, size can be changed and
the capacity grows automatically as required.

Operations that change size:

name.resize(new size); // The size of the vector name is changed to
// be the new size. If the old size was smaller,
// new elements of a default value are inserted
// at the end. If the old size was larger,
// elements are removed from the end.

The function size() returns the current size.

 52

Declaration of a vector
The following shows how a vector is declared:
#include <vector>

#using std::vector;

��

vector<type> v; // declare an empty vector

vector<type> v(initial size); // declare a vector of a given
// size, all values initialized
// to default.

vector<type> v(initial size, initial value);

 53

Inserting Data at the End of a Vector
The vector class has the member push_back(T v) that inserts the value v
at the end. It is equivalent to the following:
void vector<T>::push_back(T v) {

 resize(size()+1);

 operator[](size()) = v;

}

 54

Revised ShowDiff
// FILE: ShowDiff2.cpp
// Computes the average value of an array of data and prints
// the difference between each value and the average.

#include <iostream>
#include <iomanip>
#include <fstream>
#include <vector>
using namespace std;
const int max_items = 8;
vector<float> x; //array of data
int i; //loop-control variable
float average; //average value of data
float sum; //sum of the data

int main(int argc, char* argv[])
{
 if (argc < 2) {
 cerr << "Usage ShowDiff2 <input file>";
 return 1; // Error return from main
 }
 ifstream in(argv[1]); //declare and open input stream
 if (!in) {
 cerr << "Unable to open " << argv[1] << " for input.";
 return 1;
 }
 // Set output format for float.
 cout << setiosflags(ios::fixed | ios::showpoint);

 55

 // Enter the data
 float v;
 while (in >> v) {
 x.push_back(v);
 }
 // Compute the average value
 sum = 0.0; //initialize sum
 for (i = 0; i < x.size(); i++)
 sum += x[i]; //add each element to sum
 average = sum / x.size(); //get average value
 cout << "The average value is "
 << setprecision(1) << setw(3) << average << "\n\n";

 // Display the difference between each item and the average
 cout << "Table of differences between x[i] and the average.\n";
 cout << setw(4) << "i" << setw(8) << "x[i]" << setw(14)
 << "difference" << '\n';
 for (i = 0; i < x.size(); i++)
 cout << setw(4) << i << setw(8) << x[i] << setw(14)
 << (x[i] - average) << '\n';
 return 0;
}

 56

Strings
• An array of char is known as a string.

• A string’s capacity is the size of the array.

• A string’s length is the number meaningful characters.

• Immediately following the last meaningful character is the value zero.

• Like the arrays that they are, strings cannot be directly operated upon.

• As part of the C programming language, the library contains several
functions to operate upon strings:

 57

Function name Purpose
strcpy Copy one string to another. Note the destination

must have the capacity required. There is no run-
time check.

strcat Concatenate one string onto the end of another. Note
that the destination must have the capacity required.
There is no run-time check.

strcmp Compare two strings. Result returned is > 0 if the left
hand operand is > the right hand operand, < 0 if the
left hand operand is < the right hand operand, and
==0 if they are equal.

strlen Determine the length of a string. Note this is done by
counting the characters up to the zero.

 58

String Literals
The language grammar defines the following:

‹s-char› ::= ‹any member of the source character set except " \
or newline› | ‹escape sequence›

‹escape sequence› ::= \' | \" | \? | \\ | \a | \b | \f | \n |
\r | \t | \v | \‹up to 3 octal digits›
\x‹sequence of hexadecimal digits›

‹string literal› ::= "‹zero or more s-chars›"

In response to a string literal the compiler creates a zero-terminated array of characters.

 59

String Initialization
A string variable can be initialized as follows:

char name[capacity] = a string literal;

char name[] = a string literal;

If specified the capacity must be at least one larger than the length of the
string literal.

 60

Arrays of Strings
An array of strings is represented as an array of pointers as follows:
char* names[] = {"Tom", "Dick", "Harry"};

T o m \0 D i c k \0 H a r r y \0

 61

String Class
The string class, defined in the header <string> is similar to a
vector<char> except that additional operations have been defined for it.

Objects of the string class are declared as follows:
#include <string>

using std::string;

��

string name; // declare an empty string

string name(string literal);

string name = string literal;

 62

C String vs C++ String Class
Feature C String C++ String Class

Capacity Fixed at
declaration

Grows as
necessary

Size Indicated by
'\0' char at end.
Found by
strlen, which
counts the
characters.

Provides current
size function
size()

Random access without bounds
checking

via operator[] via operator[]

Random access with bounds checking not available via function at()

Assignment strcpy like any other
object via =

Comparison strcmp like any other
object via <, >, ...

Concatenation strcat operator+ and
+=

 63

The 12 Days of Christmas
// FILE: 12days.cpp
#include <iostream>
#include <string>
using std::string;
void sing_song(std::ostream& voice) {
string day[] = {"first", "second", "third", "fourth",
 "fifth", "sixth", "seventh", "eighth",
 "ninth", "tenth", "eleventh", "twelfth" };
 for (int i = 0; i < 12; i++) {
 voice << "On the " << day[i]
 << " day of Christmas" << endl;
 voice << "My true love gave to me" << endl;
 switch (i+1) {
 case 12: voice << "Twelve lords a-leaping;" << endl;
 case 11: voice << "Eleven ladies dancing;" << endl;
 case 10: voice << "Ten pipers piping;" << endl;
 case 9: voice << "Nine drummers drumming;\n";
 case 8: voice << "Eight maids a-milking;" << endl;
 case 7: voice << "Seven swans a-swimming;" << endl;
 case 6: voice << "Six geese a-laying; << endl;
 case 5: voice << "Five golden rings; << endl;
 case 4: voice << "Four calling birds; << endl";
 case 3: voice << "Three French hens; << endl;
 case 2: voice << "Two turtle doves, and" << endl;
 case 1: voice << "A partridge in a pear tree" << endl << endl;
 }
 }
}

 64

// FILE: P12DAYS.CPP
#include <iostream>
using std::ostream;
void sing_song(ostream&);

int main ()
{
 sing_song(std::cout);
 return 0;
}

// FILE: S12DAYS.CPP
#include <iostream>
using std::ostream;
#include "voice.h" // Header file defining vostream
void sing_song(ostream&);

int main()
{
 vostream speaker; // vostream is a ostream that sends
 // its output to the speaker.
 sing_song(speaker);
 return 0;
}

 65

Note on namespace
• A namespace is a block that hides all of the definitions defined within it.

• Names defined in a namespace can be accessed by prefixing the name with
the namespace name followed by the symbol ::.

• A name defined within a namespace can be made visible by the using
declaration as follows:

using namespace::name;

• All of the names defined within a namespace can be made visible by using
the declaration:

using namespace namespace;

• All of the names defined within the standard library are defined within the
namespace std.

• Namespaces are relatively new, and not all compilers (still) fully support
them.

 66

using namespace std;

• Namespaces, especially namespace std, sometimes can seem to be a
nuisance. Thus there is the temptation and a fairly common practice to
include the following statement early in the program:
using namespace std;

• This is not recommended, especially at the global level.

1. The standard library may contain names that inadvertently conflict with
names defined in the program. (This is the reason for namespace in the
first place.)

2. For certain compilers (Microsoft Visual C++, version 6 in particular) this
can cause erroneous error messages. Note, your program will not run if
the compiler, however mistaken, does not consider it to be valid.

 67

Implementation of the Vector Class
// FILE: vector.h
// Declaration and definiton of template vector class
// This is a very simplified subset of the standard library
#ifndef vector_h_
#define vector_h_

template <class T>
class vector
{
public:
 vector() : buffer(0) { resize(0); }
 vector(unsigned int size) : buffer(0) {resize(size);}
 vector(unsigned int size, T initial);
 vector(const vector& v);
 ~vector() {delete [] buffer;}
 T back() {return buffer[mySize -1]};
 T front() {return buffer[0];}
 bool empty() {return mySize == 0;}
 void pop_back() {mySize--;}
 void push_back(T value)
 { resize(mySize + 1); buffer[mySize-1] = value;}
 void reserve(unsigned int newCapacity);
 void resize(unsigned int newSize)
 {reserve(newSize); mySize = newSize;}
 int size() {return mySize;}

 68

 T& operator[] (unsigned int index) {return buffer[index];}
 T& at(unsigned int index)
 {
 if (index < 0 || index >= mySize)
 throw "Out of range";
 return buffer[index];
 }
protected:
 unsigned int mySize;
 unsigned int myCapacity;
 T* buffer;
};

template<class T>
vector<T>::vector(unsigned int size, T initial)
{
 resize(size);
 for (unsigned int i = 0; i < size; i++)
 buffer[i] = initial;
}

template<class T>
vector<T>::vector(const vector<T>& v)
{
 resize(v.size());
 for (unsigned int i = 0; i < mySize; i++)
 buffer[i] = v.buffer[i];
}

 69

template<class T>
void vector<T>::reserve(unsigned int newCapacity)
{
 if (buffer == 0)
 {
 mySize = 0;
 myCapacity = 0;
 }
 if (newCapacity <= myCapacity) return;
 unsigned int nc = newCapacity <= 2*myCapacity ?
 2*myCapacity : newCapacity;
 T* newBuffer = new T[nc];
 for (unsigned int i = 0; i < mySize; i++)
 newBuffer[i] = buffer[i];
 myCapacity = nc;
 delete[] buffer;
 buffer = newBuffer;
}

#endif

 70

Assignment 2
(due 4 March 02)

Write a program that prints payroll checks based using the file produced by
the payroll program described in class. There are two lines for each employee.
The first contains the employee name and the second the amount. The date of
the check should be the current date. The first check number should be a
random number, and subsequent checks should be sequentially numbered.
Your program should take two command line arguments: the first is the
input file (output from the payroll program) and the second is the file
containing the checks. The format of the checks should be the same as the
one shown below:

 |Temple University Check No. 12372 |
 |Philadelphia, PA Date: 10-31-2001 |
 | |
 |Pay to the |
 |Order of: William Cosby ***$20,000.00 |
 | |
 | _____________ |

 71

The following program will obtain the current date:
#include <iostream>
using std::cout;
using std::endl;
#include <iomanip>
using std::setfill;
using std::setw;
using std::setiosflags;
#include <ctime>
#ifndef _MSC_VER
using std::time_t;
using std::time;
using std::tm;
using std::localtime;
#endif

int main()
{
 time_t msec_since_19700101 = time(0);
 tm* the_time = localtime(&msec_since_19700101);
 cout << setfill('0') << setiosflags(std::ios::right);
 cout << "The date is " << std::setw(2) << the_time->tm_mon+1
 << "-" << setw(2) << the_time->tm_mday
 << "-" << setw(4) << the_time->tm_year+1900
 << endl;
 return 0;
}

