
DOULION: Counting Triangles in Massive Graphs with a
Coin

Charalampos E. Tsourakakis, U Kang, Gary L. Miller, and Christos Faloutsos
SCS, Carnegie Mellon University

Pittsburgh, PA, USA

ctsourak@cs.cmu.edu, ukang@cs.cmu.edu, glmiller@cs.cmu.edu,
christos@cs.cmu.edu

ABSTRACT

Counting the number of triangles in a graph is a beautiful algo-
rithmic problem which has gained importance over the last years
due to its significant role in complex network analysis. Metrics
frequently computed such as the clustering coefficient and the tran-
sitivity ratio involve the execution of a triangle counting algorithm.
Furthermore, several interesting graph mining applications rely on
computing the number of triangles in the graph of interest.
In this paper, we focus on the problem of counting triangles in

a graph. We propose a practical method, out of which all trian-
gle counting algorithms can potentially benefit. Using a straight-
forward triangle counting algorithm as a black box, we performed
166 experiments on real-world networks and on synthetic datasets
as well, where we show that our method works with high accuracy,
typically more than 99% and gives significant speedups, resulting
in even ≈ 130 times faster performance.

Categories and Subject Descriptors: F.2.2 Analysis of Algorithms
and Problem Complexity: Nonnumerical Algorithms and Problems

General Terms: Algorithms; Experimentation.

Keywords: Graphs, Triangles, Hadoop

1. INTRODUCTION
Abundant data nowadays are modeled as graphs: theWorldWide

Web, social networks (e.g. LinkedIn, Facebook, Flickr) , P2P net-
works, co-authorship networks, biological networks, computer net-
works and physical connections just to name a few. Nowadays, due
to the recent technology explosion, graphs reaching the planetary
scale are available to us for analysis [21]. Triangles play an im-
portant role in complex network analysis. For example in social
networks, triangles is a well studied subgraph. In particular, two
prominent theories according to which triangles are generated in
social networks are the homophily and the transitivity. According
to the former, people tend to choose friends that are similar to them-
selves, which is also known as “birds of a feather flock together”
[22]. and according to the latter, people who have common friends
tend to become friends themselves [31].
The significance of the existence of triangles in networks moti-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’09, June 28–July 1, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-495-9/09/06 ...$5.00.

vates the definition of metrics that quantify the triangle density in
a graph. Two such metrics are the clustering coefficient and the
transitivity ratio [24].

Furthermore, it has been shown that triangles can play a signif-
icant role in graph mining applications as well. Recently, in [6]
it was shown that triangles can be used to detect spamming activ-
ity. Eckman and Moses in [13] showed how triangles can be used
to uncover the hidden thematic structure of the web. Moreover,
according to [5], triangle counting can benefit the query plan opti-
mization in databases. For the aforementioned reasons fast triangle
counting algorithms are of high practical value.

In this paper we propose a simple, practical, yet effective algo-
rithm for counting triangles in graphs. Our algorithm DOULION

can be used in any graph. In our experiments we focus on real-
world networks that exhibit a skewed degree distribution and in
Erdős-Rényi graphs ([7]). DOULION is not a competitor of other
triangle-counting algorithms. It is rather a “friend” since it can be
used as a first step before applying any triangle counting algorithm,
streaming or not. We verify the effectiveness of our method in a
wide range of experiments on real-world networks and provide a
basic mathematical analysis of our algorithm and some connections
to the spectral analysis of matrices.

In figure 1 we see the results of running DOULION on one snap-
shot of the Wikipedia Web graph. As we see, even when keeping
10% of the edges accuracy is almost the ideal 100%. For the range
of the “edge-keeping” percentages that we used, 10% to 90% with
a step of 10% we received speedups 113.1, 28.9, 12.8, 7.1, 4.5,
3.1 2.2, 1.6, 1.3 correspondingly. The mean accuracy is 99.7%
and the standard deviation 0.0023. DOULION has the advantage
of being “embarassingly” parallel as well, therefore allowing us to
easily implement it in any parallel programming framework. For
our purposes, we used HADOOP the open source implementation
of MAPREDUCE [11].

The outline of the paper is as follows: Section 2 presents an
overview of the related work and Section 3 the proposed algorithm.
Section 4 shows the experimental results and we conclude in sec-
tion 5.

2. BACKGROUND AND RELATEDWORK
In this section, we present the related work on the problem of

counting triangles in a graph and briefly give some information on
the MAPREDUCE framework and HADOOP.

2.1 Triangle Counting algorithms
Let G(V, E), n=|V |, m=|E| be an undirected, unweighted, sim-

ple graph. A triangle is a three-node subgraph of G which is fully
connected.

Figure 1: Speedup vs. Accuracy for theWikipedia Graph snap-

shot on 2005 Nov. The graph has≈ 1,7M nodes and 20M edges.

As we see, even when keeping 10% of the edges of the initial

graph accuracy is 99.5%. For p’s ranging from 10% to 90%

the mean accuracy is 99.7%, the accuracy standard deviation

0.0023 and the mean speedup 19.4.

Exact Counting Algorithms.
One obvious way to count the number of triangles in a graph is

to enumerate all possible
`

n

3

´

combinations of vertices and count
how many of them are fully connected. This results in the naive
algorithm with O(n3) time complexity.
A simple algorithm, known as NODEITERATOR, computes for

each node its neighborhood and then sees how many edges ex-
ist among its neighbors. This algorithm runs asymptotically in
P

v∈V (G)

`

d(v)
2

´

time which by taking a simple union bound give

an upper bound of O(d2
maxn), where dmax is the maximum de-

gree in G. Another simple algorithm that works in a similar way is
the EDGEITERATOR. Rather than checking each node at the time,
EDGEITERATOR checks each edge (u, v) ∈ E and computes the
common neighbors of the nodes u and v. Asymptotically EDGEIT-
ERATOR runs in the the same time with the NODEITERATOR. This
algorithm can be improved through a simple hashing argument so

that it runs in O(m
3
2) [26]. This version of EDGEITERATOR is

also called EDGEITERATOR-hashed. The forward algorithm is
another refinement of the EDGEITERATOR. The key idea of this al-
gorithm is that there is no need to compare the full neighborhoods
of two adjacent nodes. Finally the compact − forward iterator
([20]) further improves the forward algorithm. Itai and Rodeh in

[16] gave an algorithm that finds a triangle if it exists in O(m
3
2).

Their algorithm can easily be extended in a triangle counting al-
gorithm with the same time complexity. Their algorithm relies on
computing spanning trees of the graphG and removing edges while
making sure that each triangle is listed exactly once. In [26] one can
find the analysis and an extensive description of these algorithms.
The fastest methods for triangle counting in terms of time com-

plexity are based on fast matrix multiplication. Alon et al. gave in

[4] an algorithm of time complexity O(m
2γ

γ+1) ⊂ O(m1.41)where
at the time of this write-up γ is 2.37, the exponent of the state-of-
the-art algorithm for matrix multiplication ([10]). Exact counting
methods however may be slow, even not applicable when the size
of the graph fairly large due to high memory requirements. In those
cases an approximating algorithm is preferred in the cost of losing
the exact number of triangles.

Streaming Algorithms.
The goal of streaming algorithms is to perform one or at most

a constant number of passes over the graph stream (e.g. edges ar-
riving one at a time {e1, e2, .., em}) and make provably accurate
estimates of the number of triangles. Yossef et al. in their semi-
nal paper [5] gave the first streaming algorithm for counting trian-
gles. They first define all possible different triples that can show
up and then reduce the problem of triangle counting to estimating
moments for a stream of node triples. Then they use the Alon-
Matias-Szegedy algorithms (also known as AMS algorithms) pre-
sented in the Gödel awarded work [3]. The space complexity of
their algorithms depend on the structure of the graph, and specifi-
cally on the cardinalities of the sets of the different types of triples.
In [17] three streaming algorithms were presented. Two of them
use one pass over the graph stream and the third one three passes.
The one-pass algorithms use again the AMS algorithms [3] and the
later algorithm uses sampling to reduce the usage of space. The bi-
ased sampling is done according to the degree of the vertex chosen.
In [8] two random sampling algorithms are proposed to estimate
the number of triangles one for the edge stream representation and
one for the incidence stream representation of the undirected graph
of interest. The sampling procedures are simple. E.g., for the case
of the edge stream representation, they sample randomly an edge
and a node in the stream and check if they form a triangle.

Semi-Streaming Algorithms.
Bechetti et al. presented in [6] a semi-streaming algorithm for

computing triangles in a graph. Their model relaxes the strict con-
straint of constant number of passes to obtain an algorithm that
performs log(n) passes over the edge file. Their main idea relies
on locality sensitivity hashing and the observation that the local tri-
angle counting reduces to estimating the size of the intersection of
two sets, namely the neighborhoods of two nodes connected by an
edge. In [27] a spectral counting algorithm was introduced. The
idea of this algorithm is to take advantage of the properties of the
skewed spectra of power-law networks and make a fast approxi-
mation of the number of triangles based on a few, top eigenval-
ues. This algorithm can be viewed both as a semi-streaming al-
gorithm in the sense that it performs a number of passes at worst
O(log(n)) ([15]) over the non-zero elements of the adjacency ma-
trix (edges) or even as a streaming algorithm by using a linear time
algorithm for the SVD ([25]). The performance of the algorithm
depends strongly on the spectrum of the graph of interest. Empir-
ically the algorithm works well in many real-world graphs but has
no guarantees, mainly due to the limited knowledge on the spectra
of real-world graphs. We rather have theoretical knowledge on the
few top eigenvalues ([23],[9]) or our knowledge is just empirical
([27],[14]).

2.2 MAPREDUCE

MAPREDUCE is a parallel distributed programming framework
introduced in [12], which can process huge amounts of data in a
massively parallel way using simple commodity machines. It is in-
spired by the functional programmming concepts of mapping and
reducing. HADOOP - rougly speaking - is the open source imple-
mentation of MAPREDUCE. It is an emerging technology, which
except its reportedly spread-out commercial use, that has already
become popular in academia as well. HADOOP provides a power-
ful programming framework, since the programming concepts are
simple and the programmer is freed from all the tedious tasks that
one should take care of if he/she would write a distributed piece of
code. More details about MAPREDUCE and HADOOP can be found
in [19].

Require: Unweighted Graph G(V, E)
Require: Sparsification parameter p

Output: ∆′(G) global triangle estimation
for each edge ej do

Toss a biased coin with success probability p

if success then

w(ej)←
1
p

else

w(ej)← 0
end if

end for

∆′(G)← TRIANGLECOUNTINGALGORITHM(G)
return ∆′(G)

Algorithm 1: The DOULION counting framework

Require: Unweighted Graph G(V, E)
Require: Sparsification parameter p

Output: ∆′(G) global triangle estimation
∆′(G)← 0
for each edge ej do

Toss a biased coin with success probability p

if success then

w(ej)←
1
p

else

w(ej)← 0
end if

end for

for v ∈ V (G) do
for all pairs of neighbors (u, w) of v do

if (u, w) ∈ E(G) then

if u < v < w then

∆′(G)← ∆′(G) + 1
end if

end if

end for

end for

∆′(G)← ∆′(G) ∗ 1
p3

return ∆′(G)

Algorithm 2: The DOULION-NODEITERATOR algorithm

3. PROPOSED METHOD
In this section we present the proposed method, analyze it and

provide the reader with several interesting -at least in our opinion-
observations.

3.1 Algorithm
Our algorithm DOULION is a “friend” rather than a competitor of

the other triangle counting algorithms. Furthermore, it is very use-
ful and applicable in all possible scenarios: a) the graph fits in the
main memory, b) the size of the graph exceeds slightly the available
memory, c) the size of the graph exceeds the available memory sig-
nificantly. The general framework of the proposed method is shown
in algorithm 1. DOULION tosses a coin for each edge. It keeps the
edge with probability p and with probability 1−p it deletes it. Then
each triangle in the resulting graph G′ counts as 1

p3 triangles. An

equivalent way of viewing this procedure is the following:

• Reweight an edge if the edge “survives” with weight equal
to 1

p

• Count each triangle as the product of the weights of the edges
comprising the triangle. Since the initial graph G is un-
weighted each triangle is counted as (1

p
)3 = 1

p3 .

After the tossing-coin stage, any triangle counting algorithm can
be applied to the obtained graph G′. Algorithm 2 shows the in-
stantiation of the DOULION triangle counting framework using the
NODEITERATOR as the triangle counting black box, which was
described in section 2. However, in case that even after the spar-
sification the resulting graph cannot fit into the main memory, a
streaming or a semi-streaming algorithm should be preferred in-
stead as the black box.

Observe that since we assume that the input graph G is un-
weighted all edges in G′ will have the same weight. Therefore
we can still store efficiently G′ just as if it were unweighted plus
the parameter p.

3.2 Analysis of DOULION

3.2.1 Mean and Variance

We first show that the expected number of triangles in G′ is the
number of triangles ∆ in the initial graph G. For each triangle
in the initial graph, we attach an indicator variable δi, i = 1..∆.
Therefore δi = 1 if the i-th triangle1 exists inG′, otherwise δi = 0.
Let X be the random variable that denotes DOULION ’s triangles’
estimate.

THEOREM 1 (DOULION EXPECTED VALUE). The expected num-

ber of triangles in G′ is equal to the actual number of triangles in

G: E[X]=∆

PROOF. We have that the random variable X is the sum of the
indicator variables multiplied by 1

p3 . By simple properties of the

expectation we get the following: E[X]=E[
P∆

i=1
1

p3 δi]=
P∆

i=1E[
1

p3 δi]=
1

p3

P∆
i=1E[δi]=

1
p3

P∆
i=1 p3= ∆

THEOREM 2 (DOULION VARIANCE). Let∆ be the total num-

ber of triangles in G. The variance is equal to:

V ar(X) = ∆(p3
−p6)+2k(p5

−p6)

p6

where k is the number of pairs of triangles that are not edge dis-

joint.

PROOF. We have that our estimate is a sum of identically dis-
tributed but not independently random indicator variables of whether
a triangle in the initial graph “survives”. The reason that the indi-
cator variables are not independent is shown in figure 3.2.1. The
indicator variables δi and δj for the i-th and j-th triangle are not
independent because when the edge that they share does not “sur-
vive” then both of them become 0. On the other hand the indicator
variables δk and δp are independent.

Now, by the definition of the variance of a random variable and
its basic properties:

V ar(X) = V ar(
1

p3

∆
X

i=1

δi) =
1

p6

∆
X

i=1

∆
X

j=1

Cov(δi, δj) (1)

Now we break up the above summation. There are ∆2 terms in
this sum. ∆ of them are the variances of the indicator variables,
therefore we get ∆(p3 − p6). The rest 2

`

∆
2

´

terms correspond to

1There is no ordering of triangles. The i-th term refers to the i-th
triangle of any random ordering of the triangles in graph G.

Figure 2: The cases should be considered when estimating the

variance of DOULION. These are determined by whether the

triangles are edge-disjoint or not.

the pairs of indicator variables. Let k out of
`

∆
2

´

pairs of indicator
variables correspond to triangles that share one edge. In that case
Cov(δi, δj) = p5−p6. For the rest

`

∆
2

´

−k, terms Cov(δp, δq) =

p6 − p6 = 0.
Therefore, we get:

V ar(X) =
1

p6

`

∆(p3 − p
6) + 2k(p5 − p

6)
´

(2)

Using the second moment method ([2]) we get the following the-
orem.

THEOREM 3. Pr(|X −∆| ≥ ǫ∆) ≤ (p3
−p6)

p6ǫ2∆
+ 2k

(p5
−p6)

p6ǫ2∆2

PROOF. By applying Chebyshev’s inequality, we get: Pr(|X−

∆| ≥ ǫ∆) ≤ V ar(X)

ǫ2∆2 and by substituting the formula for the vari-
ance from theorem 2 we get the bound.

This theorem gives a first insight in the performance of DOULION.
The probability that our estimate is away from the real number of
triangles by some factor ǫ depends on the number of triangles in
the graph as well as the structure of the graph and of course on the
sparsification value p in the following way: the larger the number
of triangles in the graph, the probability to obtain a good estimate
increases. Also, the more edge-disjoint triangles exist in the graph,
the better the estimate is. Finally, as p → 0 the quality of the
estimate gets worse, as expected.

3.2.2 Speedup

Consider now a simple triangle listing algorithm, namely the
node iterator which was described in Section 2. If R is its run-
ning time after the removal of edges then R =

Pk

v=1 D(v)2 where
D(v) = degree of vertex v after coin-tossing, hence

E[R] ∼ p
2

"

X

v

(deg v)2
#

. (3)

Hence the expected speedup is 1
p2 .

Figure 3: Real Inverse Epidemic Threshold (λ1) vs. our esti-

mate for 14 different datasets . As we see, the estimates are al-

most ideal, in most cases differing in the second decimal digit.

Similar results hold for other graphs as well.

3.3 Random Sampling
Let’s consider the interesting case of a graph that is so large that

exceeds the available main memory significantly. A well-known
technique to select k random records sequentially from a file that
resides in a hard disk is the rejection method [29]. More sampling
algorithms can be found in the same work [29] and in [18]. Observe
that the number of disk pages fetched may in the worst case be
equivalent to performing a sequential scan over the file. However,
if k is significantly smaller than the size of the file then we expect
to have significant savings with the sampling approach. In our case,
where we assume that the graph is represented as a stream of edges
or equivalently resides in an edge file, e.g. a file whose each line is
of the form (endpoint1, endpoint2), k ≈ mp.

3.4 A Pleasant Side-effect: Preserving the Epi-
demic Threshold

As shown in [27] the number of triangles is equal to the sum of
the cubes of the eigenvalues divided by six. Given the spectra prop-
erties observed in many real-world networks one can approximate
the number of triangles in the graph just by using few eigenvalues.
Achlioptas and McSherry showed in [1] that one can “throw ” away
many of the elements of a matrix and still keep the top eigenvalues
the same. This is an observation used in [28] where a faster version
of the algorithm in [27] is presented.

Given the aforementioned observation, the top adjacency eigen-
value of G′ will be very close to the top one of G. This is an
interesting approach since the top eigenvalue of the adjacency ma-
trix representation of any graph is closely related to the epidemic
threshold [30]. Therefore, DOULION has the effect of not only pre-
serving in expectation the number of triangles but also approxi-
mately the epidemic threshold.

Just for the sake of illustration, figure 3 plots the real epidemic
threshold of graph G vs. the estimate, i.e., the epidemic threshold
of graph G′ for 14 different datasets (Flickr, Epinions, AS New-
man, EAT RS, Lederberg, Patents (main), Patents, Internet, HEP-th
(new), Journals, AS Oregon, AS CAIDA (3 timestamps)). As we
see from the plot, the results are almost ideal, differing in the first
or second decimal digit.

3.5 Can we parallelize DOULION?

(a) Wikipedia 2006, 25 Sep. (b) Wikipedia 2006, 4 Nov.

(c) Wikipedia 2007, Feb. 6 (d) Flickr

Figure 4: Ideal behavior of DOULIONin graphs with several million of edges. We observe that for all p values ranging from 0.1 to

0.9 the estimate of DOULION is strongly concentrated around its mean value, i.e. the real number of triangles in the graph. The

speedups are important, ranging from ≈ 80 to ≈ 130.

We implemented in HADOOP a prototype for the DOULION-
NODEITERATOR. As one can easily observe, the sparsification step
is trivially parallel. Each mapper receives a subset of edges of the
initial graph and tosses a coin for each edge. If the edge survives,
the mapper emits the corresponding edge. The JAVA and HADOOP

code of our implementations will be open-sourced. 2

4. EXPERIMENTS

4.1 Experimental Setup
We implemented DOULION-NODEITERATOR in JAVA and in

HADOOP. The HADOOP code ran on Erdős-Rényi graphs and on
the real-world networks we ran the JAVA piece of code. The ex-
periments ran on a 4GB RAM, Intel(R) Core(TM)2 Duo CPU at
2.4GHzWindows Vista machine (JAVA code) and inM45 (HADOOP

code), one of the fifty most powerful supercomputers in the world
(480 hosts, each with 2 quad-core Intel Xeon 1.86 GHz, running
RHEL5, with 3Tb aggregate RAM, and over 1.5 PetaByte aggre-
gate disk capacity.) after allocating two commodity machines. The
graphs we used in our experiments are described in the table 1.
The directed ones were made undirected by removing the arcs of
the edges and the self-loops -if any- were removed. Most of the
datasets we used are publicly available3.

2http://www.cs.cmu.edu/ ctsourak/projects/triangles.htm.
3http://www.cise.ufl.edu/research/sparse/
matrices/

4.2 Experimental Results
We divide and present the experiments into four different cate-

gories: DOULION on large-, medium- and small-sized real world
graphs and on Erdős-Rényi. We run DOULION-NODEITERATOR

using nine different values for p, ranging from 0.1 to 0.9 with a
step of 0.1. All the figures presented in the following refer to a
single, random run of DOULION on the graphs.

Large-sized Graphs.
Figures 1 and 4 show the experimental results for the largest real-

world graphs we used: the four different snapshots of theWikipedia
Web graph and Flickr. All these networks have size greater than 2M
edges. The behavior of DOULION in these graphs is the ideal. The
accuracy is always greater than 99% and speedups are significant,
ranging from ≈ 80 to ≈ 130 times faster. As expected, the maxi-
mum speedups are obtained for p = 0.1. Also observe how more
significant the speedups become when moving from p = 0.2 to
p = 0.1. As already mentioned before, observe that the speedup
refers to the running time of a straight-forward exact triangle count-
ing method vs. itself using DOULION, i.e., NODEITERATOR vs.
DOULION-NODEITERATOR. This verifies the fact DOULION is a
friend of triangle counting algorithms.

Medium-sized Graphs.
We conducted 158 experiments on medium-sized graphs, whose

sized ranged from ≈ 40K to ≈ 400K edges. Figure 6 shows the

(a) Oregon (b) Zewail (c) Journals

Figure 5: Results of DOULION on the smallest graphs (less than 40K edges) for one random run of DOULION. Again, we observe an

excellent performance of DOULION. Compared to the results for the larger graphs, the variance is bigger for the small values of p,

though still small. Speedup can be even ≈ 100 (Journals).

Nodes Edges Description

Real-world Networks

13,579 37,448 AS Oregon
23,389 47,448 CAIDA AS 2004 to 2008

(means over 151 timestamps)
22,963 48,436 AS NEWMAN

1,634,989 18,540,603 Wikipedia 2005-11-05
2,983,494 35,048,116 Wikipedia 2006-09-25
3,148,440 37,043,458 Wikipedia 2006-11-04
3,566,907 42,375,912 Wikipedia 2007-02-06

27,770 352,285 Hep-th-new
27,240 341,923 Hep-th
8,843 41,532 Lederberg
124 5,972 Journals

13,332 148,038 Reuters
23,219 304,937 Edinburgh Associative

Thesaurus (EAT RS)
75,877 405,740 Epinions network
404,733 2,110,078 Flickr

6752 54182 Zewail

Table 1: Summary of real-world networks used.

performance of DOULION on these graphs. For the 150 omitted
timestamps/graphs of AS CAIDA, similar results hold as in fig-
ure 6(h).
Edinburgh Thesaurus and AS Newman graphs (figures 6(c),(g)

exhibit the almost ideal behavior of the large graphs: accuracy al-
ways greater than 99% and important speedups. Very close to this
behavior, is also behavior of the Epinions (who-trusts-whom), the
Reuters’ graph and the HEP-TH graph, shown in figures 6(a), (b)
and (e). Speedups are still important and accuracy is again high, al-
ways more than 97%. In the rest of the graphs (figures 6(d),(f),(h))
results are still satisfactory. However we observe that there is larger
variance around the real number of triangles in the graph. Still
though, the accuracy is always greater than 96%. The maximum
speedup in the case of medium sized graphs can reach 100 times.

Small-sized Graphs.
We used three small graphs to experiment with, AS Oregon,

Journals and Zewail. Journals graph exhibits an ideal behavior, just
like the large graphs. DOULION gives more than 99% accuracy for

all values of p we tried and a speedup of almost 100 times. Ore-
gon and Zewail exhibit larger variance than Journals graph over our
single random run. Accuracy is almost always greater than 95% ,
with the single exception of using p = 0.5 in the Oregon graph.
However, running DOULION three times, moves these “outlier”-
like points closer to 1, just like in all other plots. This was the worst
case behavior of DOULION that we saw during our experiments.

Observations .
To sum up, the following observations hold for all the experi-

ments we conducted on real graphs with size ranging from ≈ 6K

edges (Journals graph) to ≈ 42M (Wikipedia 2007):

• Keeping 10% of the edges yields in speedups ranging from
≈ 30 to ≈ 130 times. Notice that reducing the edges to
10% of the initial amount does not necessarily imply 100x
speedup, which is the expected one. On the other hand, as
we apply DOULION on large graphs, we are getting closer to
the expected speedup.

• Running DOULION three times verifies the fact that the re-
sults we obtained were not “random”: for most of the graphs
the results are almost identical (speedups and accuracies are
more or less the same) whereas for few graphs (Oregon and
some AS CAIDA timestamps) we see slight larger changes,
still though small (e.g. Oregon for p=0.5 gives 93% accu-
racy). This is expected since the final estimate depends on
the initial triangle density: if small, then we expect greater
variance in our estimate.

DOULION on Erdős-Rényi G
n,

1
2
.

Using our HADOOP implementation we run DOULION on large
Erdős-Rényi Gn,p graphs. As expected in the case large of random
Erdős-Rényi the results are excellent in terms of accuracy for the
sparsification values we tested. The reason is the following: after
applying DOULION to a Gn,p graph with the sparsification param-
eter equal to 0.1 the result is an Erdős-Rényi Gn,p′ with p′ = 0.1p.
Therefore, as long as p′ is a constant and does not cause any thresh-
old phenomena in the number of cycles in the graph (e.g. p′ = 1

n
,

see [7]) we have a concentrated estimate around the real number of
triangles. The results of running DOULION-NODEITERATOR with
p = 0.1 on two Erdős-Rényi graphs with 80M and 100M nodes
are shown in Table 2. As we see, the speedups are 13.1 and 19.8
respectively for the two graphs and the accuracy in both cases is
greater than 99%.

Nodes Speedup Accuracy

80M 13.1 99.7
100M 19.8 99.3

Table 2: Results of DOULION on Gn, 1
2
for sparsification value

equal to 1
2
.

5. CONCLUSIONS
In this paper we presented DOULION, an algorithm which tosses

a coin in order to obtain a smaller, weighted graph in which the
number of triangles is very close to the true value. Our contribu-
tions can be summarized in the following points:

• DOULION is a “friend” rather than a competitor to other tri-
angle counting algorithms: any other triangle counting trian-
gle algorithm, streaming or not, may use the idea of DOULION

as a preprocessing step.

• DOULION is “embarrassingly” parallel, enjoying therefore
optimal scale-up in HADOOP.

• We provide a first, basic mathematical analysis which gives
some insight in the performance of DOULION with respect to
the mean and the variance of the estimator and the expected
speedup for the instatiation we used.

• We show that an additional benefit of DOULION is that it
maintains the epidemic threshold of the graph.

• We conducted several experiments on real world graphs and
for p ranging from 0.1 to 0.9 the accuracy is almost 100% and
the speedup can be even ≈130x of a simple exact counting
algorithm vs. itself but using DOULION as a first step.

Finally, as a topic of future research, we propose a tighter the-
oretical analysis that will yield the optimal p, namely the smallest
possible one which yields an exponential concentration around the
real number of triangles.

6. ACKNOWLEDGEMENTS
The authors would like to thankM.N. Kolountzakis, TomBohman

and Ioannis Koutis for helpful discussions on the paper. The au-
thors would would like to thank the anonymous reviewers for valu-
able feedback. This material is based upon work supported by
the National Science Foundation under Grants No. CCF-0635257,
Also, under the auspices of the U.S. Department of Energy, by the
University of California Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344 (LLNL-CONF-404625), sub-
contracts B579447, B580840. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the Na-
tional Science Foundation, or other funding parties.

7. REFERENCES
[1] D. Achlioptas and F. McSherry. Fast computation of low

rank matrix approximation. In STOC, 2001.

[2] N. Alon and S. Joel. The Probabilistic Method. Wiley
Interscience, New York, second edition, 2000.

[3] N. Alon, Y. Matias, and M. Szegedy. The space complexity
of approximating the frequency moments. In STOC ’96:

Proceedings of the twenty-eighth annual ACM symposium on

Theory of computing, pages 20–29, New York, NY, USA,
1996. ACM.

[4] N. Alon, R. Yuster, and U. Zwick. Finding and counting
given length cycles. Algorithmica, 17(3):209–223, 1997.

[5] Z. Bar-Yosseff, R. Kumar, and D. Sivakumar. Reductions in
streaming algorithms, with an application to counting
triangles in graphs. In SODA ’02: Proceedings of the

thirteenth annual ACM-SIAM symposium on Discrete

algorithms, pages 623–632, Philadelphia, PA, USA, 2002.
Society for Industrial and Applied Mathematics.

[6] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient
semi-streaming algorithms for local triangle counting in
massive graphs. In Proceedings of ACM KDD, Las Vegas,
NV, USA, August 2008.

[7] B. Bollobas. Random Graphs. Cambridge University Press,
2001.

[8] L. S. Buriol, G. Frahling, S. Leonardi,
A. Marchetti-Spaccamela, and C. Sohler. Counting triangles
in data streams. In PODS ’06: Proceedings of the twenty-fifth
ACM SIGMOD-SIGACT-SIGART symposium on Principles

of database systems, pages 253–262, New York, NY, USA,
2006. ACM.

[9] F. Chung, L. Lu, and V. Vu. Eigenvalues of random power
law graphs. Annals of Combinatorics, 7(1):21–33, June 2003.

[10] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. In STOC ’87: Proceedings of the

nineteenth annual ACM conference on Theory of computing,
pages 1–6, New York, NY, USA, 1987. ACM.

[11] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. OSDI ’04, pages 137–150,
December 2004.

[12] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. OSDI, 2004.

[13] J.-P. Eckmann and E. Moses. Curvature of co-links uncovers
hidden thematic layers in the world wide web. PNAS,
99(9):5825–5829, April 2002.

[14] I. J. Farkas, I. Derenyi, A.-L. Barabasi, and T. Vicsek.
Spectra of "real-world" graphs: Beyond the semi-circle law.
Physical Review E, 64:1, 2001.

[15] G. Golub and C. Van Loan. Matrix Computations.
JohnsHopkinsPress, Baltimore, MD, second edition, 1989.

[16] A. Itai and M. Rodeh. Finding a minimum circuit in a graph.
In STOC ’77: Proceedings of the ninth annual ACM

symposium on Theory of computing, pages 1–10, New York,
NY, USA, 1977. ACM.

[17] H. Jowhari and M. Ghodsi. New streaming algorithms for
counting triangles in graphs. In COCOON, pages 710–716,
2005.

[18] D. E. Knuth. Seminumerical Algorithms, volume 2 of The
Art of Computer Programming. Addison-Wesley, Reading,
Massachusetts, second edition, 10 Jan. 1981.

[19] R. Lämmel. Google’s mapreduce programming model –
revisited. Science of Computer Programming, 70:1–30, 2008.

[20] M. Latapy. Main-memory triangle computations for very
large (sparse (power-law)) graphs. Theor. Comput. Sci.,
407(1-3):458–473, 2008.

[21] J. Leskovec and E. Horvitz. Planetary-scale views on an
instant-messaging network, Mar 2008.

[22] M. Mcpherson, L. S. Lovin, and J. M. Cook. Birds of a
feather: Homophily in social networks. Annual Review of

Sociology, 27(1):415–444, 2001.

[23] M. Mihail and C. Papadimitriou. the eigenvalue power law,
2002.

[24] M. E. J. Newman. The structure and function of complex
networks. SIAM Review, 45:167–256, 2003.

[25] T. Sarlos. Improved approximation algorithms for large
matrices via random projections. In FOCS ’06: Proceedings
of the 47th Annual IEEE Symposium on Foundations of

Computer Science, pages 143–152, Washington, DC, USA,
2006. IEEE Computer Society.

[26] T. Schank. Algorithmic Aspects of Triangle-Based Network
Analysis. Phd in computer science, University Karlsruhe,
2007.

[27] C. Tsourakakis. Fast counting of triangles in large real
networks, without counting: Algorithms and laws. In ICDM,
2008.

[28] C. Tsourakakis, P. Drineas, E. Michelakis, I. Koutis, and
C. Faloutsos. Spectral counting of triangles in power-law
networks via element-wise sparsification. In SODA ’02:

Proceedings of the thirteenth annual ACM-SIAM symposium

on Discrete algorithms, 2009.

[29] J. S. Vitter. Faster methods for random sampling. Commun.
ACM, 27(7):703–718, 1984.

[30] Y. Wang, D. Chakrabarti, C. Faloutsos, C. Wang, and
C. Wang. Epidemic spreading in real networks: An
eigenvalue viewpoint. In In SRDS, pages 25–34, 2003.

[31] S. Wasserman and K. Faust. Social network analysis.
Cambridge University Press, Cambridge, 1994.

(a) Epinions (b) Reuters

(c) Edinburgh Thesaurus (d) Lederberg

(e) HEP-TH (f) HEP-TH-NEW

(g) AS Newman (h) AS CAIDA

Figure 6: Behavior of DOULION in graphs with several medium sized networks (≈ 40K to≈ 400K edges). As in the case of large and

small graphs, we observe that for all p values ranging from 0.1 to 0.9 the estimate of DOULION is strongly concentrated around real

number of triangles in the graph. Speedups again are important, ranging from ≈ 30 to ≈ 60.

