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Abstract

\Uncertainty in arti�cial intelligence" is an active research �eld, where several approaches

have been suggested and studied for dealing with various types of uncertainty. However, it's

hard to rank the approaches in general, because each of them is usually aimed at a special

application environment.

This paper begins by de�ning such an environment, then show why some existing approaches

cannot be used in such a situation. Then a new approach, Non-Axiomatic Reasoning System,

is introduced to work in the environment. The system is designed under the assumption that

the system's knowledge and resources are usually insu�cient to handle the tasks imposed by its

environment. The system can consistently represent several types of uncertainty, and can carry

out multiple operations on these uncertainties. Finally, the new approach is compared with the

previous approaches in terms of uncertainty representation and interpretation.

1 The Problem

The central issue of this paper is uncertainty in intelligent reasoning system. Though it is too
early to establish a universally accepted de�nition for intelligent reasoning system, I want to give
a de�nition to make it clear that what type of system I'm talking about. Why such a de�nition is
chosen is explained in [32].

By reasoning system, I mean an information processing system that has the following compo-
nents:

a representation language which is de�ned by a formal grammar, and used for the internal
representation of the system's knowledge;

a communication language which is also de�ned by a formal grammar (may be identical to the
previous one, but not necessarily), and used for the communication between the system and
the environment;

an interface which provides a mapping of the two formal languages, so that the system can accept
knowledge from the environment, and answer questions according to its knowledge;

an inference engine which use some rules to match questions with knowledge, to generate con-
clusions from promises, and to derive subquestions from questions;
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a memory which store the tasks to be processed, and the knowledge according to which the tasks
are processed;

a control mechanism which is responsible for the choosing of premise(s) and inference rule(s) in
each step of inference, and the maintaining of the memory;

an interpretation which (maybe loosely) relates the two formal languages to natural language,
so to make the system's behavior understandable to human beings.

The environment of a reasoning system can either be human users or other computer systems.
In the simplest case, the system accepts two types of tasks from its environment: new knowledge
and questions. The system should provided answers to its environment for the questions, according
to available knowledge. For new knowledge, no reply is required. Therefore, the history of com-
munications between such a system and its environment can be exactly recorded by the system's
experience and responses, where the former is a sequence of input knowledge and input questions,
the latter is a sequence of answers, and each piece of them is a sentence of the communication
language.

Intelligence is understood here as the ability of working and adapting to the environment with
insu�cient knowledge and resources. More concretely, to be an information processing system that
works under the Assumption of Insu�cient Knowledge and Resources means the system must be,
at the same time,

a �nite system | the system's computing power, as well as its working and storage space, is
limited;

a real-time system | the tasks that the system has to process, that is, new knowledge and
questions, can emerge at any time, and all questions have deadlines attached with them;

an ampliative system | the system not only can retrieve available knowledge and derive sound
conclusions from it, but also can make defeasible hypotheses and guesses based on it when
no certain conclusion can be drawn; and

an open system | no restriction is imposed on the relationship between old knowledge and new
knowledge, as long as they are representable in the system's communication language.

Furthermore, to be an adaptive system (or learning system) means the system must also be

a self-organized system | the system can accommodate itself to new knowledge, and adjust
its memory structure and mechanism to improve its time and space e�ciency, under the
assumption that future situations will be similar to past situations.

Therefore, the system need rules for (at least) three types of operation:

Comparison: To choose an answer among several competing ones;

Revision: To modify the truth value of a piece of knowledge, in the light of new evidence;

Inference: To derive a conclusion from a set of given premises.
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In the following discussions, we will see that for an intelligent reasoning system de�ned as above
(henceforth IRS), there are all kinds of uncertainties in the system, such as randomness, fuzziness,
ignorance, imprecision, incompleteness, inconsistence, and so on ([23]). Therefore, uncertainty
should be taken into consideration when the above operations are carried out.

In this paper, I'll concentrate on the representation and interpretation of uncertainty. By repre-
sentation, I mean the \label" attached to each sentence in the representation and communication
language, which indicates the type and/or degree of uncertainty the sentence has. By interpre-
tation, I mean the \meaning" of the labels, or how they are related to the methods that human
beings use in everyday life to represent uncertainty.

2 The existing approaches

If there is an existing approach can do the job, then we can simply implement it into IRS. Unfor-
tunately, there is no such an approach. I'll demonstrate why it is the case in the following.

2.1 The non-numerical approaches

The existing approaches for uncertainty management can be divided into two classes: numerical
and non-numerical. The basic di�erence between them is: the former attach one or several numbers
to each piece of knowledge to represent the degree of uncertainty, while the latter doesn't ([1, 3]).

Though using numbers to express \degree of uncertainty" seems to be a natural idea, there are
still sound objections against it: Human knowledge is usually represented in natural language, where
uncertainty is usually expressed verbally. If we can directly represent and process uncertainty in this
form, the processes and results may be easier to be understood by human beings. When uncertainty
is represented numerically, some information about the type and origin of the uncertainty will be
lost, and it may lead to a false sense of accuracy. Moreover, it is hard to �nd a natural mapping
between the numbers and the verbal expressions in natural language ([14, 24, 27]).

I'll discuss two typical non-numerical approaches: Non-Monotonic Logics and Endorsement
Theory.

There are several formal systems within the category of Non-Monotonic Logics. Though built
di�erently, they share some opinions about human common-sense reasoning: with incomplete
knowledge, some convention or default rules can (and should be) used to get tentative conclusions,
which can be rejected by later acquired facts.

If Non-Monotonic Logics is implemented as an IRS, the following problems will appear:

1. The system can accept default rules from the environment, but cannot generalize them from
available evidence.

2. The domain knowledge of the system can be divided into three types: (1) default rules,
(2) facts, and (3) guesses, where only the last one is defeasible. In this way, the system is
not completely open: evidence that conict with current default rules and facts cannot be
accepted.

3. When there are competing guesses generated by di�erent default rules, there is no universal
way to make the choice. This is the so-called 'Multiple extensions problem".
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Reiter wrote in [18]: \Nonmonotonic reasoning is necessary precisely because the information
associated with such settings requires that certain conventions be respected." Since IRS is de�ned
as a system that open to all representable new knowledge, no such convention can be assumed here.

Reiter wrote in the same paper that \Nonmonotonic reasoning is intimately connected to the
notion of prototypes in psychology and natural kinds in philosophy." However, for an (completely)
open system, the notion of prototypes and natural kinds have to be de�ned and maintained ac-
cording to quantitative information. Concretely, prototype or default are based on the \central
tendency" ([19]), but with constantly coming evidence, whether a tendency is \central" is usually
a matter of degree. On the other hand, all knowledge is revisible, but with di�erent sensitivity or
stability, which is also a matter of degree. It is possible to indicate these degrees by verbal labels,
but such a system will be less general and less e�cient than a numerical system.

Endosement Theory uses verbal labels to represent \reasons to believe or disbelieve uncertain
propositions" ([24]). Its advantage is the ability to indicate why to believe, as well as how much to
believe, therefore more information is preserved, compared with numerical approaches.

We meet a dilemma here. If the endorsements are interpreted as di�erent degrees along the
same semantic dimension, what we get is a \coarse numerical scale", which has �nite di�erent
values to take. Beside its naturalness (since verbal labels are used), such an approach has few
advantage over numerical approaches ([27]). On the other hand, if the endorsements are interpreted
as along di�erent semantic dimensions (as the case in Cohen's papers), there must be labels that
cannot be compared or used together as premises to derive conclusions, since they don't have a
common measurement. In the situations where our main purpose is to record uncertainty, such
an approach may be appropriate, but it is inapplicable in IRS, where the system have to set up a
common representation for uncertainty from di�erent sources, so that to carry out the operations
(comparison, revision, and inference) on them.

Therefore, a numerical measurement of uncertainty is necessary for the representation language
of IRS, not because it is accurate, but it is uniform and simple, especially because IRS need to do
induction and abduction. In these inferences, uncertainty emerge even if all the premises are certain,
and the amount of evidence is a dominant factor for the uncertainty (see [32] for an example). For
this reason, even if verbal labels of uncertainty is used in the communication language for the sake
of naturalness, it is still desired to represent uncertainty numerically in the internal representation.

A numerical measure is not su�cient for uncertainty management in IRS since some operations
are sensitive to the source of uncertainty. To solve such problems, some other method can be
used as a supplement, rather than a replacement, of the numerical approach. For example, such a
mechanism is described in [30] for detecting correlated evidence in revision.

Though non-numerical approach is unsuitable in IRS, their motivations need to be respected,
that is, the numerical measurement should have a natural interpretation, so that the numbers can
make sense to human beings. On the other hand, verbal expressions have advantages when used
in communication. We'll see in the next sections that it is possible to absorb these ideas into a
numerical representation of uncertainty.

2.2 The fuzzy approaches

There are two types of approaches that can be called \fuzzy": one is using linguistic variables
to represent uncertainty, and the other is using grade of membership (or its variations, such as
possibility, as in [37]) to do it. The former falls into the category of non-numerical approaches, so the
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previous discussion applies, that is, though such an approach may work well for the communication
language, it is not good enough as an internal representation. Therefore, here we'll focus our
attention on the latter approach: representing the uncertainty of a proposition by a real number
in [0, 1]. To simplify our discussion, let's assume the proposition have the form \b is A", so the
number is the grade of membership of b in A ([35]).

The problem of using such an approach in IRS is: fuzziness is not properly analyzed and
interpreted in fuzzy logic (see [31] for a detailed discussion). According to Zadeh, membership
functions are subjective and context-dependent, therefore, there is no general method to determine
them by experiment or analysis ([36]).

One problem caused by this attitude to fuzziness is: the operations, typically the max and min
functions for union and interjection of fuzzy sets, lack a cognitive justi�cation.

Such an approach may works well in some circumstances, for example in control systems, where
the context is relatively stable, so the designer can adjust the system by trying di�erent membership
functions and operators. However, this methodology cannot be applied in IRS, which is general
purpose, and its context is dynamic changed, not completely predictable by the designer.

In IRS, all uncertainties, including fuzziness, come from the insu�ciency of the system's knowl-
edge and resources. Therefore, we need a interpretation that relate the grade of membership to the
amount (or weight) of available evidence, and the interpretation should be domain independent and
consistent with the interpretation of other types of uncertainty, such as randomness. Otherwise,
the system cannot carry out its operations in situations where di�erent types of uncertainty are
involved ([31]).

2.3 The Bayesian approach

The Bayesian approach for uncertain reasoning is characterized by the following features ([16]):

1. probability is interpreted as degree of belief, based on available evidence;

2. current knowledge is represented by a (�rst-order, real-valued) probability distribution on a
proposition space; and

3. new knowledge is learned by conditionalization.

This approach has a sound theoretical foundation and a wide application domain. However, it
cannot be used by IRS, for the following reasons:

� As in the case of fuzziness, how the degree of belief is related to weight of evidence is unclear
([21]).

� Due to insu�cient knowledge and resources, it is usually impossible for IRS to maintain a
consistent probability assignment on its knowledge base ([9]).

� As discussed in [28], conditionalization cannot be referred as a general way to symmetrically
combine evidence from di�erent sources.

� With all the e�orts to improve its e�ciency, the resources expense of Bayesian approach is
still pretty high for large knowledge bases.
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The origin of the problems is: all the probability assignments in Bayesian approach are based
on a common chunk of prior knowledge, which is implicitly indicated, therefore cannot be weighed
against new evidence ([28]).

According to the requirement of IRS, what is lacking in Bayesian approach is:

1. the ability to represent ignorance (or its opposite: con�dence), which indicate the sensitivity
of the current belief to future evidence; 1

2. the ability to base each piece of knowledge on its own evidence, rather than let all of them
share a common foundation (only in this way, the system's belief can be revised locally and
incrementally, when the system cannot a�ord the resource for global revision); and

3. the ability to get conclusion when the premises are evaluated by di�erent probability distri-
bution functions.

What follows from these is: at least two numbers should be attached to each proposition to represent
its uncertainty ([28]).

2.4 The higher-order approaches

\Ignorance cannot be represented in a probability distribution" is an old argument against Bayesian
approach, and a major motivation for alternative approaches.

Since by ignorance we mean that the assignment of a probability to a proposition is uncertain
itself, it's natural to try probability theory once again by introducing second-order probability or
probability of probability: if the proposition \Proposition A's probability is p" is uncertain, we can
measure the uncertainty by assigning a probability q to it. To the original proposition A, q is its
second-order probability.

Mathematically, this can been done, and have been done ([5, 6, 15]), but its interpretation and
practical bene�t is doubtful ([12, 16]). From the point of view of IRS, we can (at least) �nd the
following two reasons that are against this approach:

� Though second order probability q can be used to represent the uncertainty in a probability
assignment Pr(A) = p, it does not represent ignorance, since q = 0 means Pr(A) 6= p, rather
than \Pr(A) is completely unknown".

� Given insu�cient knowledge, we cannot get for sure not only the �rst order probability, but
also the second order probability. Therefore in theory there is an in�nite regression.

There are other attempts to measure ignorance by introduce a number which is at a \higher
level" in certain sense, but not a \probability of probability" as de�ned above. For examples,
Yager's credibility ([34]) and Shafer's reliability ([22]) both evaluate the uncertainty of a probabil-
ity assignment, where 0 is interpreted as \unknown", rather than \impossible". However, these
approaches still lack clear interpretations and well-de�ned operations.

1The claim that ignorance can be derived from a probability distribution ([16]) is incorrect due to the confusion
of the \explicit condition" and the \implicit condition" of a probability assignment, as discussed in [28].
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2.5 The interval approach

Another intuitively appealing approach to measure ignorance is to use an interval, rather than a
point, to represent the probability of a proposition, and interpret the interval as the lower bound
and upper bound of the \objective probability" ([2, 8, 11, 13, 33]).

In this way, ignorance can be represented by the width of the interval. When the system know
nothing about a proposition, the interval is [0, 1], that is, the objective probability can be anywhere;
when the objective probability is known, the interval degenerates into a point. The operations on
the interval can be got directly from probability theory, so the approach has a solid foundation.

On the other hand, this approach can be interpreted as a partially de�ned probability distribu-
tion, where the unde�ned part is restrainted by the de�ned part.

If we try to use this approach in IRS, we'll meet a problem similar to the problem with second-
order probability: with insu�cient knowledge, we even cannot determined the lower bound or
upper bound of a unknown probability. For example, if we don't know whether a coin is biased,
and all our knowledge about it is that at n tossings, m of them get heads (m � n). Of course we
don't know the probability of head (de�ned as the limit of the frequency), but do we know the
interval within which the probability stays? Since future evidence is in�nite compared with known
evidence, no such interval can be guaranteed, except the trivial [0, 1].

Of course we can guess such an interval, but then the reliability of the guess need to be indicated
somehow | once again, we are facing an in�nite regression.

Moreover, how can we know there is a \objective probability", or the frequency of head has a
limit? In the environment of IRS, we don't know it. As a result, the probability-interval approach
has di�culty to �nd a suitable interpretation, though it can have a good formal description.

2.6 The Dempster-Shafer approach

In Dempster-Shafer theory ([21]), the belief about a proposition is also represented as an interval
[Bel; P l], but it isn't interpreted as the lower and upper bounds of an objective probability, as
least according to Shafer ([22]). As \a mathematical theory of evidence", Dempster-Shafer theory
is characterized by the using of Dempster's rule to combine degrees of belief when they are based
on independent items of evidence.

Shafer claimed that probability is a special case of degree of belief, when the [Bel; P l] interval
degenerated into a point ([21, 22]). In [29], I argued that such a claim is misleading. I'll briey
summarize my argument here:

Consider a simple frame of discernment � = fH; �Hg. If w+ is the weight of evidence that
support H , and w� is the weight of evidence that support �H , then it follows from Dempster's rule
that

Bel(fHg) = m(fHg) =
ew

+

� 1

ew+ + ew� � 1

Pl(fHg) = 1�m(f �Hg) =
ew

+

ew
+ + ew

�

� 1

which are derived in [21].
The above equations lead to two results when the [Bel; P l] interval degenerated into a point,

that is, when the weight of total evidence w+ + w� go to in�nite:
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1. If w+ and w� keep a certain proportion, say p : (1 � p), when they go to in�nity, then we
have

Bel(fHg) = Pl(fHg) =

8><
>:

0 if p < 1=2
1=2 if p = 1=2
1 if p > 1=2

2. If w+ and w� keep a certain di�erence, say w� � w+ = �, when they go to in�nity, then we
have

Bel(fHg) = Pl(fHg) =
1

1 + e�

These results indicate that when a [Bel; P l] interval degenerated into a point, we get a \prob-
ability" function only in the sense that Bel(fHg) + Bel(f �Hg) = 1, but usually (unless the point
happens to be 0, 1/2, or 1) Bel(fHg) doesn't equal to p, which is commonly accepted as H 's
\probability". In most cases, such a Bayesian belief function corresponds to a situation where the
positive and negative evidence have a constant di�erence, which has no obvious practical usage
([21]).

Therefore, if we still relate the probability of a proposition to the frequency of its positive
evidence or the limit of the frequency, then it is neither necessarily in [Bel; P l], nor does it go to
the same limit with the interval.

Since the frequency (or proportion) of positive evidence is a very natural and simple way to
indicate the uncertainty of a proposition, the above result shows a defect of Dempster-Shafer theory,
because this information is hard to access, and even lost when the interval degenerated into a point.
For a detailed discussion of the problem, see [29].

Beside the above problem, there are some other factors that make Dempster-Shafer theory
unsuitable for IRS, such as

� Dempster-Shafer theory only works on exclusive and exhaustive sets of hypotheses. However,
not all sets of competing hypotheses have the two properties, due to insu�cient knowledge
and resources.

� Dempster's rule need unrealistic assumptions about the independence of the evidence to be
combined, at least under the message-coding interpretation ([26]).

� Dempster-Shafer theory lack well-developed inference rules ([1]). This is partly caused by
the above problem, because Dempster-Shafer theory cannot be treated as a generalization of
probability theory in all senses.

� The resource expense of Dempster-Shafer theory's implementation is very high.

2.7 Summary

After above discussions we can say that though the existing approaches have their advantage in
their applicable domains, none of them can be used in IRS. There are three basic reasons:

1. IRS is completely based on the assumption of insu�cient knowledge and resources, while all
the previous discussed approaches are partially based on the assumption. They admit that
some knowledge is unavailable, but insist the existence of some other knowledge, and none of
them consider how to work under a variable time pressure.
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2. The interpretation of the numbers (for numerical approaches), especially how they are related
to weight of evidence, is unclear (such as in fuzzy approach), unrealistic (such as in probability-
of-probability and probability-interval approaches), or unnatural (such as in Dempster-Shafer
theory). As a result, it is hard for human beings to communicate with the system, or to justify
the operations of the system.

3. None of the existing approaches can naturally handle randomness, fuzziness and ignorance in
a consistent way, while this property is necessary for IRS.

Therefore, a new approach is required by IRS.

3 The NARS Approach

Non-Axiomatic Reasoning System, or NARS, is proposed as a way to build an intelligent reasoning
system (IRS). Here, I'll concentrate on its representation and interpretation of uncertainty, and
leave the other components (such as inference rules, memory structure, and control mechanism) to
other papers. For more detailed and complete descriptions for NARS, see [32] and [30].

3.1 The cardinal form

As mentioned previously, NARS need to measure the weights of (positive and negative) evidence
of a proposition. Such a task can be divided into three subtasks: to represent a proposition, to
distinguish positive and negative evidence of a proposition, and to determine the unit of weight.

In NARS, each proposition has the form \S � P", where S is the subject of the proposition, and
P is the predicate. Both of them are terms. \�" is an inheritance relation between two terms, and
is reexive and transitive. Due to insu�cient knowledge and resources, such a relation is usually
uncertain, in the senses that there may be counter-examples, and the current evaluation may be
revised by future evidence.

As an idealization, a binary reexive and transitive relation \<" is de�ned as the limit of the
\�" relation, when the relation has no and will not have any counter-example. The extension of a
term X is de�ned as the set of terms fY jY < Xg, and The intension of a term X is de�ned as the
set fY jX < Y g. Intuitively speaking, the extension of a term is its specializations, or subsets; the
intension of a term is its generalizations, or supersets. (See [30] for a detailed description of the
representation language.)

\S � P" is called a \inheritance relation" from S to P , since in its idealized case (represented
by \S < P") S inherits P 's intension, and P inherits S's extension. As said previously, such
a inheritance relation is usually uncertain, so it is necessary to measure the weight of evidence.
According to the above de�nitions, if it is known that \M < S" and \M < P", or \S < M" and
\P < M", then M can be naturally counted as a piece of positive evidence for \S � P", with a
unit weight, since such aM is a common element in S's and P 's extensions or intensions, therefore
supports the judgment that \S inherits P 's intension, and P inherits S's extension" (which is what
formalized by \S � P") to a certain extent. On the contrary, if it is known that \M < S" but
\M < P is false", or \P <M" but \S < M is false", then M can be naturally counted as a piece
of negative evidence for \S � P", with a unit weight, since such a M is an element in S's extension
but not in P 's, or an element in P 's intension but not in S's, therefore rejects the judgment that
\S inherits P 's intension, and P inherits S's extension" to a certain extent.
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Therefore, if we write the extension of a term X as EX , and the intension of X as IX , then for
a proposition \S � P", the weights of its positive and negative evidence can be de�ned in terms of
the cardinals of the related sets:

w+ = jES ^EP j+ jIP ^ IS j

w� = jES �EP j+ jIP � IS j

respectively, and the weight of all relevant evidence is de�ned as

w = w+ + w� = jES j+ jIP j

There are several points to be noticed in the de�nition:

1. Weight of evidence, de�ned in this way, is not used to be actually, directly measured for
each proposition, but used to interpret the uncertainty and to provide a foundation for the
operations on uncertainty.

2. All terms, as pieces of positive and negative evidences for an inheritance relation, are equally
weighted.

3. What is counted as the cardinal of a set is not \how many terms are there" which has a
objective sense, but \how many times a term has been known (by the system) to be there"
which is system dependent.

4. Practically, a term can hardly be counted as a \ideal element" of an extension or intension,
so its weight is usually a decimal, less than 1. Therefore, the cardinal of such a \fuzzy set" is
not necessarily to be an integer.

3.2 The ratio form

Though the cardinal form of uncertainty is logically more basic, it is unnatural and inconvenient
in many situations. We often prefer a \relative measurements", such as a real number in [0; 1]. It's
easy to see that

f =
w+

w

will give us the \success frequency" of the inheritance relation between the two terms, according
to the system's experience.

This measurement is natural and useful, but not enough: we still need the information about
the absolute value of w+ or w, so to manage the future revision of the frequency ([28]).

Can we �nd a natural way to represent this information in the form of a \relative measurements",
or more speci�cly, as a ratio? An attractive idea is to de�ne \the second-order probability".
However, as discussed previously, it doesn't make sense to compare the amount of relevant past
experience, represented by w, to the future experience, which is (potentially) in�nite.

However, it makes perfect sense to talk about the \near future". What the system need to
know, by keeping the information about w, is how sensitive a frequency will be to new evidence,
then use the information to make choice among competing judgments. If we limit our attention to
the same \constant future", we can keep such information in a ratio form.
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Let's introduce a positive constant k, and say it indicates that by \near future", we mean \to
test the inheritance relation for k more times", then there is a natural way to represent the system's
con�dence (indicated by c) about the frequency:

c =
w

w + k

that is, as the ratio that the amount of \current relevant evidence" to the amount of \relevant
evidence in the near future". Intuitively, it indicates how much the system knows about the
inheritance relation. Since k is a constant, the more the system knows about the inheritance
relation (represented by a bigger w), the more con�dent the system is about the frequency, since
the e�ect of evidence that comes in the near future will be relatively smaller (we'll see how c actually
works in the revision operation in [30]).

We can also naturally de�ne ignorance as the complement of con�dence by

i = 1� c:

Con�dence and ignorance, when de�ned like these, are measurement about the stability or
sensitivity of the frequence, by consider its variability in the near future. By indicating the near
future by a constant k, what I mean is not that NARS always requires the same level of stability
for di�erent propositions, but that it is a way to de�ne a unit for the measurement of stability.

3.3 The interval form

Amazingly, there is a third way to represent and interpret a truth value in NARS: to represent it
as an interval. Obviously, no matter what will happen in the near future, the \success frequency"
will be in the interval

[
w+

w + k
;
w+ + k

w + k
]

after the constant period indicated by k. This is because the current frequency is w+

w
, so in the

\best" case, when all evidence in the near future is positive, the new frequency will be w++k
w+k ; in

the \worst" case, when all evidence in the near future is negative, the new frequency will be w+

w+k .
Let's write the interval as [a; z], and simply call the two values as the lower bound and upper

bound of the frequency, but keep in mind that they respect to a constant near future, rather then
an in�nite future. Such an interval have some interesting properties:

1. The width of the interval is exactly the ignorance as de�ned above, that is, z� a = i = 1� c.

2. The frequency f divide the [a; z] interval into the same proportion as it divide the [0; 1]
interval, which is the proportion between the weights of the positive and the negative evidence,
that is, f � a : z � f = f : 1� f = w+ : w�.

3.4 Summary

Now we have three functionally identical ways to represent the uncertainty in a proposition in
NARS ([30]):

1. as a pair of cardinals fw+, wg, where w+ is a non-negative real number, w is a positive real
number, and w � w+;
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2. as a pair of ratios <f; c>, where f 2 [0; 1], and c 2 (0; 1); or

3. as an interval [a; z], where 0 � a < z � 1, and 1 > z � a.

Beyond these valid truth values, there are two limitation points useful for the de�ning of the
inference rules:

Null evidence: This is represented by w = 0, or c = 0, or z � a = 1. It means that the system
actually know nothing at all about the inheritance relation;

Total evidence: This is represented by w ! 1, or c = 1, or z = a. It means that the system
already know everything about the statement | no future modi�cation of the truth value is
possible.

These are the one-to-one mappings among the three forms:

fw+; wg <f; c> [a; z]

fw+; wg w+ = k fc
1�c w+ = k a

z�a

w = k c
1�c w = k

1�(z�a)
z�a

< f; c > f = w+

w
f = a

1�(z�a)

c = w
w+k c = 1� (z � a)

[a; z] a = w+

w+k a = fc

z = w++k
w+k z = 1� c(1� f)

Since the three form is functionally identical, we can use any of them in the internal representa-
tion language. However, this doesn't mean that the other two forms are redundant and useless. To
have di�erent, but closely related forms and interpretations for truth value has many advantages:

� It gives us a better understanding about what the truth value really means in NARS, since
we can explain it in di�erent ways. The mappings also tell us the interesting relations among
the various ways of uncertainty measurements.

� As we'll see in the next section, it makes us more convenient to compare this approach with
other approaches.

� It makes the designing of inference rules easier. For each rule, there are functions calculating
the truth value of the conclusion(s) from the truth values of the premises, and di�erent
functions correspond to di�erent rules. As shown in [30], for some rules it is easier to choose
a function if we treat the truth values as cardinals, while for other rules, we may prefer to
treat truth values as ratios or intervals.

The above results also provides a user-friendly interface: if the environment of the system is
human users, the uncertainty of a statement can be represented in di�erent forms, such as \I've
tested it w times, and in w+ of them it was true", \Its past success frequency is f , and its con�dence
is c", or \I'm sure that its success frequency with remain in the interval [a, z] in the near future".
Using the mappings in the above table, we can maintain an unique truth value form as internal
representation, and translate the other two into it in the interface.

More than that, it is possible for NARS to support other ways to represent uncertainty in the
communication language:
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Single number: We can use a single decimal to carry the information about frequency and ig-
norance. For example, 0.9 can be translated into the interval [0:85; 0:95], and 0.90 can be
translated into the interval [0:895; 0:905].

Linguistic variables: We can use a set of verbal labels to approximately represent frequence and
ignorance. In the simplest cases, if there are n labels in the set, the [0,1] interval is evenly
divided into n sub-intervals, each for one of the labels. For example, the label set ffalse,
more or less false, borderline, more or less true, trueg can be translated into [0, 0.2], [0.2,
0.4], [0.4, 0.6], [0.6, 0.8], and [0.8, 1], respectively (similar methods are discussed in [27]). 2

It is also possible to determine the meanings of everyday verbal uncertainty expressions by
psychological experiments ([17, 27]).

These two forms don't have one-to-one mappings with the three forms de�ned above, but they
are good for communication in the situations where naturalness and simplicity are weighed more
than accuracy, or to \convey the vagueness, or softness, of one's opinions" ([27]). As a result,
though within the system the uncertainty of propositions is consistently represented by one form,
it can be represented by (at least) �ve di�erent (but related) forms in the communication language.

It is also possible to extend the approach of uncertainty representation and interpretation to
other formal language, where the propositions are not in the form \S � P". What is necessary
is that the positive and negative evidence of a proposition can be consistently distinguished and
naturally measured.

4 Relationship to Other Approaches

Now let's briey compare the representation and interpretation of uncertainty in NARS with the
other approaches mentioned previously, to see their similarities and di�erences.

4.1 The non-numerical approaches

Though NARS uses a numerical representation for uncertainty in its (internal) representation lan-
guage, it also allow certain verbal descriptions of uncertainty in its (external) communication lan-
guage, as mentioned in the previous section.

NARS also have some functions similar to non-monotonic logics: it can make guesses when
the knowledge is insu�cient, and the guesses are based on the \typical" or \normal" situations,
according to the system's knowledge. When such guesses conict with new evidence, they can be
modi�ed, or even rejected.

As a numerical approach, NARS have more types of operations on uncertainty than non-
monotonic logics, for example, NARS can generate hypotheses from evidences by induction and
abduction, and all of its knowledge is revisible.

4.2 The fuzzy approaches

By the way the uncertainty of a proposition is represented and interpreted, NARS suggest a new
interpretation of fuzziness (see [31] for a detailed discussion). Here I only discuss how two simple

2For a comparison, in fuzzy logic the set may be translated into f0, 0.25, 0.5, 0.75, 1g as in [4], or into �ve 4-tuples
as in [3].
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types of fuzziness are interpreted and represented in NARS.
The �rst type of fuzziness mainly happens with adjectives and adverbs, and appears in sentences

with the pattern \A is a R C", such as \John is a young man" and \Tweety is a small bird", where
C (man, bird) is a class of objects, A (John, Tweety) is an object in C, and R (young, small) is an
adjective those comparative form \R-er than" (younger than, smaller than) is a binary relation on
C, which is asymmetrical, transitive, and non-fuzzy.

In such a case, \R C" (young man, small bird) is a fuzzy concept, because the information is
given by comparing an object to a reference class. Under such a situation, it is not surprise to
see that membership is a matter of degree, since \R C" means \R-er than the other Cs", which
usually has both positive evidence and negative evidence, depending on which other element in C

is compared to.
In NARS, this \grade of membership" can be easily measured by the frequency of positive

evidence, which provides A's relative ranking in C with respect to the relation \R-er than", or Rt:

�R C(A) =
j(fAg � C)\ Rtj

jC � fAgj

(it's not necessary to compare A to itself). Now �R C(A) = 1 means that A is the \R-est C"
(youngest man, smallest bird); �R C(A) = 0 means that A is the \un-R-est C" (oldest man,
biggest bird).

The second type fuzziness mainly happens with nouns and verbs, where the membership is
a similarity between an instance to be judged and a prototype or a known instance ([20]), so
membership measurement is reduced to similarity measurement.

In NARS, the inheritance relation is exactly what usually referred as asymmetric similarity, that
is, \S inherit P 's property". The grade of membership of an element of S in P is f , the frequency
of positive evidence, as de�ned before. Now f = 1 means that each elements of S inherits all the
properties of P , so they are typical P ; f = 0 means that each elements of S inherits no properties
of P , so they are by no means P .

We can de�ne symmetric similarity as two inheritance relations, that is, to understand \S and
P are similar" as \S inherit P 's property, and P inherits S's properties". The degree of similarity
also be naturally measured by the frequency of positive evidence

jIS \ IP j

jIS [ IP j

where IS (IP ) is S's (P 's) property set, or its intension, as previously de�ned.
Of course, in all these situations, the con�dence of the property also need to be calculated, to

make the frequencies revisible in light of future evidence.
Compared with the various fuzzy logics, the process of fuzziness in NARS has the following

characteristics:

1. The membership function is related to the weight of evidence, and it is explicitly de�ned in
each case that what is counted as positive or negative evidence.

2. Fuzziness and randomness are both represented by the frequency of positive evidence, and
processed in a uni�ed way. The di�erence is: the former is about the inheritance of intensions,
while the latter is about the inheritance of extensions.

3. A con�dence measurement is used to maintain the revision of grade of membership.
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4.3 The Bayesian approach

Though the NARS approach of uncertainty management is closely related to probability theory,
there are still several important di�erences.

The frequency measured in NARS is about \psychological events" (whether two terms share
their instances/properties) of the system, so it is empirical in the sense that it is determined by the
experienced frequency, it is subjective in the sense that it depends on the system's individualized
environment and internal state, and it is logical in the sense that it is interpreted as a logical
relation between a judgment and available evidence. Therefore, it is related to all the three major
interpretations of probability ([7, 10]), but identical to none of them.

NARS processes both extensional factors and intensional factors by which a proposition become
uncertain, while traditionally probability theory is used for extensions only, that is, the probability
of S � P is usually measured by jS\P j

S
.

The con�dence measurement is introduces to support the revision of frequency ([28]).
In Bayesian approach, the probability assignments on a proposition space are based on a com-

mon prior knowledge base, so all beliefs must be consistent, and all operations must be take the
entire content of the knowledge base into consideration. Pearl calls such approaches \intensional",
and argued that they are more appropriate than the \extensional" approaches (the words \exten-
sion" and \intension" are used di�erently in Pearl's book and in this paper), where operations are
local ([16]), that is, what conclusion can be drawn from a set of premises is independent to what
other beliefs are hold by the system.

NARS is \extensional" in Pearl's sense, because in it each proposition's uncertainty is measured
on its own, and all operations only involve a small part of the knowledge base. As a result, there
are usually conicting beliefs in the system's knowledge base, and the system may make mistakes
due to the incomplete record of each belief's sources of evidence (see [30] for a detailed discussion).
However, these problems is caused by the insu�ciency of knowledge and resources, so are inevitable
for IRS (as well as for human beings). In contrary, the \intensional" approach, such as Bayesian
approaches, are applicable only in situations where the system's knowledge is su�cient on the
relations between evidence from di�erent sources, and the system's resources are su�cient for
globe updating when new evidence comes ([28]).

4.4 The higher-order approaches

As discussed previously, though the con�dence c of a proposition is in [0; 1], can be measured as
a ratio, and is at a higher level than the frequency of positive evidence f , in the sense that c
indicates f 's stability, c cannot be interpreted as a second-order probability h in the sense that it
is the probability of the judgment \the inheritance relation's (real, or objective) probability is f",
and cannot be processed in that way according to probability theory.

When c = 1, it means the same with h = 1, that is, f cannot be changed by future evidence.
But c = 0 means f is unde�ned, while h = 0 means f is not the \true" probability.

The more fundamental di�erence is: by de�ning a second order probability, it is assumed
that there is a \true" or \objective" probability, and its relation with the current \�rst order
probability" is partially known. Such an assumption, though valid at some situations, is conict
with the assumption of insu�cient knowledge, so cannot be accepted by IRS. On the contrary,
con�dence is totally de�ned on the system's experience, without any assumption about \the state
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of a�airs". A proposition with a high con�dence is more stable, or harder to be inuenced by new
evidence, but it doesn't mean that it is \truer" in an objective sense.

In this way, NARS also avoids the in�nite regression mentioned previously: if the second order
probability is uncertain, a third order estimation is necessary, at least in theory. In NARS, both f
and c are certain in the sense that they are measurements on the system's experience, rather than
estimations of unknown quantities existing outside the system. Therefore, no further quantities is
necessary to represent the uncertainty of f and c.

As mentioned previously, the intuition behind con�dence is similar to whose of Yager's credibility
([34]) and Shafer's reliability ([22]). What di�ers con�dence from them is its explicitly de�ned
relations with the other uncertainty measurement, such as weight of evidence, ignorance, and the
range the frequency will be in the near future. With these relations, all these measurements form
a consistent foundation for the NARS project.

4.5 The interval approach

The interval form of truth value in NARS shares similar intuitions with the \probability interval"
approaches ([2, 11, 33]). For example, ignorance can be represented by the width of the interval.
However, in NARS the interval is de�ned as the range the frequency will be in the near future,
rather than in the in�nite future. In this way, some theoretical problem can be solved.

As in the case of the second order probability, under the assumption of insu�cient knowledge,
it is invalid to assume there is an objective probability of a proposition, or the frequency has a
limit. Therefore, it is nonsense to talk about an interval where the probability will be. However,
by only talking about a constant future, such an interval can make perfect sense.

Interpreted in this way, the [a; z] interval is processed di�erently from those interpreted as
\lower/upper bound of (objective) probability". For example, during revision, two intervals that
have no common sub-interval can still be combined, rather then treated as an inconsistency ([8]).

4.6 The Dempster-Shafer approach

The [a; z] interval is similar to the [Bel; P l] interval of Dempster-Shafer theory in the sense that
both can represent the support a proposition get from available evidence, as well as the system's
ignorance about the proposition. On the other hand, both approaches try to make the point-like
probability assignment a special case of the interval.

However, as demonstrated previously, in Dempster-Shafer theory the weight of evidence and
the [Bel; P l] interval have such a relation that the information about the frequency of positive
evidence is hard to access, and even be lost when the interval degenerated into a point. On the
contrary, this information is explicitly reserved in the [a; z] interval, which is de�ned as the range
of the frequency in the near future, and will converge to the limit of the frequency when such a
limit happen to exist.

5 Discussions

Compared with the other approaches, the representation and interpretation of uncertainty in NARS
have the following characteristics:
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1. It can satisfy the requirement of IRS, that is, the approach can be applied to a reasoning sys-
tem where knowledge and resources are constantly insu�cient to deal with the tasks provided
by the environment.

2. It combines various measurements of di�erent types of uncertainty into a uni�ed framework,
and provides them with natural and consistent interpretations.

3. It provides a consistent foundation for the uncertainty calculus which includes several kinds
of operations, such as comparison, revision, and inference (deduction, induction, abduction,
and so on).

NARS process multiple types of uncertainty in a uni�ed way, not because they are not di�erent
(on the contrary, they are di�erent, see [23]), but because the system have to �nd a common
measurement at a more abstract level, otherwise the system would fail to satisfy the requirements
of the environment. I hope this paper can show that such a common measurement is possible. In
NARS, di�erent types of uncertainty can still be distinguished in extreme cases, but it is not always
possible or easy.

It is not claimed that this approach is always better than the others, but that it is better in
the environment de�ned as IRS in the �rst section of the paper. For why such an environment is
important and interesting from the point of view of arti�cial intelligence and cognitive science, see
[32].

This approach have many interesting properties, for example, it satis�es most requirements in
Bonissone's list of desiderata ([2]). On the other hand, the system may make mistakes, but these
mistakes are caused by the insu�ciency of knowledge and resources, so they are \reasonable errors"
in the sense that they are similar to human mistakes under the same situation (for example, some
phenomena happened in NARS are like what Tversky and Kahneman discussed in [25] as \heuristics
and biases"). Therefore, NARS is not only proposed as an engineering model for solving certain
practical problems under certain situations, but also as a cognitive model to explain intelligence.
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