
PostgreSQL Tutorial

The PostgreSQL Development Team

Edited by

Thomas Lockhart

PostgreSQL Tutorial
by The PostgreSQL Development Team

Edited by Thomas Lockhart

PostgreSQL
 is Copyright © 1996-9 by the Postgres Global Development Group.

i

Table of Contents

Summary ..i

1. Introduction ..1

What is Postgres?..1
A Short History of Postgres ..2

The Berkeley Postgres Project ..2
Postgres95 ...2
PostgreSQL ...3

About This Release...3
Resources ..4
Terminology..5
Notation ..5
Y2K Statement..6
Copyrights and Trademarks ..6

2. SQL..8

The Relational Data Model...8
Relational Data Model Formalities ...9

Domains vs. Data Types..10
Operations in the Relational Data Model..10

Relational Algebra...10
Relational Calculus ...13
Tuple Relational Calculus ...13
Relational Algebra vs. Relational Calculus...13

The SQL Language ...14
Select ...14

Simple Selects..14
Joins ...16
Aggregate Operators ..16
Aggregation by Groups..17
Having..18
Subqueries..18
Union, Intersect, Except...19

Data Definition..20
Create Table...20
Data Types in SQL ..21
Create Index...21
Create View ...22
Drop Table, Drop Index, Drop View ...22

Data Manipulation...23
Insert Into...23
Update..24
Delete...24

System Catalogs ..24
Embedded SQL ...24

ii

3. Architecture ..26

Postgres Architectural Concepts ...26

4. Getting Started ...28

Setting Up Your Environment ..28
Starting the Interactive Monitor (psql)..29
Managing a Database..29

Creating a Database...29
Accessing a Database ..30
Destroying a Database...31

5. The Query Language..32

Interactive Monitor ...32
Concepts ...32
Creating a New Class..33
Populating a Class with Instances...33
Querying a Class...33
Redirecting SELECT Queries...34
Joins Between Classes ..35
Updates ...36
Deletions ...36
Using Aggregate Functions...36

6. Advanced Postgres SQL Features...38

Inheritance ..38
Non-Atomic Values ..39

Arrays..39
Time Travel ..40
More Advanced Features ..41

Bibliography ...42

iii

List of Figures

3-1. How a connection is established ...27

iv

List of Examples

2-1. The Suppliers and Parts Database ...9
2-2. An Inner Join...11
2-3. A Query Using Relational Algebra ...12
2-4. Simple Query with Qualification ..14
2-5. Aggregates ..16
2-6. Aggregates ..17
2-7. Having...18
2-8. Subselect ...18
2-9. Union, Intersect, Except..19
2-10. Table Creation...20
2-11. Create Index ..21

i

Summary

 Postgres, developed originally in the UC Berkeley Computer Science Department, pioneered
many of the object-relational concepts now becoming available in some commercial databases.
It provides SQL92/SQL3 language support, transaction integrity, and type extensibility.
PostgreSQL is a public-domain, open source descendant of this original Berkeley code.

1

Chapter 1. Introduction

 This document is the user manual for the PostgreSQL (http://postgresql.org/) database
management system, originally developed at the University of California at Berkeley.
PostgreSQL is based on Postgres release 4.2
(http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html). The Postgres project, led by
Professor Michael Stonebraker, was sponsored by the Defense Advanced Research Projects
Agency (DARPA), the Army Research Office (ARO), the National Science Foundation (NSF),
and ESL, Inc.

What is Postgres?

 Traditional relational database management systems (DBMSs) support a data model consisting
of a collection of named relations, containing attributes of a specific type. In current
commercial systems, possible types include floating point numbers, integers, character strings,
money, and dates. It is commonly recognized that this model is inadequate for future data
processing applications. The relational model successfully replaced previous models in part
because of its "Spartan simplicity". However, as mentioned, this simplicity often makes the
implementation of certain applications very difficult. Postgres offers substantial additional
power by incorporating the following four additional basic concepts in such a way that users
can easily extend the system:

classes
inheritance
types
functions

 Other features provide additional power and flexibility:

constraints
triggers
rules
transaction integrity

 These features put Postgres into the category of databases referred to as object-relational. Note
that this is distinct from those referred to as object-oriented, which in general are not as well
suited to supporting the traditional relational database languages. So, although Postgres has
some object-oriented features, it is firmly in the relational database world. In fact, some
commercial databases have recently incorporated features pioneered by Postgres.

Chapter 1. Introduction

2

A Short History of Postgres

The Berkeley Postgres Project

 Implementation of the Postgres DBMS began in 1986. The initial concepts for the system were
presented in The Design of Postgres and the definition of the initial data model appeared in The
Postgres Data Model. The design of the rule system at that time was described in The Design
of the Postgres Rules System. The rationale and architecture of the storage manager were
detailed in The Postgres Storage System.

Postgres has undergone several major releases since then. The first "demoware" system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. We released
Version 1, described in The Implementation of Postgres, to a few external users in June 1989.
In response to a critique of the first rule system (A Commentary on the Postgres Rules System),
the rule system was redesigned (On Rules, Procedures, Caching and Views in Database
Systems) and Version 2 was released in June 1990 with the new rule system. Version 3
appeared in 1991 and added support for multiple storage managers, an improved query
executor, and a rewritten rewrite rule system. For the most part, releases since then have
focused on portability and reliability.

Postgres has been used to implement many different research and production applications.
These include: a financial data analysis system, a jet engine performance monitoring package,
an asteroid tracking database, a medical information database, and several geographic
information systems. Postgres has also been used as an educational tool at several universities.
Finally, Illustra Information Technologies (http://www.illustra.com/) (since merged into
Informix (http://www.informix.com/)) picked up the code and commercialized it. Postgres
became the primary data manager for the Sequoia 2000
(http://www.sdsc.edu/0/Parts_Collabs/S2K/s2k_home.html) scientific computing project in late
1992. Furthermore, the size of the external user community nearly doubled during 1993. It
became increasingly obvious that maintenance of the prototype code and support was taking up
large amounts of time that should have been devoted to database research. In an effort to reduce
this support burden, the project officially ended with Version 4.2.

Postgres95

In 1994, Andrew Yu (mailto:ayu@informix.com) and Jolly Chen
(http://http.cs.berkeley.edu/~jolly/) added a SQL language interpreter to Postgres, and the code
was subsequently released to the Web to find its own way in the world. Postgres95 was a
public-domain, open source descendant of this original Berkeley code.

Postgres95 is a derivative of the last official release of Postgres (version 4.2). The code is now
completely ANSI C and the code size has been trimmed by 25%. There are a lot of internal
changes that improve performance and code maintainability. Postgres95 v1.0.x runs about
30-50% faster on the Wisconsin Benchmark compared to v4.2. Apart from bug fixes, these are
the major enhancements:

 The query language Postquel has been replaced with SQL (implemented in the server). We
do not yet support subqueries (which can be imitated with user defined SQL functions).
Aggregates have been re-implemented. We also added support for ‘‘GROUP BY’’. The
libpq interface is still available for C programs.

Chapter 1. Introduction

3

 In addition to the monitor program, we provide a new program (psql) which supports GNU
readline.

 We added a new front-end library, libpgtcl, that supports Tcl-based clients. A sample shell,
pgtclsh, provides new Tcl commands to interface tcl programs with the Postgres95 backend.

 The large object interface has been overhauled. We kept Inversion large objects as the only
mechanism for storing large objects. (This is not to be confused with the Inversion file
system which has been removed.)

 The instance-level rule system has been removed. Rules are still available as rewrite rules.

 A short tutorial introducing regular SQL features as well as those of ours is distributed with
the source code.

 GNU make (instead of BSD make) is used for the build. Also, Postgres95 can be compiled
with an unpatched gcc (data alignment of doubles has been fixed).

PostgreSQL

By 1996, it became clear that the name Postgres95 would not stand the test of time. A new
name, PostgreSQL, was chosen to reflect the relationship between original Postgres and the
more recent versions with SQL capability. At the same time, the version numbering was reset
to start at 6.0, putting the numbers back into the sequence originally begun by the Postgres
Project.

The emphasis on development for the v1.0.x releases of Postgres95 was on stabilizing the
backend code. With the v6.x series of PostgreSQL, the emphasis has shifted from identifying
and understanding existing problems in the backend to augmenting features and capabilities,
although work continues in all areas.

Major enhancements include:

Important backend features, including subselects, defaults, constraints, and triggers, have
been implemented.

Additional SQL92-compliant language features have been added, including primary keys,
quoted identifiers, literal string type coersion, type casting, and binary and hexadecimal
integer input.

Built-in types have been improved, including new wide-range date/time types and additional
geometric type support.

Overall backend code speed has been increased by approximately 20-40%, and backend
startup time has decreased 80% since v6.0 was released.

About This Release

 PostgreSQL is available without cost. This manual describes version 6.5 of PostgreSQL.

 We will use Postgres to mean the version distributed as PostgreSQL.

 Check the Administrator’s Guide for a list of currently supported machines. In general,
Postgres is portable to any Unix/Posix-compatible system with full libc library support.

Chapter 1. Introduction

4

Resources

This manual set is organized into several parts:

Tutorial

 An introduction for new users. Does not cover advanced features.

User’s Guide

 General information for users, including available commands and data types.

Programmer’s Guide

 Advanced information for application programmers. Topics include type and function
extensibility, library interfaces, and application design issues.

Administrator’s Guide

 Installation and management information. List of supported machines.

Developer’s Guide

 Information for Postgres developers. This is intended for those who are contributing to the
Postgres project; application development information should appear in the Programmer’s
Guide. Currently included in the Programmer’s Guide.

Reference Manual

 Detailed reference information on command syntax. Currently included in the User’s
Guide.

In addition to this manual set, there are other resources to help you with Postgres installation
and use:

man pages

 The man pages have general information on command syntax.

FAQs

 The Frequently Asked Questions (FAQ) documents address both general issues and some
platform-specific issues.

READMEs

 README files are available for some contributed packages.

Web Site

 The Postgres (postgresql.org) web site has some information not appearing in the
distribution. There is a mhonarc catalog of mailing list traffic which is a rich resource for
many topics.

Chapter 1. Introduction

5

Mailing Lists

 The Postgres Questions (mailto:questions@postgresql.org) mailing list is a good place to
have user questions answered. Other mailing lists are available; consult the web page for
details.

Yourself!

 Postgres is an open source product. As such, it depends on the user community for
ongoing support. As you begin to use Postgres, you will rely on others for help, either
through the documentation or through the mailing lists. Consider contributing your
knowledge back. If you learn something which is not in the documentation, write it up and
contribute it. If you add features to the code, contribute it. Even those without a lot of
experience can provide corrections and minor changes in the documentation, and that is a
good way to start. The Postgres Documentation (mailto:docs@postgresql.org) mailing list
is the place to get going.

Terminology

 In the following documentation, site may be interpreted as the host machine on which Postgres
is installed. Since it is possible to install more than one set of Postgres databases on a single
host, this term more precisely denotes any particular set of installed Postgres binaries and
databases.

 The Postgres superuser is the user named postgres who owns the Postgres binaries and
database files. As the database superuser, all protection mechanisms may be bypassed and any
data accessed arbitrarily. In addition, the Postgres superuser is allowed to execute some support
programs which are generally not available to all users. Note that the Postgres superuser is not
the same as the Unix superuser (which will be referred to as root). The superuser should have a
non-zero user identifier (UID) for security reasons.

 The database administrator or DBA, is the person who is responsible for installing Postgres
with mechanisms to enforce a security policy for a site. The DBA can add new users by the
method described below and maintain a set of template databases for use by createdb.

 The postmaster is the process that acts as a clearing-house for requests to the Postgres system.
Frontend applications connect to the postmaster, which keeps tracks of any system errors and
communication between the backend processes. The postmaster can take several command-line
arguments to tune its behavior. However, supplying arguments is necessary only if you intend
to run multiple sites or a non-default site.

 The Postgres backend (the actual executable program postgres) may be executed directly from
the user shell by the Postgres super-user (with the database name as an argument). However,
doing this bypasses the shared buffer pool and lock table associated with a postmaster/site,
therefore this is not recommended in a multiuser site.

Notation

 ... or /usr/local/pgsql/ at the front of a file name is used to represent the path to the Postgres
superuser’s home directory.

Chapter 1. Introduction

6

 In a command synopsis, brackets ([and]) indicate an optional phrase or keyword. Anything in
braces ({ and }) and containing vertical bars (|) indicates that you must choose one.

 In examples, parentheses ((and)) are used to group boolean expressions. | is the boolean
operator OR.

 Examples will show commands executed from various accounts and programs. Commands
executed from the root account will be preceeded with > . Commands executed from the
Postgres superuser account will be preceeded with % , while commands executed from an
unprivileged user’s account will be preceeded with $. SQL commands will be preceeded with
=> or will have no leading prompt, depending on the context.

Note: At the time of writing (Postgres v6.5) the notation for flagging commands is not
universally consistant throughout the documentation set. Please report problems to the
Documentation Mailing List (mailto:docs@postgresql.org).

Y2K Statement

Author: Written by Thomas Lockhart (mailto:lockhart@alumni.caltech.edu) on 1998-10-22.

 The PostgreSQL Global Development Team provides the Postgres software code tree as a
public service, without warranty and without liability for it’s behavior or performance.
However, at the time of writing:

 The author of this statement, a volunteer on the Postgres support team since November,
1996, is not aware of any problems in the Postgres code base related to time transitions
around Jan 1, 2000 (Y2K).

 The author of this statement is not aware of any reports of Y2K problems uncovered in
regression testing or in other field use of recent or current versions of Postgres. We might
have expected to hear about problems if they existed, given the installed base and the active
participation of users on the support mailing lists.

 To the best of the author’s knowledge, the assumptions Postgres makes about dates
specified with a two-digit year are documented in the current User’s Guide
(http://www.postgresql.org/docs/user/datatype.htm) in the chapter on data types. For
two-digit years, the significant transition year is 1970, not 2000; e.g. 70-01-01 is interpreted
as 1970-01-01 , whereas 69-01-01 is interpreted as 2069-01-01 .

 Any Y2K problems in the underlying OS related to obtaining "the current time" may
propagate into apparent Y2K problems in Postgres.

 Refer to The Gnu Project (http://www.gnu.org/software/year2000.html) and The Perl Institute
(http://language.perl.com/news/y2k.html) for further discussion of Y2K issues, particularly as it
relates to open source, no fee software.

Copyrights and Trademarks

 PostgreSQL is Copyright © 1996-9 by the PostgreSQL Global Development Group, and is
distributed under the terms of the Berkeley license.

 Postgres95 is Copyright © 1994-5 by the Regents of the University of California. Permission
to use, copy, modify, and distribute this software and its documentation for any purpose,

Chapter 1. Introduction

7

without fee, and without a written agreement is hereby granted, provided that the above
copyright notice and this paragraph and the following two paragraphs appear in all copies.

 In no event shall the University of California be liable to any party for direct, indirect, special,
incidental, or consequential damages, including lost profits, arising out of the use of this
software and its documentation, even if the University of California has been advised of the
possibility of such damage.

 The University of California specifically disclaims any warranties, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. The software
provided hereunder is on an "as-is" basis, and the University of California has no obligations to
provide maintainance, support, updates, enhancements, or modifications.

 UNIX is a trademark of X/Open, Ltd. Sun4, SPARC, SunOS and Solaris are trademarks of Sun
Microsystems, Inc. DEC, DECstation, Alpha AXP and ULTRIX are trademarks of Digital
Equipment Corp. PA-RISC and HP-UX are trademarks of Hewlett-Packard Co. OSF/1 is a
trademark of the Open Software Foundation.

8

Chapter 2. SQL

 This chapter originally appeared as a part of Stefan Simkovics’ Master’s Thesis (Simkovics,
1998).

 SQL has become the most popular relational query language. The name SQL is an
abbreviation for Structured Query Language. In 1974 Donald Chamberlin and others defined
the language SEQUEL (Structured English Query Language) at IBM Research. This language
was first implemented in an IBM prototype called SEQUEL-XRM in 1974-75. In 1976-77 a
revised version of SEQUEL called SEQUEL/2 was defined and the name was changed to SQL
subsequently.

 A new prototype called System R was developed by IBM in 1977. System R implemented a
large subset of SEQUEL/2 (now SQL) and a number of changes were made to SQL during the
project. System R was installed in a number of user sites, both internal IBM sites and also some
selected customer sites. Thanks to the success and acceptance of System R at those user sites
IBM started to develop commercial products that implemented the SQL language based on the
System R technology.

 Over the next years IBM and also a number of other vendors announced SQL products such as
SQL/DS (IBM), DB2 (IBM), ORACLE (Oracle Corp.), DG/SQL (Data General Corp.), and
SYBASE (Sybase Inc.).

 SQL is also an official standard now. In 1982 the American National Standards Institute
(ANSI) chartered its Database Committee X3H2 to develop a proposal for a standard relational
language. This proposal was ratified in 1986 and consisted essentially of the IBM dialect of
SQL. In 1987 this ANSI standard was also accepted as an international standard by the
International Organization for Standardization (ISO). This original standard version of SQL is
often referred to, informally, as "SQL/86". In 1989 the original standard was extended and this
new standard is often, again informally, referred to as "SQL/89". Also in 1989, a related
standard called Database Language Embedded SQL (ESQL) was developed.

 The ISO and ANSI committees have been working for many years on the definition of a
greatly expanded version of the original standard, referred to informally as SQL2 or SQL/92.
This version became a ratified standard - "International Standard ISO/IEC 9075:1992, Database
Language SQL" - in late 1992. SQL/92 is the version normally meant when people refer to "the
SQL standard". A detailed description of SQL/92 is given in Date and Darwen, 1997. At the
time of writing this document a new standard informally referred to as SQL3 is under
development. It is planned to make SQL a Turing-complete language, i.e. all computable
queries (e.g. recursive queries) will be possible. This is a very complex task and therefore the
completion of the new standard can not be expected before 1999.

The Relational Data Model

 As mentioned before, SQL is a relational language. That means it is based on the relational
data model first published by E.F. Codd in 1970. We will give a formal description of the
relational model later (in Relational Data Model Formalities) but first we want to have a look
at it from a more intuitive point of view.

Chapter 2. SQL

9

 A relational database is a database that is perceived by its users as a collection of tables (and
nothing else but tables). A table consists of rows and columns where each row represents a
record and each column represents an attribute of the records contained in the table. The
Suppliers and Parts Database shows an example of a database consisting of three tables:

 SUPPLIER is a table storing the number (SNO), the name (SNAME) and the city (CITY) of
a supplier.

 PART is a table storing the number (PNO) the name (PNAME) and the price (PRICE) of a
part.

 SELLS stores information about which part (PNO) is sold by which supplier (SNO). It
serves in a sense to connect the other two tables together.

Example 2-1. The Suppliers and Parts Database

 SUPPLIER SNO | SNAME | CITY SELLS SNO | PNO
 -----+---------+-------- -----+-----
 1 | Smith | London 1 | 1
 2 | Jones | Paris 1 | 2
 3 | Adams | Vienna 2 | 4
 4 | Blake | Rome 3 | 1
 3 | 3
 4 | 2
 PART PNO | PNAME | PRICE 4 | 3
 -----+---------+--------- 4 | 4
 1 | Screw | 10
 2 | Nut | 8
 3 | Bolt | 15
 4 | Cam | 25

 The tables PART and SUPPLIER may be regarded as entities and SELLS may be regarded as
a relationship between a particular part and a particular supplier.

 As we will see later, SQL operates on tables like the ones just defined but before that we will
study the theory of the relational model.

Relational Data Model Formalities

 The mathematical concept underlying the relational model is the set-theoretic relation which is
a subset of the Cartesian product of a list of domains. This set-theoretic relation gives the
model its name (do not confuse it with the relationship from the Entity-Relationship model).
Formally a domain is simply a set of values. For example the set of integers is a domain. Also
the set of character strings of length 20 and the real numbers are examples of domains.

 The Cartesian product of domains D1, D2, ... Dk, written D1 × D2 × ... × Dk is the set of all
k-tuples v1, v2, ... vk, such that v1 ∈ D1, v1 ∈ D1, ... vk ∈ Dk.

 For example, when we have k=2, D1={0,1} and D2={a,b,c} then D1 × D2 is
{(0,a),(0,b),(0,c),(1,a),(1,b),(1,c)}.

 A Relation is any subset of the Cartesian product of one or more domains: R ⊆ D1 × D2 × ... ×
Dk.

 For example {(0,a),(0,b),(1,a)} is a relation; it is in fact a subset of D1 × D2 mentioned above.

Chapter 2. SQL

10

 The members of a relation are called tuples. Each relation of some Cartesian product D1 × D2
× ... × Dk is said to have arity k and is therefore a set of k-tuples.

 A relation can be viewed as a table (as we already did, remember The Suppliers and Parts
Database where every tuple is represented by a row and every column corresponds to one
component of a tuple. Giving names (called attributes) to the columns leads to the definition of
a relation scheme.

 A relation scheme R is a finite set of attributes A1, A2, ... Ak. There is a domain Di, for each
attribute Ai, 1 <= i <= k, where the values of the attributes are taken from. We often write a
relation scheme as R(A1, A2, ... Ak).

Note: A relation scheme is just a kind of template whereas a relation is an instance of a
relation scheme. The relation consists of tuples (and can therefore be viewed as a table);
not so the relation scheme.

Domains vs. Data Types

 We often talked about domains in the last section. Recall that a domain is, formally, just a set
of values (e.g., the set of integers or the real numbers). In terms of database systems we often
talk of data types instead of domains. When we define a table we have to make a decision about
which attributes to include. Additionally we have to decide which kind of data is going to be
stored as attribute values. For example the values of SNAME from the table SUPPLIER will be
character strings, whereas SNO will store integers. We define this by assigning a data type to
each attribute. The type of SNAME will be VARCHAR(20) (this is the SQL type for character
strings of length <= 20), the type of SNO will be INTEGER. With the assignment of a data
type we also have selected a domain for an attribute. The domain of SNAME is the set of all
character strings of length <= 20, the domain of SNO is the set of all integer numbers.

Operations in the Relational Data Model

 In the previous section (Relational Data Model Formalities) we defined the mathematical
notion of the relational model. Now we know how the data can be stored using a relational data
model but we do not know what to do with all these tables to retrieve something from the
database yet. For example somebody could ask for the names of all suppliers that sell the part
’Screw’. Therefore two rather different kinds of notations for expressing operations on relations
have been defined:

 The Relational Algebra which is an algebraic notation, where queries are expressed by
applying specialized operators to the relations.

 The Relational Calculus which is a logical notation, where queries are expressed by
formulating some logical restrictions that the tuples in the answer must satisfy.

Relational Algebra

 The Relational Algebra was introduced by E. F. Codd in 1972. It consists of a set of operations
on relations:

Chapter 2. SQL

11

 SELECT (ó): extracts tuples from a relation that satisfy a given restriction. Let R be a table
that contains an attribute A. óA=a(R) = {t ∈ R ? t(A) = a} where t denotes a tuple of R and
t(A) denotes the value of attribute A of tuple t.

 PROJECT (ð): extracts specified attributes (columns) from a relation. Let R be a relation
that contains an attribute X. ðX(R) = {t(X) ? t ∈ R}, where t(X) denotes the value of
attribute X of tuple t.

 PRODUCT (×): builds the Cartesian product of two relations. Let R be a table with arity k1
and let S be a table with arity k2. R × S is the set of all k1 + k2-tuples whose first k1
components form a tuple in R and whose last k2 components form a tuple in S.

 UNION (∪): builds the set-theoretic union of two tables. Given the tables R and S (both

must have the same arity), the union R ∪ S is the set of tuples that are in R or S or both.

 INTERSECT (∩): builds the set-theoretic intersection of two tables. Given the tables R and

S, R ∪ S is the set of tuples that are in R and in S. We again require that R and S have the
same arity.

 DIFFERENCE (− or ?): builds the set difference of two tables. Let R and S again be two
tables with the same arity. R - S is the set of tuples in R but not in S.

 JOIN (∏): connects two tables by their common attributes. Let R be a table with the
attributes A,B and C and let S be a table with the attributes C,D and E. There is one attribute
common to both relations, the attribute C. R ∏ S = ðR.A,R.B,R.C,S.D,S.E(óR.C=S.C(R ×
S)). What are we doing here? We first calculate the Cartesian product R × S. Then we select
those tuples whose values for the common attribute C are equal (óR.C = S.C). Now we have
a table that contains the attribute C two times and we correct this by projecting out the
duplicate column.

Example 2-2. An Inner Join

 Let’s have a look at the tables that are produced by evaluating the steps necessary for a join.
Let the following two tables be given:
 R A | B | C S C | D | E
 ---+---+--- ---+---+---
 1 | 2 | 3 3 | a | b
 4 | 5 | 6 6 | c | d
 7 | 8 | 9

 First we calculate the Cartesian product R × S and get:

 R x S A | B | R.C | S.C | D | E
 ---+---+-----+-----+---+---
 1 | 2 | 3 | 3 | a | b
 1 | 2 | 3 | 6 | c | d
 4 | 5 | 6 | 3 | a | b
 4 | 5 | 6 | 6 | c | d
 7 | 8 | 9 | 3 | a | b
 7 | 8 | 9 | 6 | c | d

 After the selection óR.C=S.C(R × S) we get:

 A | B | R.C | S.C | D | E
 ---+---+-----+-----+---+---

Chapter 2. SQL

12

 1 | 2 | 3 | 3 | a | b
 4 | 5 | 6 | 6 | c | d

 To remove the duplicate column S.C we project it out by the following operation:
ðR.A,R.B,R.C,S.D,S.E(óR.C=S.C(R × S)) and get:

 A | B | C | D | E
 ---+---+---+---+---
 1 | 2 | 3 | a | b
 4 | 5 | 6 | c | d

 DIVIDE (÷): Let R be a table with the attributes A, B, C, and D and let S be a table with the
attributes C and D. Then we define the division as: R ÷ S = {t ? ∀ ts ∈ S ∃ tr ∈ R such that

tr(A,B)=t∧tr(C,D)=ts} where tr(x,y) denotes a tuple of table R that consists only of the
components x and y. Note that the tuple t only consists of the components A and B of
relation R.

 Given the following tables

 R A | B | C | D S C | D
 ---+---+---+--- ---+---
 a | b | c | d c | d
 a | b | e | f e | f
 b | c | e | f
 e | d | c | d
 e | d | e | f
 a | b | d | e

 R ÷ S is derived as

 A | B
 ---+---
 a | b
 e | d

 For a more detailed description and definition of the relational algebra refer to [Ullman, 1988]
or [Date, 1994].

Example 2-3. A Query Using Relational Algebra

 Recall that we formulated all those relational operators to be able to retrieve data from the
database. Let’s return to our example from the previous section (Operations in the Relational
Data Model) where someone wanted to know the names of all suppliers that sell the part
Screw. This question can be answered using relational algebra by the following operation:
ðSUPPLIER.SNAME(óPART.PNAME=’Screw’(SUPPLIER ∏ SELLS ∏ PART))

 We call such an operation a query. If we evaluate the above query against the our example
tables (The Suppliers and Parts Database) we will obtain the following result:
 SNAME

 Smith
 Adams

Chapter 2. SQL

13

Relational Calculus

 The relational calculus is based on the first order logic. There are two variants of the relational
calculus:

 The Domain Relational Calculus (DRC), where variables stand for components (attributes)
of the tuples.

 The Tuple Relational Calculus (TRC), where variables stand for tuples.

 We want to discuss the tuple relational calculus only because it is the one underlying the most
relational languages. For a detailed discussion on DRC (and also TRC) see [Date, 1994] or
[Ullman, 1988].

Tuple Relational Calculus

 The queries used in TRC are of the following form: x(A) ? F(x) where x is a tuple variable A is
a set of attributes and F is a formula. The resulting relation consists of all tuples t(A) that
satisfy F(t).

 If we want to answer the question from example A Query Using Relational Algebra using TRC
we formulate the following query:

 {x(SNAME) ? x ∈ SUPPLIER ∧ \nonumber
 ∃ y ∈ SELLS ∃ z ∈ PART (y(SNO)=x(SNO) ∧ \nonumber
 z(PNO)=y(PNO) ∧ \nonumber
 z(PNAME)=’Screw’)} \nonumber

 Evaluating the query against the tables from The Suppliers and Parts Database again leads to
the same result as in A Query Using Relational Algebra.

Relational Algebra vs. Relational Calculus

 The relational algebra and the relational calculus have the same expressive power; i.e. all
queries that can be formulated using relational algebra can also be formulated using the
relational calculus and vice versa. This was first proved by E. F. Codd in 1972. This proof is
based on an algorithm (Codd’s reduction algorithm) by which an arbitrary expression of the
relational calculus can be reduced to a semantically equivalent expression of relational algebra.
For a more detailed discussion on that refer to [Date, 1994] and [Ullman, 1988].

 It is sometimes said that languages based on the relational calculus are "higher level" or "more
declarative" than languages based on relational algebra because the algebra (partially) specifies
the order of operations while the calculus leaves it to a compiler or interpreter to determine the
most efficient order of evaluation.

Chapter 2. SQL

14

The SQL Language

 As is the case with most modern relational languages, SQL is based on the tuple relational
calculus. As a result every query that can be formulated using the tuple relational calculus (or
equivalently, relational algebra) can also be formulated using SQL. There are, however,
capabilities beyond the scope of relational algebra or calculus. Here is a list of some additional
features provided by SQL that are not part of relational algebra or calculus:

 Commands for insertion, deletion or modification of data.

 Arithmetic capability: In SQL it is possible to involve arithmetic operations as well as
comparisons, e.g. A < B + 3. Note that + or other arithmetic operators appear neither in
relational algebra nor in relational calculus.

 Assignment and Print Commands: It is possible to print a relation constructed by a query
and to assign a computed relation to a relation name.

 Aggregate Functions: Operations such as average, sum, max, etc. can be applied to columns
of a relation to obtain a single quantity.

Select

 The most often used command in SQL is the SELECT statement, used to retrieve data. The
syntax is:

 SELECT [ALL|DISTINCT]
 { * | expr_1 [AS c_alias_1] [, ...
 [, expr_k [AS c_alias_k]]]}
 FROM table_name_1 [t_alias_1]
 [, ... [, table_name_n [t_alias_n]]]
 [WHERE condition]
 [GROUP BY name_of_attr_i
 [,... [, name_of_attr_j]] [HAVING condition]]
 [{UNION [ALL] | INTERSECT | EXCEPT} SELECT ...]
 [ORDER BY name_of_attr_i [ASC|DESC]
 [, ... [, name_of_attr_j [ASC|DESC]]]];

 Now we will illustrate the complex syntax of the SELECT statement with various examples.
The tables used for the examples are defined in The Suppliers and Parts Database.

Simple Selects

 Here are some simple examples using a SELECT statement:

Example 2-4. Simple Query with Qualification

 To retrieve all tuples from table PART where the attribute PRICE is greater than 10 we
formulate the following query:
 SELECT * FROM PART
 WHERE PRICE > 10;

Chapter 2. SQL

15

 and get the table:
 PNO | PNAME | PRICE
 -----+---------+--------
 3 | Bolt | 15
 4 | Cam | 25

 Using "*" in the SELECT statement will deliver all attributes from the table. If we want to
retrieve only the attributes PNAME and PRICE from table PART we use the statement:
 SELECT PNAME, PRICE
 FROM PART
 WHERE PRICE > 10;

 In this case the result is:
 PNAME | PRICE
 --------+--------
 Bolt | 15
 Cam | 25

 Note that the SQL SELECT corresponds to the "projection" in relational algebra not to the
"selection" (see Relational Algebra for more details).

 The qualifications in the WHERE clause can also be logically connected using the keywords
OR, AND, and NOT:
 SELECT PNAME, PRICE
 FROM PART
 WHERE PNAME = ’Bolt’ AND
 (PRICE = 0 OR PRICE < 15);

 will lead to the result:
 PNAME | PRICE
 --------+--------
 Bolt | 15

 Arithmetic operations may be used in the target list and in the WHERE clause. For example if
we want to know how much it would cost if we take two pieces of a part we could use the
following query:
 SELECT PNAME, PRICE * 2 AS DOUBLE
 FROM PART
 WHERE PRICE * 2 < 50;

 and we get:
 PNAME | DOUBLE
 --------+---------
 Screw | 20
 Nut | 16
 Bolt | 30

 Note that the word DOUBLE after the keyword AS is the new title of the second column. This
technique can be used for every element of the target list to assign a new title to the resulting
column. This new title is often referred to as alias. The alias cannot be used throughout the rest
of the query.

Chapter 2. SQL

16

Joins

 The following example shows how joins are realized in SQL.

 To join the three tables SUPPLIER, PART and SELLS over their common attributes we
formulate the following statement:

 SELECT S.SNAME, P.PNAME
 FROM SUPPLIER S, PART P, SELLS SE
 WHERE S.SNO = SE.SNO AND
 P.PNO = SE.PNO;

 and get the following table as a result:

 SNAME | PNAME
 -------+-------
 Smith | Screw
 Smith | Nut
 Jones | Cam
 Adams | Screw
 Adams | Bolt
 Blake | Nut
 Blake | Bolt
 Blake | Cam

 In the FROM clause we introduced an alias name for every relation because there are common
named attributes (SNO and PNO) among the relations. Now we can distinguish between the
common named attributes by simply prefixing the attribute name with the alias name followed
by a dot. The join is calculated in the same way as shown in An Inner Join. First the Cartesian
product SUPPLIER × PART × SELLS is derived. Now only those tuples satisfying the
conditions given in the WHERE clause are selected (i.e. the common named attributes have to
be equal). Finally we project out all columns but S.SNAME and P.PNAME.

Aggregate Operators

 SQL provides aggregate operators (e.g. AVG, COUNT, SUM, MIN, MAX) that take the name
of an attribute as an argument. The value of the aggregate operator is calculated over all values
of the specified attribute (column) of the whole table. If groups are specified in the query the
calculation is done only over the values of a group (see next section).

Example 2-5. Aggregates

 If we want to know the average cost of all parts in table PART we use the following query:
 SELECT AVG(PRICE) AS AVG_PRICE
 FROM PART;

 The result is:
 AVG_PRICE

 14.5

Chapter 2. SQL

17

 If we want to know how many parts are stored in table PART we use the statement:
 SELECT COUNT(PNO)
 FROM PART;

 and get:
 COUNT

 4

Aggregation by Groups

 SQL allows one to partition the tuples of a table into groups. Then the aggregate operators
described above can be applied to the groups (i.e. the value of the aggregate operator is no
longer calculated over all the values of the specified column but over all values of a group.
Thus the aggregate operator is evaluated individually for every group.)

 The partitioning of the tuples into groups is done by using the keywords GROUP BY followed
by a list of attributes that define the groups. If we have GROUP BY A1, ?, Ak we partition the
relation into groups, such that two tuples are in the same group if and only if they agree on all
the attributes A1, ?, Ak.

Example 2-6. Aggregates

 If we want to know how many parts are sold by every supplier we formulate the query:
 SELECT S.SNO, S.SNAME, COUNT(SE.PNO)
 FROM SUPPLIER S, SELLS SE
 WHERE S.SNO = SE.SNO
 GROUP BY S.SNO, S.SNAME;

 and get:
 SNO | SNAME | COUNT
 -----+-------+-------
 1 | Smith | 2
 2 | Jones | 1
 3 | Adams | 2
 4 | Blake | 3

 Now let’s have a look of what is happening here. First the join of the tables SUPPLIER and
SELLS is derived:
 S.SNO | S.SNAME | SE.PNO
 -------+---------+--------
 1 | Smith | 1
 1 | Smith | 2
 2 | Jones | 4
 3 | Adams | 1
 3 | Adams | 3
 4 | Blake | 2
 4 | Blake | 3
 4 | Blake | 4

 Next we partition the tuples into groups by putting all tuples together that agree on both
attributes S.SNO and S.SNAME:
 S.SNO | S.SNAME | SE.PNO
 -------+---------+--------
 1 | Smith | 1

Chapter 2. SQL

18

 | 2

 2 | Jones | 4

 3 | Adams | 1
 | 3

 4 | Blake | 2
 | 3
 | 4

 In our example we got four groups and now we can apply the aggregate operator COUNT to
every group leading to the total result of the query given above.

 Note that for the result of a query using GROUP BY and aggregate operators to make sense
the attributes grouped by must also appear in the target list. All further attributes not appearing
in the GROUP BY clause can only be selected by using an aggregate function. On the other
hand you can not use aggregate functions on attributes appearing in the GROUP BY clause.

Having

 The HAVING clause works much like the WHERE clause and is used to consider only those
groups satisfying the qualification given in the HAVING clause. The expressions allowed in
the HAVING clause must involve aggregate functions. Every expression using only plain
attributes belongs to the WHERE clause. On the other hand every expression involving an
aggregate function must be put to the HAVING clause.

Example 2-7. Having

 If we want only those suppliers selling more than one part we use the query:
 SELECT S.SNO, S.SNAME, COUNT(SE.PNO)
 FROM SUPPLIER S, SELLS SE
 WHERE S.SNO = SE.SNO
 GROUP BY S.SNO, S.SNAME
 HAVING COUNT(SE.PNO) > 1;

 and get:
 SNO | SNAME | COUNT
 -----+-------+-------
 1 | Smith | 2
 3 | Adams | 2
 4 | Blake | 3

Subqueries

 In the WHERE and HAVING clauses the use of subqueries (subselects) is allowed in every
place where a value is expected. In this case the value must be derived by evaluating the
subquery first. The usage of subqueries extends the expressive power of SQL.

Example 2-8. Subselect

 If we want to know all parts having a greater price than the part named ’Screw’ we use the
query:

Chapter 2. SQL

19

 SELECT *
 FROM PART
 WHERE PRICE > (SELECT PRICE FROM PART
 WHERE PNAME=’Screw’);

 The result is:
 PNO | PNAME | PRICE
 -----+---------+--------
 3 | Bolt | 15
 4 | Cam | 25

 When we look at the above query we can see the keyword SELECT two times. The first one at
the beginning of the query - we will refer to it as outer SELECT - and the one in the WHERE
clause which begins a nested query - we will refer to it as inner SELECT. For every tuple of the
outer SELECT the inner SELECT has to be evaluated. After every evaluation we know the
price of the tuple named ’Screw’ and we can check if the price of the actual tuple is greater.

 If we want to know all suppliers that do not sell any part (e.g. to be able to remove these
suppliers from the database) we use:
 SELECT *
 FROM SUPPLIER S
 WHERE NOT EXISTS
 (SELECT * FROM SELLS SE
 WHERE SE.SNO = S.SNO);

 In our example the result will be empty because every supplier sells at least one part. Note that
we use S.SNO from the outer SELECT within the WHERE clause of the inner SELECT. As
described above the subquery is evaluated for every tuple from the outer query i.e. the value for
S.SNO is always taken from the actual tuple of the outer SELECT.

Union, Intersect, Except

 These operations calculate the union, intersect and set theoretic difference of the tuples derived
by two subqueries.

Example 2-9. Union, Intersect, Except

 The following query is an example for UNION:
 SELECT S.SNO, S.SNAME, S.CITY
 FROM SUPPLIER S
 WHERE S.SNAME = ’Jones’
 UNION
 SELECT S.SNO, S.SNAME, S.CITY
 FROM SUPPLIER S
 WHERE S.SNAME = ’Adams’;

gives the result:
 SNO | SNAME | CITY
 -----+-------+--------
 2 | Jones | Paris
 3 | Adams | Vienna

 Here an example for INTERSECT:
 SELECT S.SNO, S.SNAME, S.CITY

Chapter 2. SQL

20

 FROM SUPPLIER S
 WHERE S.SNO > 1
 INTERSECT
 SELECT S.SNO, S.SNAME, S.CITY
 FROM SUPPLIER S
 WHERE S.SNO > 2;

 gives the result:
 SNO | SNAME | CITY
 -----+-------+--------
 2 | Jones | Paris
The only tuple returned by both parts of the query is the one having
$SNO=2$.

 Finally an example for EXCEPT:
 SELECT S.SNO, S.SNAME, S.CITY
 FROM SUPPLIER S
 WHERE S.SNO > 1
 EXCEPT
 SELECT S.SNO, S.SNAME, S.CITY
 FROM SUPPLIER S
 WHERE S.SNO > 3;

 gives the result:
 SNO | SNAME | CITY
 -----+-------+--------
 2 | Jones | Paris
 3 | Adams | Vienna

Data Definition

 There is a set of commands used for data definition included in the SQL language.

Create Table

 The most fundamental command for data definition is the one that creates a new relation (a
new table). The syntax of the CREATE TABLE command is:

 CREATE TABLE table_name
 (name_of_attr_1 type_of_attr_1
 [, name_of_attr_2 type_of_attr_2
 [, ...]]);

Example 2-10. Table Creation

 To create the tables defined in The Suppliers and Parts Database the following SQL
statements are used:
 CREATE TABLE SUPPLIER
 (SNO INTEGER,
 SNAME VARCHAR(20),
 CITY VARCHAR(20));

 CREATE TABLE PART
 (PNO INTEGER,

Chapter 2. SQL

21

 PNAME VARCHAR(20),
 PRICE DECIMAL(4 , 2));

 CREATE TABLE SELLS
 (SNO INTEGER,
 PNO INTEGER);

Data Types in SQL

 The following is a list of some data types that are supported by SQL:

 INTEGER: signed fullword binary integer (31 bits precision).

 SMALLINT: signed halfword binary integer (15 bits precision).

 DECIMAL (p[,q]): signed packed decimal number of p digits precision with assumed q of
them right to the decimal point. (15 ≥ p ≥ qq ≥ 0). If q is omitted it is assumed to be 0.

 FLOAT: signed doubleword floating point number.

 CHAR(n): fixed length character string of length n.

 VARCHAR(n): varying length character string of maximum length n.

Create Index

 Indices are used to speed up access to a relation. If a relation R has an index on attribute A
then we can retrieve all tuples t having t(A) = a in time roughly proportional to the number of
such tuples t rather than in time proportional to the size of R.

 To create an index in SQL the CREATE INDEX command is used. The syntax is:

 CREATE INDEX index_name
 ON table_name (name_of_attribute);

Example 2-11. Create Index

 To create an index named I on attribute SNAME of relation SUPPLIER we use the following
statement:
 CREATE INDEX I
 ON SUPPLIER (SNAME);

 The created index is maintained automatically, i.e. whenever a new tuple is inserted into the
relation SUPPLIER the index I is adapted. Note that the only changes a user can percept when
an index is present are an increased speed.

Chapter 2. SQL

22

Create View

 A view may be regarded as a virtual table, i.e. a table that does not physically exist in the
database but looks to the user as if it does. By contrast, when we talk of a base table there is
really a physically stored counterpart of each row of the table somewhere in the physical
storage.

 Views do not have their own, physically separate, distinguishable stored data. Instead, the
system stores the definition of the view (i.e. the rules about how to access physically stored
base tables in order to materialize the view) somewhere in the system catalogs (see System
Catalogs). For a discussion on different techniques to implement views refer to SIM98.

 In SQL the CREATE VIEW command is used to define a view. The syntax is:

 CREATE VIEW view_name
 AS select_stmt

 where select_stmt is a valid select statement as defined in Select. Note that select_stmt is not
executed when the view is created. It is just stored in the system catalogs and is executed
whenever a query against the view is made.

 Let the following view definition be given (we use the tables from The Suppliers and Parts
Database again):

 CREATE VIEW London_Suppliers
 AS SELECT S.SNAME, P.PNAME
 FROM SUPPLIER S, PART P, SELLS SE
 WHERE S.SNO = SE.SNO AND
 P.PNO = SE.PNO AND
 S.CITY = ’London’;

 Now we can use this virtual relation London_Suppliers as if it were another base table:

 SELECT *
 FROM London_Suppliers
 WHERE P.PNAME = ’Screw’;

 which will return the following table:

 SNAME | PNAME
 -------+-------
 Smith | Screw

 To calculate this result the database system has to do a hidden access to the base tables
SUPPLIER, SELLS and PART first. It does so by executing the query given in the view
definition against those base tables. After that the additional qualifications (given in the query
against the view) can be applied to obtain the resulting table.

Drop Table, Drop Index, Drop View

 To destroy a table (including all tuples stored in that table) the DROP TABLE command is
used:

Chapter 2. SQL

23

 DROP TABLE table_name;

 To destroy the SUPPLIER table use the following statement:

 DROP TABLE SUPPLIER;

 The DROP INDEX command is used to destroy an index:

 DROP INDEX index_name;

 Finally to destroy a given view use the command DROP VIEW:

 DROP VIEW view_name;

Data Manipulation

Insert Into

 Once a table is created (see Create Table), it can be filled with tuples using the command
INSERT INTO. The syntax is:

 INSERT INTO table_name (name_of_attr_1
 [, name_of_attr_2 [,...]])
 VALUES (val_attr_1
 [, val_attr_2 [, ...]]);

 To insert the first tuple into the relation SUPPLIER (from The Suppliers and Parts Database)
we use the following statement:

 INSERT INTO SUPPLIER (SNO, SNAME, CITY)
 VALUES (1, ’Smith’, ’London’);

 To insert the first tuple into the relation SELLS we use:

 INSERT INTO SELLS (SNO, PNO)
 VALUES (1, 1);

Chapter 2. SQL

24

Update

 To change one or more attribute values of tuples in a relation the UPDATE command is used.
The syntax is:

 UPDATE table_name
 SET name_of_attr_1 = value_1
 [, ... [, name_of_attr_k = value_k]]
 WHERE condition;

 To change the value of attribute PRICE of the part ’Screw’ in the relation PART we use:

 UPDATE PART
 SET PRICE = 15
 WHERE PNAME = ’Screw’;

 The new value of attribute PRICE of the tuple whose name is ’Screw’ is now 15.

Delete

 To delete a tuple from a particular table use the command DELETE FROM. The syntax is:

 DELETE FROM table_name
 WHERE condition;

 To delete the supplier called ’Smith’ of the table SUPPLIER the following statement is used:

 DELETE FROM SUPPLIER
 WHERE SNAME = ’Smith’;

System Catalogs

 In every SQL database system system catalogs are used to keep track of which tables, views
indexes etc. are defined in the database. These system catalogs can be queried as if they were
normal relations. For example there is one catalog used for the definition of views. This catalog
stores the query from the view definition. Whenever a query against a view is made, the system
first gets the view definition query out of the catalog and materializes the view before
proceeding with the user query (see SIM98 for a more detailed description). For more
information about system catalogs refer to DATE.

Embedded SQL

 In this section we will sketch how SQL can be embedded into a host language (e.g. C). There
are two main reasons why we want to use SQL from a host language:

Chapter 2. SQL

25

 There are queries that cannot be formulated using pure SQL (i.e. recursive queries). To be
able to perform such queries we need a host language with a greater expressive power than
SQL.

 We simply want to access a database from some application that is written in the host
language (e.g. a ticket reservation system with a graphical user interface is written in C and
the information about which tickets are still left is stored in a database that can be accessed
using embedded SQL).

 A program using embedded SQL in a host language consists of statements of the host language
and of embedded SQL (ESQL) statements. Every ESQL statement begins with the keywords
EXEC SQL. The ESQL statements are transformed to statements of the host language by a
precompiler (which usually inserts calls to library routines that perform the various SQL
commands).

 When we look at the examples throughout Select we realize that the result of the queries is
very often a set of tuples. Most host languages are not designed to operate on sets so we need a
mechanism to access every single tuple of the set of tuples returned by a SELECT statement.
This mechanism can be provided by declaring a cursor. After that we can use the FETCH
command to retrieve a tuple and set the cursor to the next tuple.

 For a detailed discussion on embedded SQL refer to [Date and Darwen, 1997], [Date, 1994],
or [Ullman, 1988].

26

Chapter 3. Architecture

Postgres Architectural Concepts

 Before we begin, you should understand the basic Postgres system architecture. Understanding
how the parts of Postgres interact will make the next chapter somewhat clearer. In database
jargon, Postgres uses a simple "process per-user" client/server model. A Postgres session
consists of the following cooperating UNIX processes (programs):

 A supervisory daemon process (postmaster),

 the user’s frontend application (e.g., the psql program), and

 the one or more backend database servers (the postgres process itself).

 A single postmaster manages a given collection of databases on a single host. Such a collection
of databases is called an installation or site. Frontend applications that wish to access a given
database within an installation make calls to the library. The library sends user requests over
the network to the postmaster (How a connection is established), which in turn starts a new
backend server process and connects the frontend process to the new server. From that point on,
the frontend process and the backend server communicate without intervention by the
postmaster. Hence, the postmaster is always running, waiting for requests, whereas frontend
and backend processes come and go.

 The libpq library allows a single frontend to make multiple connections to backend processes.
However, the frontend application is still a single-threaded process. Multithreaded
frontend/backend connections are not currently supported in libpq. One implication of this
architecture is that the postmaster and the backend always run on the same machine (the
database server), while the frontend application may run anywhere. You should keep this in
mind, because the files that can be accessed on a client machine may not be accessible (or may
only be accessed using a different filename) on the database server machine.

 You should also be aware that the postmaster and postgres servers run with the user-id of the
Postgres "superuser." Note that the Postgres superuser does not have to be a special user (e.g., a
user named "postgres"). Furthermore, the Postgres superuser should definitely not be the UNIX
superuser ("root")! In any case, all files relating to a database should belong to this Postgres
superuser.

Chapter 3. Architecture

27

Figure 3-1. How a connection is established

(a) frontend sends request to postmaster
 via well-known network socket

POSTMASTER

SERVER

server host

client host

User
App LIBPQ

POSTMASTER

SERVER

server host

client host

User
App LIBPQ

POSTMASTER

SERVER

server host

client host

User
App LIBPQ

POSTMASTER

server host

client host

User
App LIBPQ

(b) postmaster creates backend server

(c) frontend connected to backend server

POSTMASTER

SERVER

server host

(d) frontend connected
 to multiple backend servers

And multiple connections
can be established...

28

Chapter 4. Getting Started

How to begin work with Postgres for a new user.

 Some of the steps required to use Postgres can be performed by any Postgres user, and some
must be done by the site database administrator. This site administrator is the person who
installed the software, created the database directories and started the postmaster process. This
person does not have to be the UNIX superuser (root) or the computer system administrator; a
person can install and use Postgres without any special accounts or privileges.

If you are installing Postgres yourself, then refer to the Administrator’s Guide for instructions
on installation, and return to this guide when the installation is complete.

 Throughout this manual, any examples that begin with the character % are commands that
should be typed at the UNIX shell prompt. Examples that begin with the character * are
commands in the Postgres query language, Postgres SQL.

Setting Up Your Environment

 This section discusses how to set up your own environment so that you can use frontend
applications. We assume Postgres has already been successfully installed and started; refer to
the Administrator’s Guide and the installation notes for how to install Postgres.

Postgres is a client/server application. As a user, you only need access to the client portions of
the installation (an example of a client application is the interactive monitor psql). For
simplicity, we will assume that Postgres has been installed in the directory /usr/local/pgsql.
Therefore, wherever you see the directory /usr/local/pgsql you should substitute the name of the
directory where Postgres is actually installed. All Postgres commands are installed in the
directory /usr/local/pgsql/bin. Therefore, you should add this directory to your shell command
path. If you use a variant of the Berkeley C shell, such as csh or tcsh, you would add

% set path = (/usr/local/pgsql/bin path)

 in the .login file in your home directory. If you use a variant of the Bourne shell, such as sh,
ksh, or bash, then you would add

% PATH=/usr/local/pgsql/bin:$PATH
% export PATH

 to the .profile file in your home directory. From now on, we will assume that you have added
the Postgres bin directory to your path. In addition, we will make frequent reference to setting a
shell variable or setting an environment variable throughout this document. If you did not fully
understand the last paragraph on modifying your search path, you should consult the UNIX
manual pages that describe your shell before going any further.

If your site administrator has not set things up in the default way, you may have some more
work to do. For example, if the database server machine is a remote machine, you will need to
set the PGHOST environment variable to the name of the database server machine. The
environment variable PGPORT may also have to be set. The bottom line is this: if you try to
start an application program and it complains that it cannot connect to the postmaster, you

Chapter 4. Getting Started

29

should immediately consult your site administrator to make sure that your environment is
properly set up.

Starting the Interactive Monitor (psql)

 Assuming that your site administrator has properly started the postmaster process and
authorized you to use the database, you (as a user) may begin to start up applications. As
previously mentioned, you should add /usr/local/pgsql/bin to your shell search path. In most
cases, this is all you should have to do in terms of preparation.

As of Postgres v6.3, two different styles of connections are supported. The site administrator
will have chosen to allow TCP/IP network connections or will have restricted database access
to local (same-machine) socket connections only. These choices become significant if you
encounter problems in connecting to a database.

 If you get the following error message from a Postgres command (such as psql or createdb):

% psql template1
Connection to database ’postgres’ failed.
connectDB() failed: Is the postmaster running and accepting connections
 at ’UNIX Socket’ on port ’5432’?

or

% psql -h localhost template1
Connection to database ’postgres’ failed.
connectDB() failed: Is the postmaster running and accepting TCP/IP
 (with -i) connections at ’localhost’ on port ’5432’?

 it is usually because (1) the postmaster is not running, or (2) you are attempting to connect to
the wrong server host. If you get the following error message:

FATAL 1:Feb 17 23:19:55:process userid (2360) != database owner (268)

 it means that the site administrator started the postmaster as the wrong user. Tell him to restart
it as the Postgres superuser.

Managing a Database

 Now that Postgres is up and running we can create some databases to experiment with. Here,
we describe the basic commands for managing a database.

Most Postgres applications assume that the database name, if not specified, is the same as the
name on your computer account.

If your database administrator has set up your account without database creation privileges,
then she should have told you what the name of your database is. If this is the case, then you
can skip the sections on creating and destroying databases.

Creating a Database

 Let’s say you want to create a database named mydb. You can do this with the following
command:

Chapter 4. Getting Started

30

% createdb mydb

If you do not have the privileges required to create a database, you will see the following:

% createdb mydb
WARN:user "your username" is not allowed to create/destroy databases
createdb: database creation failed on mydb.

 Postgres allows you to create any number of databases at a given site and you automatically
become the database administrator of the database you just created. Database names must have
an alphabetic first character and are limited to 32 characters in length. Not every user has
authorization to become a database administrator. If Postgres refuses to create databases for
you, then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs.

Accessing a Database

 Once you have constructed a database, you can access it by:

running the Postgres terminal monitor programs (e.g. psql) which allows you to interactively
enter, edit, and execute SQL commands.
 writing a C program using the LIBPQ subroutine library. This allows you to submit SQL
commands from C and get answers and status messages back to your program. This interface
is discussed further in The PostgreSQL Programmer’s Guide.

You might want to start up psql, to try out the examples in this manual. It can be activated for
the mydb database by typing the command:

% psql mydb

 You will be greeted with the following message:

Welcome to the POSTGRESQL interactive sql monitor:
 Please read the file COPYRIGHT for copyright terms of POSTGRESQL

 type \? for help on slash commands
 type \q to quit
 type \g or terminate with semicolon to execute query
 You are currently connected to the database: template1

mydb=>

This prompt indicates that the terminal monitor is listening to you and that you can type SQL
queries into a workspace maintained by the terminal monitor. The psql program responds to
escape codes that begin with the backslash character, \ For example, you can get help on the
syntax of various Postgres SQL commands by typing:

mydb=> \h

 Once you have finished entering your queries into the workspace, you can pass the contents of
the workspace to the Postgres server by typing:

mydb=> \g

 This tells the server to process the query. If you terminate your query with a semicolon, the \g
is not necessary. psql will automatically process semicolon terminated queries. To read queries
from a file, say myFile, instead of entering them interactively, type:

Chapter 4. Getting Started

31

mydb=> \i fileName

 To get out of psql and return to UNIX, type

mydb=> \q

 and psql will quit and return you to your command shell. (For more escape codes, type \h at
the monitor prompt.) White space (i.e., spaces, tabs and newlines) may be used freely in SQL
queries. Single-line comments are denoted by -- . Everything after the dashes up to the end of
the line is ignored. Multiple-line comments, and comments within a line, are denoted by /* ... */

Destroying a Database

 If you are the database administrator for the database mydb, you can destroy it using the
following UNIX command:

% destroydb mydb

 This action physically removes all of the UNIX files associated with the database and cannot
be undone, so this should only be done with a great deal of forethought.

32

Chapter 5. The Query Language

 The Postgres query language is a variant of the SQL3 draft next-generation standard. It has
many extensions such as an extensible type system, inheritance, functions and production rules.
These are features carried over from the original Postgres query language, PostQuel. This
section provides an overview of how to use Postgres SQL to perform simple operations. This
manual is only intended to give you an idea of our flavor of SQL and is in no way a complete
tutorial on SQL. Numerous books have been written on SQL, including [MELT93] and
[DATE97]. You should be aware that some language features are extensions to the ANSI
standard.

Interactive Monitor

 In the examples that follow, we assume that you have created the mydb database as described
in the previous subsection and have started psql. Examples in this manual can also be found in
/usr/local/pgsql/src/tutorial/. Refer to the README file in that directory for how to use them.
To start the tutorial, do the following:

% cd /usr/local/pgsql/src/tutorial
% psql -s mydb
Welcome to the POSTGRESQL interactive sql monitor:
 Please read the file COPYRIGHT for copyright terms of POSTGRESQL

 type \? for help on slash commands
 type \q to quit
 type \g or terminate with semicolon to execute query
 You are currently connected to the database: postgres

mydb=> \i basics.sql

 The \i command read in queries from the specified files. The -s option puts you in single step
mode which pauses before sending a query to the backend. Queries in this section are in the file
basics.sql.

 psql has a variety of \d commands for showing system information. Consult these commands
for more details; for a listing, type \? at the psql prompt.

Concepts

 The fundamental notion in Postgres is that of a class, which is a named collection of object
instances. Each instance has the same collection of named attributes, and each attribute is of a
specific type. Furthermore, each instance has a permanent object identifier (OID) that is unique
throughout the installation. Because SQL syntax refers to tables, we will use the terms table
and class interchangeably. Likewise, an SQL row is an instance and SQL columns are
attributes. As previously discussed, classes are grouped into databases, and a collection of
databases managed by a single postmaster process constitutes an installation or site.

Chapter 5. The Query Language

33

Creating a New Class

 You can create a new class by specifying the class name, along with all attribute names and
their types:

CREATE TABLE weather (
 city varchar(80),
 temp_lo int, -- low temperature
 temp_hi int, -- high temperature
 prcp real, -- precipitation
 date date
);

 Note that both keywords and identifiers are case-insensitive; identifiers can become
case-sensitive by surrounding them with double-quotes as allowed by SQL92. Postgres SQL
supports the usual SQL types int, float, real, smallint, char(N), varchar(N), date, time, and
timestamp, as well as other types of general utility and a rich set of geometric types. As we will
see later, Postgres can be customized with an arbitrary number of user-defined data types.
Consequently, type names are not syntactical keywords, except where required to support
special cases in the SQL92 standard. So far, the Postgres create command looks exactly like the
command used to create a table in a traditional relational system. However, we will presently
see that classes have properties that are extensions of the relational model.

Populating a Class with Instances

 The insert statement is used to populate a class with instances:

INSERT INTO weather
 VALUES (’San Francisco’, 46, 50, 0.25, ’11/27/1994’)

 You can also use the copy command to perform load large amounts of data from flat (ASCII)
files. This is usually faster because the data is read (or written) as a single atomic transaction
directly to or from the target table. An example would be:

COPY INTO weather FROM ’/home/user/weather.txt’
 USING DELIMITERS ’|’;

 where the path name for the source file must be available to the backend server machine, not
the client, since the backend server reads the file directly.

Querying a Class

 The weather class can be queried with normal relational selection and projection queries. A
SQL select statement is used to do this. The statement is divided into a target list (the part that

Chapter 5. The Query Language

34

lists the attributes to be returned) and a qualification (the part that specifies any restrictions).
For example, to retrieve all the rows of weather, type:

SELECT * FROM WEATHER;

 and the output should be:

+--------------+---------+---------+------+------------+
|city | temp_lo | temp_hi | prcp | date |
+--------------+---------+---------+------+------------+
|San Francisco | 46 | 50 | 0.25 | 11-27-1994 |
+--------------+---------+---------+------+------------+
|San Francisco | 43 | 57 | 0 | 11-29-1994 |
+--------------+---------+---------+------+------------+
|Hayward | 37 | 54 | | 11-29-1994 |
+--------------+---------+---------+------+------------+

 You may specify any arbitrary expressions in the target list. For example, you can do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

 Arbitrary Boolean operators (and, or and not) are allowed in the qualification of any query. For
example,

SELECT * FROM weather
 WHERE city = ’San Francisco’
 AND prcp > 0.0;

results in:

+--------------+---------+---------+------+------------+
|city | temp_lo | temp_hi | prcp | date |
+--------------+---------+---------+------+------------+
|San Francisco | 46 | 50 | 0.25 | 11-27-1994 |
+--------------+---------+---------+------+------------+

 As a final note, you can specify that the results of a select can be returned in a sorted order or
with duplicate instances removed.

SELECT DISTINCT city
 FROM weather
 ORDER BY city;

Redirecting SELECT Queries

 Any select query can be redirected to a new class

SELECT * INTO TABLE temp FROM weather;

Chapter 5. The Query Language

35

 This forms an implicit create command, creating a new class temp with the attribute names
and types specified in the target list of the select into command. We can then, of course,
perform any operations on the resulting class that we can perform on other classes.

Joins Between Classes

 Thus far, our queries have only accessed one class at a time. Queries can access multiple
classes at once, or access the same class in such a way that multiple instances of the class are
being processed at the same time. A query that accesses multiple instances of the same or
different classes at one time is called a join query. As an example, say we wish to find all the
records that are in the temperature range of other records. In effect, we need to compare the
temp_lo and temp_hi attributes of each EMP instance to the temp_lo and temp_hi attributes of
all other EMP instances.

Note: This is only a conceptual model. The actual join may be performed in a more
efficient manner, but this is invisible to the user.

 We can do this with the following query:

SELECT W1.city, W1.temp_lo AS low, W1.temp_hi AS high,
 W2.city, W2.temp_lo AS low, W2.temp_hi AS high
 FROM weather W1, weather W2
 WHERE W1.temp_lo < W2.temp_lo
 AND W1.temp_hi > W2.temp_hi;

+--------------+-----+------+---------------+-----+------+
|city | low | high | city | low | high |
+--------------+-----+------+---------------+-----+------+
|San Francisco | 43 | 57 | San Francisco | 46 | 50 |
+--------------+-----+------+---------------+-----+------+
|San Francisco | 37 | 54 | San Francisco | 46 | 50 |
+--------------+-----+------+---------------+-----+------+

Note: The semantics of such a join are that the qualification is a truth expression defined
for the Cartesian product of the classes indicated in the query. For those instances in the
Cartesian product for which the qualification is true, Postgres computes and returns the
values specified in the target list. Postgres SQL does not assign any meaning to duplicate
values in such expressions. This means that Postgres sometimes recomputes the same
target list several times; this frequently happens when Boolean expressions are connected
with an "or". To remove such duplicates, you must use the select distinct statement.

 In this case, both W1 and W2 are surrogates for an instance of the class weather, and both
range over all instances of the class. (In the terminology of most database systems, W1 and W2
are known as range variables.) A query can contain an arbitrary number of class names and
surrogates.

Chapter 5. The Query Language

36

Updates

 You can update existing instances using the update command. Suppose you discover the
temperature readings are all off by 2 degrees as of Nov 28, you may update the data as follow:

UPDATE weather
 SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
 WHERE date > ’11/28/1994’;

Deletions

 Deletions are performed using the delete command:

DELETE FROM weather WHERE city = ’Hayward’;

 All weather recording belongs to Hayward is removed. One should be wary of queries of the
form

DELETE FROM classname;

 Without a qualification, delete will simply remove all instances of the given class, leaving it
empty. The system will not request confirmation before doing this.

Using Aggregate Functions

 Like most other query languages, PostgreSQL supports aggregate functions. The current
implementation of Postgres aggregate functions have some limitations. Specifically, while
there are aggregates to compute such functions as the count, sum, avg (average), max
(maximum) and min (minimum) over a set of instances, aggregates can only appear in the
target list of a query and not directly in the qualification (the where clause). As an example,

SELECT max(temp_lo) FROM weather;

 is allowed, while

SELECT city FROM weather WHERE temp_lo = max(temp_lo);

 is not. However, as is often the case the query can be restated to accomplish the intended
result; here by using a subselect:

SELECT city FROM weather WHERE temp_lo = (SELECT max(temp_lo) FROM
weather);

Chapter 5. The Query Language

37

 Aggregates may also have group by clauses:

SELECT city, max(temp_lo)
 FROM weather
 GROUP BY city;

38

Chapter 6. Advanced Postgres SQL Features

 Having covered the basics of using Postgres SQL to access your data, we will now discuss
those features of Postgres that distinguish it from conventional data managers. These features
include inheritance, time travel and non-atomic data values (array- and set-valued attributes).
Examples in this section can also be found in advance.sql in the tutorial directory. (Refer to
Chapter 5 for how to use it.)

Inheritance

 Let’s create two classes. The capitals class contains state capitals which are also cities.
Naturally, the capitals class should inherit from cities.

CREATE TABLE cities (
 name text,
 population float,
 altitude int -- (in ft)
);

CREATE TABLE capitals (
 state char2
) INHERITS (cities);

 In this case, an instance of capitals inherits all attributes (name, population, and altitude) from
its parent, cities. The type of the attribute name is text, a native Postgres type for variable
length ASCII strings. The type of the attribute population is float, a native Postgres type for
double precision floating point numbers. State capitals have an extra attribute, state, that shows
their state. In Postgres, a class can inherit from zero or more other classes, and a query can
reference either all instances of a class or all instances of a class plus all of its descendants.

Note: The inheritance hierarchy is a directed acyclic graph.

For example, the following query finds all the cities that are situated at an attitude of 500ft or
higher:

SELECT name, altitude
 FROM cities
 WHERE altitude > 500;

+----------+----------+
|name | altitude |
+----------+----------+
|Las Vegas | 2174 |
+----------+----------+
|Mariposa | 1953 |
+----------+----------+

 On the other hand, to find the names of all cities, including state capitals, that are located at an
altitude over 500ft, the query is:

SELECT c.name, c.altitude
 FROM cities* c
 WHERE c.altitude > 500;

Chapter 6. Advanced Postgres SQL Features

39

 which returns:

+----------+----------+
|name | altitude |
+----------+----------+
|Las Vegas | 2174 |
+----------+----------+
|Mariposa | 1953 |
+----------+----------+
|Madison | 845 |
+----------+----------+

 Here the * after cities indicates that the query should be run over cities and all classes below
cities in the inheritance hierarchy. Many of the commands that we have already discussed
(select, update and delete) support this * notation, as do others, like alter.

Non-Atomic Values

 One of the tenets of the relational model is that the attributes of a relation are atomic. Postgres
does not have this restriction; attributes can themselves contain sub-values that can be accessed
from the query language. For example, you can create attributes that are arrays of base types.

Arrays

 Postgres allows attributes of an instance to be defined as fixed-length or variable-length
multi-dimensional arrays. Arrays of any base type or user-defined type can be created. To
illustrate their use, we first create a class with arrays of base types.

CREATE TABLE SAL_EMP (
 name text,
 pay_by_quarter int4[],
 schedule text[][]
);

 The above query will create a class named SAL_EMP with a text string (name), a
one-dimensional array of int4 (pay_by_quarter), which represents the employee’s salary by
quarter and a two-dimensional array of text (schedule), which represents the employee’s
weekly schedule. Now we do some INSERTSs; note that when appending to an array, we
enclose the values within braces and separate them by commas. If you know C, this is not
unlike the syntax for initializing structures.

INSERT INTO SAL_EMP
 VALUES (’Bill’,
 ’{10000, 10000, 10000, 10000}’,
 ’{{"meeting", "lunch"}, {}}’);

INSERT INTO SAL_EMP
 VALUES (’Carol’,
 ’{20000, 25000, 25000, 25000}’,
 ’{{"talk", "consult"}, {"meeting"}}’);

 By default, Postgres uses the "one-based" numbering convention for arrays -- that is, an array
of n elements starts with array[1] and ends with array[n]. Now, we can run some queries on
SAL_EMP. First, we show how to access a single element of an array at a time. This query
retrieves the names of the employees whose pay changed in the second quarter:

Chapter 6. Advanced Postgres SQL Features

40

SELECT name
 FROM SAL_EMP
 WHERE SAL_EMP.pay_by_quarter[1] <>
 SAL_EMP.pay_by_quarter[2];

+------+
|name |
+------+
|Carol |
+------+

 This query retrieves the third quarter pay of all employees:

SELECT SAL_EMP.pay_by_quarter[3] FROM SAL_EMP;

+---------------+
|pay_by_quarter |
+---------------+
|10000 |
+---------------+
|25000 |
+---------------+

 We can also access arbitrary slices of an array, or subarrays. This query retrieves the first item
on Bill’s schedule for the first two days of the week.

SELECT SAL_EMP.schedule[1:2][1:1]
 FROM SAL_EMP
 WHERE SAL_EMP.name = ’Bill’;

+-------------------+
|schedule |
+-------------------+
|{{"meeting"},{""}} |
+-------------------+

Time Travel

As of Postgres v6.2, time travel is no longer supported. There are several reasons for this:
performance impact, storage size, and a pg_time file which grows toward infinite size in a short
period of time.

New features such as triggers allow one to mimic the behavior of time travel when desired,
without incurring the overhead when it is not needed (for most users, this is most of the time).
See examples in the contrib directory for more information.

Time travel is deprecated: The remaining text in this section is retained only until it can be
rewritten in the context of new techniques to accomplish the same purpose. Volunteers? -
thomas 1998-01-12

 Postgres supports the notion of time travel. This feature allows a user to run historical queries.
For example, to find the current population of Mariposa city, one would query:

SELECT * FROM cities WHERE name = ’Mariposa’;

+---------+------------+----------+
|name | population | altitude |
+---------+------------+----------+
|Mariposa | 1320 | 1953 |
+---------+------------+----------+

Chapter 6. Advanced Postgres SQL Features

41

 Postgres will automatically find the version of Mariposa’s record valid at the current time. One
can also give a time range. For example to see the past and present populations of Mariposa,
one would query:

SELECT name, population
 FROM cities[’epoch’, ’now’]
 WHERE name = ’Mariposa’;

 where "epoch" indicates the beginning of the system clock.

Note: On UNIX systems, this is always midnight, January 1, 1970 GMT.

 If you have executed all of the examples so far, then the above query returns:

+---------+------------+
|name | population |
+---------+------------+
|Mariposa | 1200 |
+---------+------------+
|Mariposa | 1320 |
+---------+------------+

 The default beginning of a time range is the earliest time representable by the system and the
default end is the current time; thus, the above time range can be abbreviated as ‘‘[,].’’

More Advanced Features

Postgres has many features not touched upon in this tutorial introduction, which has been
oriented toward newer users of SQL. These are discussed in more detail in both the User’s and
Programmer’s Guides.

42

Bibliography

 Selected references and readings for SQL and Postgres.

SQL Reference Books

 The Practical SQL Handbook, Using Structured Query Language , 3, Judity Bowman, Sandra
Emerson, and Marcy Damovsky, 0-201-44787-8, 1996, Addison-Wesley, 1997.

 A Guide to the SQL Standard, A user’s guide to the standard database language SQL , 4, C. J.
Date and Hugh Darwen, 0-201-96426-0, 1997, Addison-Wesley, 1997.

 An Introduction to Database Systems, 6, C. J. Date, 1, 1994, Addison-Wesley, 1994.

 Understanding the New SQL, A complete guide, Jim Melton and Alan R. Simon,
1-55860-245-3, 1993, Morgan Kaufmann, 1993.

Abstract

Accessible reference for SQL features.

 Principles of Database and Knowledge : Base Systems, Jeffrey D. Ullman, 1, Computer
Science Press , 1988 .

PostgreSQL-Specific Documentation

 The PostgreSQL Administrator’s Guide , The Administrator’s Guide , Edited by Thomas
Lockhart, 1998-10-01, The PostgreSQL Global Development Group.

 The PostgreSQL Developer’s Guide , The Developer’s Guide , Edited by Thomas Lockhart,
1998-10-01, The PostgreSQL Global Development Group.

 The PostgreSQL Programmer’s Guide , The Programmer’s Guide , Edited by Thomas
Lockhart, 1998-10-01, The PostgreSQL Global Development Group.

 The PostgreSQL Tutorial Introduction , The Tutorial , Edited by Thomas Lockhart,
1998-10-01, The PostgreSQL Global Development Group.

 The PostgreSQL User’s Guide , The User’s Guide , Edited by Thomas Lockhart, 1998-10-01,
The PostgreSQL Global Development Group.

 Enhancement of the ANSI SQL Implementation of PostgreSQL , Simkovics, 1998 , Stefan
Simkovics, O.Univ.Prof.Dr.. Georg Gottlob, November 29, 1998, Department of
Information Systems, Vienna University of Technology .

 Discusses SQL history and syntax, and describes the addition of INTERSECT and
EXCEPT constructs into Postgres. Prepared as a Master’s Thesis with the support of
O.Univ.Prof.Dr. Georg Gottlob and Univ.Ass. Mag. Katrin Seyr at Vienna University of
Technology.

 The Postgres95 User Manual , Yu and Chen, 1995 , A. Yu and J. Chen, The POSTGRES
Group , Sept. 5, 1995, University of California, Berkeley CA.

Bibliography

43

Proceedings and Articles

 Partial indexing in POSTGRES: research project , Olson, 1993 , Nels Olson, 1993, UCB Engin
T7.49.1993 O676, University of California, Berkeley CA.

 A Unified Framework for Version Modeling Using Production Rules in a Database System ,
Ong and Goh, 1990 , L. Ong and J. Goh, April, 1990, ERL Technical Memorandum
M90/33, University of California, Berkeley CA.

 The Postgres Data Model , Rowe and Stonebraker, 1987 , L. Rowe and M. Stonebraker, Sept.
1987, VLDB Conference, Brighton, England, 1987.

 Generalized partial indexes
(http://simon.cs.cornell.edu/home/praveen/papers/partindex.de95.ps.Z) , , P. Seshadri and
A. Swami, March 1995, Eleventh International Conference on Data Engineering, 1995,
Cat. No.95CH35724, IEEE Computer Society Press.

 The Design of Postgres , Stonebraker and Rowe, 1986 , M. Stonebraker and L. Rowe, May
1986, Conference on Management of Data, Washington DC, ACM-SIGMOD, 1986.

 The Design of the Postgres Rules System, Stonebraker, Hanson, Hong, 1987 , M. Stonebraker,
E. Hanson, and C. H. Hong, Feb. 1987, Conference on Data Engineering, Los Angeles,
CA, IEEE, 1987.

 The Postgres Storage System , Stonebraker, 1987 , M. Stonebraker, Sept. 1987, VLDB
Conference, Brighton, England, 1987.

 A Commentary on the Postgres Rules System , Stonebraker et al, 1989, M. Stonebraker, M.
Hearst, and S. Potamianos, Sept. 1989, Record 18(3), SIGMOD, 1989.

 The case for partial indexes (DBMS)
(http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M89-17.pdf) , Stonebraker,
M, 1989b, M. Stonebraker, Dec. 1989, Record 18(no.4):4-11, SIGMOD, 1989.

 The Implementation of Postgres , Stonebraker, Rowe, Hirohama, 1990 , M. Stonebraker, L. A.
Rowe, and M. Hirohama, March 1990, Transactions on Knowledge and Data Engineering
2(1), IEEE.

 On Rules, Procedures, Caching and Views in Database Systems , Stonebraker et al, ACM,
1990 , M. Stonebraker and et al, June 1990, Conference on Management of Data,
ACM-SIGMOD.

