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ABSTRACT 
 
We consider the problem of characterization of spatial region 
data such as the regions of interest (ROIs) in medical images. 
We propose a method that efficiently extracts a k-dimensional 
feature vector using concentric spheres in 3D (or circles in 2D) 
radiating out of the ROI’s center of mass. The proposed method 
can be applied to classification and similarity searches of ROIs. 
We also propose a region data growth model that we use to 
generate artificial data with various properties including 
homogeneous and non-homogeneous region data. We use the 
artificial data to evaluate the effectiveness of the 
characterization method comparing also its classification 
performance to mathematical morphology. The experiments 
show that the performance of our method is comparable or better 
than that of mathematical morphology although it is two orders 
of magnitude faster which makes it very suitable for application 
in very large image databases.  

 
  

1. INTRODUCTION 
 
Analysis of images usually refers to the extraction of their 
information content. Methods for content-based retrieval and 
classification of images rely on effective and efficient techniques 
for the extraction of the most important and discriminative 
features [1]. Most of the characterization techniques are based 
on extracted features that refer to the entire image [2,3] rather 
than to image regions that are of interest. However, analysis of 
images in certain fields such as medicine require focusing on 
specific Regions of Interest (ROI’s), such as tumors, lesions and 
brain activation regions, in order to analyze critical information 
[4-6]. The 3D volumes (or 2D images) we consider here consist 
of region data that can be defined as sets of (often connected) 
voxels (volume elements) that form structures or objects. In this 
paper we propose a method to quantitatively characterize spatial 
region data visualized by modern imaging modalities, such as 
MRI (Magnetic Resonance Imaging) and CT (Computed 
Tomography). Furthermore, we evaluate its effectiveness by 
examining the Euclidean distances of the characterizing vectors 
for several types of regions and we compare our method with 
mathematical morphology. 
 

2. BACKGROUND AND RELATED WORK 
 

Representing a shape corresponding to a certain ROI has been 
the main issue of various attempts to characterize spatial data 
[7,8]. Necessary preprocessing steps for the characterization and 

classification of ROIs are the segmentation and registration of 
the corresponding images. Image segmentation is required to 
delineate the particular regions that are of interest while image 
registration is required to bring the images into spatial 
coincidence with a template and it is also referred to as spatial 
normalization. Throughout the paper we assume that the region 
data are segmented and registered. 

Shape is the geometrical information that remains when 
location, scale and rotational effects are filtered out from an 
object [9]. Shape representation and analysis has generated a 
rich array of approaches from simpler ones that use anatomical 
or mathematical landmarks, simpler shapes and polygonalization 
to more advanced ones that extend to obtaining numerical 
vectors from various transforms of the boundary, such the 
Fourier Transform, Wavelet Transform or moments of inertia. 
Concepts from mathematical morphology, namely the “pattern 
spectrum” of a shape, have also been used to map a shape to a 
point in a k-dimensional space [10] effectively characterizing 
and classifying it [11]. Mappings are defined in terms of a 
structural element, a “small” primitive shape that interacts with 
the input image (via morphological operators like dilation, 
erosion, opening (○), and closing (●)) to transform it and in the 
process, extract useful information about its geometrical and 
topological structure [12].  

The morphological distance between two objects x1 and x2 
is defined as: 
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where E is some structuring element, d* is the area of the 
symmetric set difference distance measure defined as 
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optimally aligned via registration, and p denotes the particular 
norm used (e.g., p=2, for Euclidean distance).  

Most of the techniques for shape characterization work 
mostly with homogeneous objects (i.e., binary images) without 
considering properties of the internal volume and are 
computationally expensive especially when they are applied to 
3D volumes. In this paper we propose a new characterization 
technique that performs very well for both homogeneous and 
non-homogeneous regions and is much faster than existing 
techniques making it suitable for approximate searches of 
similar regions in large image databases. 



3. METHODOLOGY 
 

In order to characterize ROIs we extend the original idea of 
Sholl’s analysis [13] (i.e. the use of concentric circles radiating 
out of the root of the tree to partition a tree-like structure) to 
non-tree like structures in order to obtain a characterization 
vector of k attributes mapping a ROI to a point in the k-
dimensional space. Classification and similarity searches can 
then be achieved using the corresponding vectors that 
quantitatively characterize the structure. Although the 
characterization of ROIs is of particular interest in medical 
image databases [5], the methodology we propose can be applied 
to non-medical image data as well.  
 
3.1. Characterization of ROIs 
  
In this paper we deal with the characterization of two different 
types of regions: (a) homogeneous, where all the voxels that 
form the regions have the same value which is different from the 
background (binary images) and (b) non-homogeneous, where 
the values of voxels that form the regions can range while they 
are still different from the background (non-binary or gray scale 
images). Figure 1 shows examples of homogeneous and non-
homogeneous regions. Another way to view non-homogeneous 
regions is that the voxel values reflect a probability that the 
voxels belong to a ROI as in the case of uncertainty in 
delineating the boundaries of certain structures in medical 
images or in the case of statistical parametric maps obtained 
from analysis of fMRI (functional Magnetic Resonance 
Imaging) activations.  

The basic problem we are considering here is the following: 
Given a homogeneous or non-homogeneous ROI, effectively 
extract useful features, so that characterization, classification 
and retrieval of similar structures can be performed efficiently. 
The proposed method for characterization is the following: 
1. Obtain the center of mass of the region. Note that in the 

case of non-homogeneous regions the center of mass is 
calculated using a weighted contribution of each voxel of 
the region, based on each value. 

2. Using the center of mass as center, construct a series of 
1…k concentric spheres in 3D (or circles in 2D) with 
regular increments of their radius. 

3. For each sphere (or circle) measure features such as (a) the 
fraction of the sphere (or circle) occupied by the region, (b) 
the fraction of the region occupied by the sphere (circle), 
forming respectively feature vectors  fs and fr of size k.  
Experimental results illustrate the comparative 

effectiveness of both types of features in step 3 above. Figure 2 
shows the process of characterization by capturing snapshots of 
the intersection of the concentric spheres and a 3D ROI that is 
being analyzed. The obtained vector maps the entire ROI to a 
specific point in the k-dimensional space. Classification and 
similarity searches can be performed using geometrical distance 
measurements between the corresponding vectors, or other 
classification models such as Neural Networks. We propose the 
use of dimensionality reduction techniques, such as the 
Karhunen-Loève transform or the closely related Singular Value 
Decomposition (SVD), for projecting the characterization vector 
to a lower dimensionality space. In addition, for a given training 
set and classes of ROIs, experimentation can be done as a part of 
this approach to obtain an appropriate value for the increment of  

 
 
 
 
 
 
 
 
           (a)                             (b)                                  (c) 
Figure 1. (a) A homogeneous region (the cell infection is shown 
at time t=8 in a 2D grid), (b),(c) non-homogeneous regions with 
one and three initial points respectively. 

      
Figure 2. Intersecting concentric spheres with the ROI being 
characterized. 
 
radius of the concentric sphere in each step so that an optimal 
classification performance is achieved. 
 
3.2. Generation of artificial regions 
 
We developed a discrete-time region growth model based on the 
2-D model originally proposed by Eden [14] and which has been 
used in studies of similarity searches [11]. The main idea of this 
model and sample ROIs in 2-D are presented in Figure 1. The 
growth (infection) process begins with one initial voxel (or cell)  
at time t=0 and progresses using the following rule: each 
infected cell may infect its non-diagonal neighbors with some 
probability. We have extended this model by allowing the 
probability thresholds to be different for each direction. For 
example, in 3-D, an infected voxel may infect its six non-
diagonal neighboring voxels with probabilities pE , pW, pN, pS, pU 
and pD where the probabilities are not necessary equal. Each 
region is grown until it reaches a certain volume since the 
number of voxels is a parameter in our model. The probability 
thresholds for each direction can be adjusted properly in order to 
obtain regions of a desired shape. Another extension to the 
original growth model is that we are modeling the degree of 
infection. Although in homogeneous regions all voxels are 
assigned the same value (or intensity), in non-homogeneous 
regions the value distribution of the voxels in the region follows 
the behavior of a usually monotonous decreasing function (with 
the number of epochs), simulating the intensity of a certain 
property for the internal area of the region. The voxel values in 
the second case can also be considered as probabilistic values for 
the presence of a property or inclusion of the voxel in the region 
of interest. Tumors or lesions in medical images are often 
considered to be homogeneous regions for simplicity although in 
most cases these are non-homogeneous regions with boundaries 
that are difficult to identify. Similarly, voxel values of statistical 
parametric maps of brain activation data denote the probability 
of that voxel being activated. 

This model is also general enough to capture the possible 
anisotropy   in   growth   due  to   surrounding  tissue.     Another 



     
                      (a)          (b) 
Figure 3. Non-homogeneous regions elongated towards (a) one 
or (b) two opposite directions.  

Figure 4. The feature vectors (fr) of a spherical and an elongated 
3D region. 
 
extension to the original growth model is that we allow more 
than one initial cells to “infect” the space simultaneously. Each 
subregion has uniquely predefined parameters of growth 
(probability thresholds, centroid coordinates, and number of 
epochs). The region obtained as a combination of the subregions 
can reflect a higher variation of randomness. This makes the 
generation process more general in terms of being able to 
simulate complicated and more natural three-dimensional 
structures. One can use probability distributions collected from 
real data to model the number of initial points, their spatial 
location, the size of subregions, the direction of growth of each 
subregion in various stages, the depth of growth, the degree of 
infection, etc. 

  
4. EXPERIMENTAL RESULTS 

  
To verify the efficiency of the proposed characterization 

method, we experimented with both the process of obtaining the 
feature vector and the classification of given sets of region data 
in 3D and 2D. Here we present results for the 3D case. We also 
compare our proposed method to the one using morphological 
operators. In the experiments we used the Euclidean distance 
between the k-dimensional characterization vectors, obtained by 
our method, to classify the simulated regions. We used a radius 
increment step of 1 and k=15. In order to have a better 
comparative basis, we computed the morphological distances 
using the Euclidean norm (p=2) and sphere as the structural 
element. We used spherical homogeneous and elongated 
homogeneous and non-homogeneous regions. We considered 
100 randomly generated images from each class of regions. The 
elongated regions were stretched to the north and south direction 
of growth. The non-homogeneous elongated regions were 
stretched either towards one of two opposite directions (see 
Figure 3). Each 3D volume consisted of 50×50×50 voxels. We 
implemented the methods in Matlab and run experiments on a 
single Pentium III Xeon processor workstation with 512 Mbytes 
of RAM running Linux. The experiments requiredmorphological 
istance calculations were carried out using the SDC   
Morphology  Toolbox  for   MATLAB  v1.1. The toolbox   
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Figure 5. Euclidean distances of feature vectors fr and fs between 
all pairs of elongated and spherical 3D regions. 

 
Figure 6. Euclidean distances of feature vectors fr between all 
pairs of non-homogeneous elongated regions of type (a) and (b) 
of Figure 3. 
 
provides implementations for both homogeneous and non-
homogeneous (grey-scale) ROIs. 

Figure 4 presents the variation of fr features (signatures) for 
consecutive increments of the radius and for two types of 3D 
regions. Figure 5 shows the Euclidean distance values of the k-
dimensional characterizing vectors for all pairs of homogeneous 
elongated and spherical regions and clearly identifies the 
existence of two distinct classes in the data set. In this case the fs 
features are more discriminative than the fr features.  

In our next experiment we tested our proposed 
characterization technique on the problem of discriminating non-
homogeneous regions elongated to both the north and south 
direction or to just one of the two (Figure 3 shows examples of 
the two types of regions). The resulting shapes are quite similar 
although their density concentration is in different subregions. 
Figure 6 demonstrates that the proposed method achieves 
impressive discriminative power. Experimentation with different 
increments of the radius for the concentric circles or spheres is 
in progress.    

In order to compare the efficiency of our method to the one 
that uses the morphological distance we performed more 
classification experiments.  Each morphological distance 
calculation between two 3D regions took approximately 11 
minutes while the proposed method for characterization 
including the Euclidean distance calculation takes 7 seconds on 
the workstation we used. Due to the constraints imposed by the 
morphological distance calculations we performed the following 
experiments: (a) we picked one region from each class and 
calculated its distance to all the other regions and (b) we 
experimented with 2D regions instead of 3D. Here we report 
results from the first experiment. The structural element used in 
calculating the morphological distance was a disk (or a sphere in 
3D) where M was equal to 20. Figures 7, 8 demonstrate that our 
method has performance comparable to, or even better (in non-
homogeneous regions) than that  of  mathematical  morphology.  



 
           (a)                    (b)                       (c)                    (d) 

 
            (e)                    (f)                       (g)                    (h) 
Figure 7. Euclidean distances of feature vectors between a 
spherical (a),(b) or an elongated (c),(d) homogeneous region and 
all other regions (using fr (a),(c) and fs (b),(d) features). 
(e),(f),(g), and (h) corresponding Euclidean distances for the two 
types of elongated non-homogeneous regions (stretched towards 
one and two opposite directions). 
 

   
             (a)                     (b)                    (c)                    (d) 
Figure 8. Morphological distances between a spherical (a) or an 
elongated (b) homogeneous region and all other regions. (c),(d) 
corresponding morphological distances for the two types of 
elongated non-homogeneous regions (stretched towards one and 
two opposite directions).   

 
          (a)                                             (b) 
Figure 9. 3D scatter plot (a) of the 3 most significant attributes 
selected by SVD and the Euclidean distances (b) of the 
corresponding mapped data points of the two classes. 
 
although it is two orders of magnitude faster. Applying SVD to 
reduce dimensionality to the 3 most significant transformed 
attributes improves the performance even further (Figure 9). 
 

 
5. CONCLUSIONS AND FUTURE WORK 

 
In this paper we presented a new method for fast and effective 
characterization of 3D (and 2D) homogeneous and non-
homogeneous region data as well as a model for generating 
artificial region data. Work in progress includes the extension of 
the proposed characterization method so that it can be applied to 
non-homogeneous regions with more than one initial growing 
points.  
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