Quantization for Distributed Estimation
using Neural Networks

Vasileios Megalooikonomou

Department of Computer and Information Sciences
Temple University
1805 N. Broad Street
303 Wachman Hall
Philadelphia, PA 19122

and

Yaacov Yesha

Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County
1000 Hilltop Circle
Baltimore, MD 21250

Corresponding author:

Vasileios Megalooikonomou

Department of Computer and Information Sciences
Temple University

1805 N. Broad Street

303 Wachman Hall

Philadelphia, PA 19122

Tel: 215.204.5774

Fax: 215.204.5082

E-mail: vasilis@cis.temple.edu

Abstract

We propose a neural network approach for the problem of quantizer design for
a distributed estimation system with communication constraints in the case where
the global observation model is unknown and one must rely on a training set. Our
method applies a variation of the Cyclic Generalized Lloyd Algorithm (CGLA) on
every point of the training set and then uses a neural network for each quantizer
to represent the training points and their associated codewords. The codeword
of every training point is initialized using a previously proposed regression tree
approach. Simulation results show that there is an improvement of the proposed

approach over using regression trees only.

1 Introduction

Networks of embedded sensors have started to become increasingly important especially
due to their potentially enormous impact in environmental monitoring, product quality
control, defense systems, etc. Several researchers have worked on developing protocols
and systems architectures for networks of thousands of embedded devices [5, 7, 4].
At the same time, new exciting technologies such as MEMS (MicroElectroMechanical
Systems) [2] devices (CMU) and Smart-Dust project [8, 15] (Berkeley) are expected
to expand the capabilities of embedded devices and networks of sensors by putting a
complete sensing/communication platform, including power supply, analog and digital
electronics, inside a cubic millimeter.

In distributed estimation systems several separated processing nodes (i.e., sensors)
observe an environment, collect information, and make estimations based on their own
observations and information being communicated between the nodes. The model of

a distributed estimation system that we consider here consists of a single fusion center

and a number of remote sensors. This model has many applications to radar, sonar and
remote-sensing systems. In this scheme, the fusion center estimates some unobserved
quantities based on observations collected by remote sensors and transmitted to the
center. Restrictions on this model such as the capacity constraints on the communication
lines suggest some very challenging problems.

The exact model that we consider here is described below. The sensors are not allowed
to communicate with each other and there is no feedback from the fusion center back to
them. The communication channels are assumed to be error free. The observations from
the sensors are vector quantized before the transmission to the fusion center in order to
satisfy the communication constraints. Thus, the estimation is achieved via compressed
information. We assume fixed length coding for the transmission. The observations at
the sensors are random. Here, we consider the case where the joint probability density
function is unknown.

The problem is defined as follows: For a distributed system with & sensors, find, for
each sensor, a mapping from the observation space to codewords (of a certain number
of bits given by the capacity constraints), and find a fusion center function that maps a
vector of k£ codewords to an estimate vector for the unobserved quantities, so that the
mean of the square of the Euclidean norm of the estimation error is minimized. There is
a joint probability distribution of all observations and unobserved quantities. However,
since this distribution is unknown, the design of the system is based on a training set
and the mean squared error is computed based on a test set. Although the number of
sensors, k, can be in general arbitrary, here we consider the two-sensor case since the
method for this case can be easily extended to the more general case.

An approach based on a generalization of regression trees for the problem of quantizer
design for such a distributed estimation system in the case of unknown observation

statistics has been given by Megalooikonomou and Yesha [13, 14]. The same problem

2

in the case of known probability model was considered by Lam and Reibman [10, 11].
Gubner [6] considers the problem of quantizer design for this system subject not only
to communication constraints but also to computation constraints at the fusion center
in the case of known observation statistics. Longo et al [12] consider the problem of
quantization for a distributed hypothesis testing system.

In this paper, we consider the problem of quantizer design subject to communication
constraints in the case where the joint probability model is unknown and only a training
sequence is available. We present an approach that is based on neural networks. In this
approach we first apply a variation of the Cyclic Generalized Lloyd’s Algorithm (CGLA)
to every point of the training set in order to find the proper codeword for every one of
these points. The initial codewords are given by a regression tree approach [13]. We
propose to use a neural network for each quantizer in order to represent the training
points along with their associated codewords.

The rest of the paper is organized into the following sections. Some notation along
with background information is discussed in Section 2. The variation of the CGLA and
the neural network approach are presented in Section 3. Implementation issues regarding
the calculation of the estimation error are discussed in Section 4. Simulation results are

presented in Section 5.

2 Background

In order to attack the problem of quantizer design for a distributed estimation system
in the case where only a training set, 7 is available, one can use the training set with
the CGLA to assign the best codeword to every training point. The CGLA was intro-
duced by Longo et al [12]. This algorithm starts with an initial guess of quantizers and

fusion center and iteratively improves them by finding the optimal component given the

others. It leads to an estimation error that converges and is very sensitive to initializa-
tion of the labels (codewords) that correspond to every training point. In the method
that we propose we use the system produced by the regression tree approach proposed
by Megalooikonomou and Yesha [13, 14] in order to initialize the labels of the train-
ing points. This approach involves growing and pruning of regression trees along with

labeling techniques, for iteratively decreasing the estimation error.

Let X{ and XJ be the random observation vectors at the sensors and 6 the unob-
servable continuous quantity that the fusion center tries to estimate. We use the vector
notation X%, for the sensor k, as a shorthand for (X;[1], Xi[2],..., Xk[p]). The notation
that we use in this paper is summarized in Table 1. Let {(X{, X5)® 0®;¢t =1,..., M}
be the training set, 7 of size M that represents the statistics of the source, Q) the
quantizer for the sensor k, and X?" the transmitted value for the observation X?* to
the fusion center. The task of the fusion center is to estimate the unobserved quantity 6

based on the X,f’t it receives.

Let h be the function of the fusion center that gives the estimate of § and Py, =
{Us;i=1,...,N} and Py, = {V;;j=1,..., L}, be the partition regions for the quantiz-
ers (1 and ()9, respectively, that are produced using the regression tree method. The first
quantizer has codewords (labels) i = 1,..., N and the second has codewords j = 1,..., L.
Let 1(X?") be the label of the point X?**. The labels, [(X{*) and 1(X3"), produced by

the regression tree method are:

IXT") = ;(i — 1)1y, (XT) (1)
z_: j— 1)1y, (X3 (2)

where I4(z) denotes the indicator function of a set A C R? of dimension d, i.e. I4(z) =1

4

if z is in A and I4(z) = 0 otherwise.

The fusion center h has the following value for each pair of codewords (labels) i, j:

Wiyj) = ——

Rij

> oY (3)

t(x8,x3)Very,

where R; ; is the following subset of the training set:
Rig = {(X1, X5)W - UXT") = 6, U(X3") = 5} (4)

The estimation error, can then be expressed as follows:

M

Error = %;(0“) — B(XE,10x5"))’ (5)

2.1 Growing and pruning of the regression trees

The regression trees [1] are decision trees with queries of the form Xj[i] < ¢; (for an
observation variable X[i] and a constant ¢;) where each leaf R; is labeled by an estimation
value h(i) which is generally constant (see Figure 1). For observations of dimension d
the leaves of the regression tree correspond to d-dimensional rectangles. These trees are
formed by iteratively splitting subsets of the training set into descendant disjoint subsets.
The constraint that is imposed from the separate encoding scheme when building the
regression trees is that one tree cannot have different splits based on answers to queries
on the other tree. The growing of the trees is based on the decrease of the error in the
estimation of the parameter f and it is cooperative, i.e., we grow one tree taking into
account the tree for the other sensor (except from the first tree that we grow).

In order to grow right-sized trees, pruning (by recombining leaves that are siblings)

is also involved in the growing procedure. The pruning algorithm that is used is the

recursive optimal pruning algorithm (ROPA) proposed by Kiang et al [9]. Their algorithm
is an extension of the Generalized BFOS (GBFOS) algorithm proposed by Chou et al [3]
that optimally prunes a TSVQ codebook and which is a generalization of an algorithm
by Breiman et al [1] for classification and regression trees. The purpose of the pruning
of the original regression trees in the case of fixed rate quantization is to get a subtree

with a given number of leaves and with estimation error that is as small as possible.

2.2 Labeling of the rectangles

After growing the trees, the rectangles (that correspond to leaves of the regression trees)
are labeled using an algorithm that is related to the Cyclic Generalized Lloyd Algorithm
(CGLA) [12], the s-CGLA, in order to combine the rectangles into the required number
of partition regions. Then the trees are grown from the beginning in order to improve
over the previous trees including in this procedure the labels that have been assigned to

the rectangles.

Labeling is used to denote the assignment of codewords to the rectangles of the
regression trees in the sense that rectangles that have the same label form a quantizer
partition region and use the same codeword for the transmission. One labeling technique
is the s-CGLA that considers together groups of training samples. A second labeling
technique is the lh-s-CGLA that changes the fusion center temporarily whenever there
is a decision that has to be made in order to calculate the effect of every possible change

and also keeps the fusion center table updated all the time.

Let ny be the number of codewords and m, > n; be the number of leaves for quantizer

k. Let also [(r) be the label of a specific rectangle r. Given the partition regions Py,

6

and Pg,, for X{ and X7 respectively, the optimal fusion center A is given by:

1

h(m’ n) = |RI |

> v (6)

t:(x4,x7) " €R mon

where R/, , is the following subset of the training set:
Rlmn = {(XT, X5)O - 1(r(XT) = m, I(r(X5")) = n} (7)

The estimation error, err;, contributed by the following subset, R”;, of the training set

(based on X7)

R = {(X1, X5) : r(XP) = i} (8)
is given by:
=X (09 - h). () ©)
"a(xtxg)Perr,

The total estimation error is then given by:

Error= Y err; (10)

2:0...m1—1

The estimation error can also be expressed using a similar formula and the corresponding

subsets based on X3.

The main component of 1h-s-CGLA performs the following for each sensor £ [13] until

the reduction on the estimation error given by Equation 10 is less than a given threshold:

for (each rectangle ¢ from 0 to my — 1) {
for (each label j from 0 to ny — 1) {
UORE
calculate h using Equation 6;

calculate estimation error, err;[j], using Equation 9;

}
I(i) «—arg mingio.. (n,—1)(erri[j]);
calculate h using Equation 6;

The breakpoint initialization method is used to initialize the labels of the rectangles.
This method initializes the labels by first pruning even more the final pruned subtrees,
F) and F, to the number of labels n; and ny getting the trees, F] and Fj and then
assigning the same label to all the rectangles of the trees F; and F5 that correspond to

one rectangle of the trees F| and Fj.

3 The methods

In order to design quantizers for a distributed estimation system in the case where only
a training set, 7, is available, we use the training set with a variation of the CGLA to
assign the best codeword to every point of the training set. Then we use a neural network

to represent the training points and their associated codewords for each quantizer.

3.1 A variation of the CGLA

We use a variation of the CGLA on every point of the training set. The CGLA is
very sensitive to the initialization of the codewords. One could randomly initialize the
codewords of the training points (i.e., with probability 1/n; we use a labelin 0, ..., (ny—

1)). However, this approach leads to an estimation error that converges to a point

that is worse than the one that it converges to if the codewords are initialized using
the previously described regression tree approach. The output of the regression tree
approach is a collection of rectangles along with their associated labels (codewords) such

that rectangles that have the same label form a quantizer partition.

We initialize the labels of the training points with the quantities {(X>") for quantizer
k. Then we use the Ih-CGLA in order to decide about the best label for every one of these
points. This algorithm does not consider groups of training points as the 1h-s-CGLA. It
considers individual points. Let the index ¢ go through all the training points and the
index j go through all the possible labels. Let also ny be the number of codewords and
my, be the number of rectangles of the quantizer k. The h-CGLA algorithm performs

the following for each sensor £:

lh-improve labels

1. t «1.

N

. j 0.

3. (XD .

N

. calculate h using Equation 3 and the estimation error, error[j], using Equation 5.

5. 7«7+ 1,if 7 < mny go to step 3.

(=2

. Z(X,’;’t) <—arg minj.o..(n,—1)(error[j]), calculate h using Equation 3.

7.t +t+1,ift <= M go to step 2 else stop.

The above procedure is repeated until the reduction on the estimation error becomes
less than a given threshold. In order to decide about the best label for a point this
lookahead algorithm changes temporarily the fusion center in order to calculate the effect
of every possible change. Moreover, it also keeps the fusion center table updated all the

time.

3.2 Neural network quantizers

The neural network that we use is a two-layer feed-forward network and the learning rule
is backpropagation with momentum and adaptive learning rate. The momentum method
decreases the probability that the network will get stuck in a shallow minimum in the
error surface and helps decrease training times. The adaptive learning rate decreases
training time by keeping the learning rate reasonably high while insuring stability. For the
first layer we use a hyperbolic tangent transfer function and for the second layer we use a
linear transfer function. This kind of networks has been proven capable of approximating

any function with a finite number of discontinuities with arbitrary accuracy.

The quantizer for each sensor k£ = 1,2 is a neural network, NN,. The system that we
propose for the case of 2 codewords for each quantizer is depicted in Figure 2. The only
input of the neural network at the sensor k is its observation, X}. The output of the
neural network is the associated label I'(X}) for this observation, where I'(X?) is the final
label of the point X} after the application of lh-CGLA. We use the unary representation
for the outputs of the neural network, so the number of outputs for NN, is n;, where
ng is the number of codewords for quantizer k. Let S; be the number of neurons of the
first layer of the neural network. We use ny neurons for the second layer (the output
layer). The weight and bias matrices for the two layers are the parameters of the neural
network. The dimensions for the weight and bias matrices are S; x 1, §1 x 1, ng x 57,
and 1 x ny for the first and the second layer respectively. The number of parameters, P,

used for the description of the two-layer neural network is

Sl(nk + 2) + ng. (11)

For the training of the neural network NN, for quantizer £ we use the following pair

10

of input-output for every training point ¢
b, b,
(X" ul' (X)) (12)

where u(z) is the unary representation of z.

Let f(Xp") be the output vector of the neural network for input X, after the training.
This output vector may not be in unary form so we select the max of its elements and we
report this as the codeword for quantizer k (this is performed by the Codeword Selector
module in Figure 2). We use the same notation u(.) for the unary transformation of the

output vector. The transmitted value from the sensor k£ to the fusion center is
b, bt
X' =u(f(X"). (13)

The fusion center table A that we use is the one that was produced using the regression

tree approach. The estimation error is then expressed as

2

Error = %;(9“) — hlu(FXE), u(F(51))) (14)

4 Implementation issues

In order to find the best label for every point of the training set we use the lh-CGLA
algorithm described in Section 3.1. Here we discuss important implementation issues

related to the calculation of the estimation error that is performed repeatedly in lh-

CGLA.

Recalling that [(X{) and I(X}) are the codewords for the observations X{ and X7

respectively before the use of the neural network, the estimation of the parameter 6 at

11

the fusion center can be expressed as follows:
09 = h(U(XT"), U(X5")) (15)

for a given point ¢ of the training set. The fusion center h is given by Eq. 3. The
estimation error that we try to minimize by improving the labeling scheme using the
lh-CGLA is:
Error = iﬁ@(t) - é(t))Q. (16)
Mi=

The fusion center table A can be computed in O(M) steps, where M is the number of
training points. We assume that a table of size M that gives the label associated with
every training point is available. Such a table can be constructed in O(1) steps. The

estimation error can then be computed in O(M) steps.

Given h and the labels of the points for X%, [(X?), the best label for the point X%

is u if it satisfies:

{Error[l(XP7) = u, I(X3)} < {Error|l(X®) =v,1(X5)} Vv #u. (17)

The naive way to find the best label for a given point is to change temporarily the
label of that point considering all the possible labels, recalculate the fusion center table
h and the estimation error for each one of them and choose the one that gives the smaller
estimation error. This procedure requires O(n;M?) steps for one pass of quantizer k.
However, the objective is to measure the goodness of a label for a certain point. Also
the change of the label of a single point affects only a small part of table A and a small

part of the calculation of the estimation error. The estimation error can also be written

12

as follows:

1 /M M M A
Error = — (Z o2 4 Z M2 _ 9 Z 0@0(0)) (18)
M \{= =1 =1

The first term is a constant quantity for the experiment and can be calculated once in

O(M) steps. The second term can be further expressed as:

M mi1 m2

> 002 =375 obs(i, j)h(i, §)° (19)

t=1 i=1j=1

where 0bs(i, j) is the number of observations of the (7,j)-th entry of the fusion center

table.

With the change of label of a single point for a quantizer, only two entries of the

fusion center table are changed. If the sum of #®) for each subset Ri,;

sum_0(i,j) = > o) (20)

t(x4,x7)YeRy,

of the training set is known then the new second term of Eq. 18 that considers the change
of a label can be calculated in O(1). A similar argument is used to show that the last
term of Eq. 18 can also be updated in order to take into account the change of a label
of a single point for a quantizer in O(1) steps. Here we assume that the previous value
of this term is also available. The update of the global variables that we use also takes
constant time. The new estimation error after one change of label of a certain point for a
quantizer can now be calculated in O(1). One pass of quantizer k£ has now been reduced

to O(ngM) steps.

13

5 Simulation results and discussion

In the simulations we consider the case where the observations at the quantizers are
scalar quantities of the form

xk=9+nk,k:1,2 (21)

where the noises n; at the sensors are Gaussian distributed with correlation coefficient
p and marginal distributions N(0,02), where o2 is the variance of the noises. The
parameter f has Gaussian distribution N (0, 1) and is independent of the noises ng, k =
1,2. The quantizers are designed using a training set 7 of 10, 000 samples and are tested
on a test set 7' of 10,000 samples that is independent of 7 although it is constructed the
same way as 7 is. We report results on the test set 7' unless otherwise stated. We use
the breakpoint initialization of labels in the regression tree approach. The value 0.005
was used for the error threshold in all experiments. The number of epochs that were
used to train the neural networks is 10, 000.

Prior to comparing the performance of regression tree and neural network quantizers
we run experiments to examine the effect of increasing the number of leaves while keeping
the number of labels constant. Figure 3 shows that initially performance improves as the
number of leaves increases until we reach a certain number of leaves for each regression
tree quantizer. From that point, and due to overtraining, quantizers with more leaves
start behaving worse than those with less leaves (recall that we measure performance on
7" and not on 7). Another important observation is that as the number of leaves and/or
p and o2 increase, the quantizers become non-breakpoint although initially all of them
started as breakpoint (see Table 2).

In Table 3 we compare the performance of the regression tree approach with 8, 32, 64,
and 128 leaves with that of the neural network. We use 2 codewords for each quantizer.

With 8 leaves and 2 codewords the maximum number of parameters for each quantizer

14

is 15 (7 parameters to describe the split points and 8 parameters for the corresponding
codewords). However, due to grouping of consecutive intervals that have the same label
to a single interval, the actual average number of parameters used for both quantizers
is 7. Increasing the number of leaves increases the average number of parameters used
by the regression tree approach. The neural network approach uses 5 (=3+2) neurons
which is 14 parameters for each quantizer according to Equation 11. The initialization of
labels prior to lh-CGLA uses the regression tree approach with 8 leaves and 2 codewords
for each quantizer. We present results for several values of o2 and for p = 0.85. The
average number of parameters used for both quantizers in each case is also presented.
The lowest value of the prediction error in each row of every table is highlighted.

The neural network is better than the regression tree approach with 8, 64, and 128
leaves for all values of the noise variance that we tested. For 32 leaves the neural network
is better than the regression tree approach for 11 out of the 13 noise variance values and
slightly worse, i.e., 0.2189 vs 0.2186 and 0.3368 vs 0.3357, for the other 2 values.

Summarizing, the neural network approach improves over the regression trees for
almost every value of the noise variance that we tested. For the very small number of
noise variances for which the neural network is not the best, its performance is very close

to the best performance.

Acknowledgments

We thank the anonymous referees for very helpful comments.

15

References

1]

2]

3]

[4]

[5]

(6]

[7]

8]

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth Inc., Belmont, CA, USA, 1984.

L. R. Carley, G. R. Ganger, and D. F. Nagle. MEMS-Based Integrated-Circuit
Mass-Storage Systems. Communications of the ACM, 43(11):73-80, Nov. 2000.

P. A. Chou, T. Lookabaugh, and R. M. Gray. Optimal Pruning with Applications to
Tree-Structured Source Coding and Modeling. IEEE Transactions on Information

Theory, 1T-35(2):299-315, Mar. 1989.

D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrumenting the world with
wireless sensor networks. In Proceedings of the International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), Salt Lake City, Utah, May 2001.

D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next Century Challenges:
Scalable Coordination in Sensor Networks. In Proceedings of the Fifth Annual
International Conference on Mobile Computing and Networks (MobiCOM), Seattle,
Washington, pages 263-270, Aug. 1999.

J. A. Gubner. Distributed Estimation and Quantization. IEEFE Transactions on

Information Theory, IT-39(4):1456-1459, Jul. 1993.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion: A Scalable and
Robust Communication Paradigm for Sensor Networks. In Proceedings of the Sizth
Annual International Conference on Mobile Computing and Networks (MobiCOM),
Boston, Massachusetts, pages 56—-67, Aug. 2000.

J. Kahn, R. Katz, and K. Pister. Emerging Challenges: Mobile Networking for

Smart Dust. Journal of Communications and Networks, 2(3):188-196, Sept. 2000.

16

[9] S.-Z. Kiang, R. L. Baker, G. J. Sullivan, and C.-Y. Chiu. Recursive Optimal Pruning
with Applications to Tree Structured Vector Quantizers. IEEE Transactions on

Image Processing, 1(2):162-169, Apr. 1992.

[10] W.-M. Lam and A. R. Reibman. Quantizer Design for Decentralized Estimation
Systems with Communications Constraints. In Proceedings of the 23rd Annual Con-

ference on Information Sciences and Systems, pages 489494, Baltimore, MD, USA|
Mar. 1989.

[11] W.-M. Lam and A. R. Reibman. Design of Quantizers for Decentralized Estimation

Systems. IEEE Transactions on Communications, 41(11):1602-1605, Nov. 1993.

[12] M. Longo, T. D. Lookabaugh, and R. M. Gray. Quantization for Decentralized
Hypothesis Testing under Communication Constraints. IEEE Transactions on In-

formation Theory, IT-36(2):241-255, Mar. 1990.

[13] V. Megalooikonomou and Y. Yesha. Quantization for Distributed Estimation with
Unknown Observation Statistics. In Proceedings of the 31th Annual Conference on

Information Sciences and Systems, Baltimore, MD, USA, Mar. 1997.

[14] V. Megalooikonomou and Y. Yesha. Quantizer Design for Distributed Estimation
with Communication Constraints and Unknown Observation Statistics. IEEE Trans-

actions on Communications, 48(2):181-184, 2000.

[15] B. Warneke, M. Last, B. Liebowitz, and K. Pister. Smart Dust: Communicating
with a Cubic-Millimeter Computer. IEEE Computer Magazine, pages 44-51, Jan.
2001.

17

h(i
Xk[l] <c, X k[l] (i)

Xk[l] <c Xk[Z] <C3

R]_ ---R_

(a (b)

Figure 1: A regression tree of two variables (a) and its partitions (b).

18

Quantizer Quantizer

Q; Q,

Codeword Codeword
Selector Selector
N N
X1 X5
Fusion Center
Table
Estimate of ©

Figure 2: A neural network quantizer for each sensor of the distributed estimation system
(2 codewords for each quantizer).

19

Symbol

Definition

Nk, Ty

quantizer for sensor k

partition regions for quantizers @1, Q)9
={Uy;i=1,...,N},{V;;j=1,..., L}, respectively

number of codewords, number of leaves for Q)

neural network quantizer for sensor k

fusion center function

unobservable quantity the system tries to estimate and its estimate
random observation vector at sensor k

transmitted value for observation X}

the training set, {(X{, X3)®,00;¢ =1,..., M}

various subsets of the training set 7

label of the point X7

label of points in rectangle r

number of observations of the (7, j)-th entry of the fusion center table
error in estimating 6

unary representation of a number z

Table 1: Symbol Table.

\ p 4 leaves 8 leaves 16 leaves 32 leaves
o2\ |0]05]085]0]05[085]0[05][085] 0]0.5]0.85
0005-1 -1 - [+1+T +[+][+]+[+]+] +
0050 || - - | - [+ |+ | + |[+]|+]|+ ||+]+] +
0100 | - [- | = |+ + | + |+|+] + [|+]+] =+
0150 | - [= | = |+ |+ | + |+|+] + [|[+]+] +
0200 | - [- | - |+ + | + |+|+] + [|+]+]+
0300 | -| - | - |-+ |+ ||+]|+] + |+ +] +
0400 | - | - | - |-+ | + ||-|+] + |+ +] +
0.500 || - | - - -+ -]+ |+]+
0.600 || - | - - - | - + -1+ + ||+] +] +
0.700 || - | - - - | - + -1+ + ||+] +] +
0800 | - | - | - [-|-| +||-|+] + |+|+] +
0900 | -| - | - [-|-| +||-|+] + |+|+] +
1.000 || - | - - - | - + |-+ + |+ +]| +

Table 2: Effect of the number of leaves to quantizers being breakpoint (-) or non-
breakpoint (+) for several values of o2 and for p = 0,0.5, and 0.85. [The quantizers
were initialized as breakpoint and 4 labels were used for each one].

20

0.6 - correlation coefficient: 0.85

#labels: (2,2)
05 -
0.4 r
prediction
error
0.3 -

o——o 8 leaves, 7 params
o- — -0 32 leaves, 12 params

0.2
& ---© 64 leaves, 23 params
~—= 128 leaves, 61 params
0.1 > 256 leaves, 156 params
OO n 1 n 1 n 1 n 1 n
0.0 0.2 0.4 0.6 0.8 1.0

variance

Figure 3: Effect of the number of leaves on the performance of the quantizers.

21

Table 3: Performance comparison of the neural network approach and the regression tree

approach.

o;, bp_init, (2,2) labels, p = 0.85

regr.tree | regr.tree regr.tree regr.tree NN

8 leaves 32 leaves 64 leaves | 128 leaves || 5 neurons

7 params | 12 params | 23 params | 61 params || 28 params
0.001 0.1311 0.1442 0.1455 0.1436 0.1209
0.050 0.1831 0.1941 0.2165 0.2230 0.1715
0.100 0.2233 0.2186 0.2686 0.2504 0.2189
0.150 0.2691 0.2457 0.2771 0.2799 0.2409
0.200 0.2782 0.2717 0.2729 0.2795 0.2698
0.300 0.3405 0.3357 0.3392 0.3455 0.3368
0.400 0.3929 0.3894 0.3913 0.3977 0.3835
0.500 0.4368 0.4274 0.4355 0.4547 0.4256
0.600 0.4558 0.4607 0.4644 0.4910 0.4558
0.700 0.5179 0.4926 0.5009 0.5245 0.4863
0.800 0.5233 0.5237 0.5312 0.5621 0.5213
0.900 0.5486 0.5473 0.5548 0.6069 0.5331
1.000 0.5844 0.5723 0.5807 0.6348 0.5670

22

