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1. Term Logic vs. Predicate Logic

There are two major traditions in formal logic: term logic and propo-
sitional/predicate logic, exempli�ed respectively by the Syllogism of
Aristotle and the First-Order Predicate Logic founded by Frege, Rus-
sell, and Whitehead.

Term logic is di�erent from predicate logic in both its knowledge
representation language and its inference rules.

Term logic represents knowledge in subject{predicate statements. In
the simplest form, such a statement contains two terms, linked together
by an inheritance relation:

S � P

where S is the subject term of the statement, and P is the predicate

term. Intuitively, this statement says that S is a specialization (instan-
tiation) of P , and P is a generalization (abstraction) of S. This roughly
corresponds to \S is a kind of P" in English.

Term logic uses syllogistic inference rules, in each of which two state-
ments sharing a common term generate a new statement linking the
two unshared terms.

In Aristotle's syllogism (Aristotle, 1989), all statements are binary
(that is, either true or false), and all valid inference rules are deduction,
therefore when both premises are true, the conclusion is guaranteed to
be true. When Aristotle introduced the deduction/induction distinc-
tion, he presented it in term logic, and so did Peirce when he added
abduction into the picture (Peirce, 1931). According to Peirce, the de-
duction/abduction/induction triad is de�ned formally in terms of the
position of the shared term:
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Deduction Abduction Induction

M � P P � M M � P
S � M S � M M � S
|||| |||| ||||
S � P S � P S � P

De�ned in this way, the di�erence among the three is purely syntac-
tic: in deduction, the shared term is the subject of one premise and the
predicate of the other; in abduction, the shared term is the predicate
of both premises; in induction, the shared term is the subject of both
premises. If we only consider combinations of premises with one shared
term, these three exhaust all the possibilities (the order of the premises
does not matter for our current purpose).

It is well-known that only deduction can generate sure conclusions,
while the other two are fallible. However, it seems that abduction
and induction, expressed in this way, do happen in everyday think-
ing, though they do not serve as rules for proof or demonstration, as
deduction does. In seeking for a semantic justi�cation for them, Aris-
totle noticed that induction corresponds to generalization, and Peirce
proposed that abduction is for explanation.

Later, when Peirce's focus turned to the pragmatic usage of non-
deductive inference in scienti�c inquiry, he viewed abduction as the
process of hypothesis generation, and induction as the process of hy-
pothesis con�rmation.

Peirce's two ways to classify inference, syllogistic and inferential (in
the terminology introduced by Flach and Kakas, this volume), cor-
respond to two levels of observation in the study of reasoning. The
\syllogistic" view is at the micro level, and is about a single inference
step. It indicates what conclusion can be derived from given premises.
On the other hand, the \inferential" view is at the macro level, and
is about a complete inference process. It speci�es the logical relations
between the initial premises and the �nal result, without saying how
the result is obtained, step by step.

Though the syllogistic view is constructive and appealing intuitively,
some issues remain open, as argued by Flach and Kakas (this volume):

1. Abduction and induction, when de�ned in the syllogistic form, have
not obtained an appropriate semantic justi�cation.
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2. The expressive capacity of the traditional term-oriented language
is much less powerful than the language used in predicate calculus.

I fully agree that these two issues are crucial to term logic.
For the �rst issue, it is well known that abduction and induction

cannot be justi�ed in the model-theoretic way as deduction. Since \pre-
suming truth in all models" seems to be the only existing de�nition for
the validity of inference rules, in what sense abductive and inductive
conclusions are \better", or \more reasonable" than arbitrary conclu-
sions? In what semantic aspect they di�er from each other?

The second issue actually is a major reason for syllogism to lose
its dominance to \mathematical logic" (mainly, �rst-order predicate
logic) one hundred years ago. How much of our knowledge can be put
into the form \S is a kind of P", where S and P are English words?
Currently almost all logic textbooks treat syllogism as an ancient and
primary form of logic, and as a subset of predicate logic in terms of
functionalities. It is no surprise that even in the works that accept
the \syllogistic" view of Peirce on abduction and induction, the actual
formal language used is not that of syllogism, but predicate logic (see
the work of Christiansen, this volume).

In the following, I want to show that when properly extended, syllo-
gism (or term logic, I am using these two names interchangeably here)
provides a more natural, elegant, and powerful framework, in which de-
duction, abduction, and induction can be uni�ed in syntax, semantics,
and pragmatics. Furthermore, this new logic can be implemented in a
computer system for the purpose of arti�cial intelligence.

2. Extended Syllogism in NARS

NARS is an intelligent reasoning system. In this chapter, I only in-
troduce the part of it that is directly relevant to the theme of this
book. For more comprehensive descriptions of the system, see (Wang,
1994; Wang, 1995).

2.1. Syntax and Semantics

NARS is designed to be adaptive to its environment, and to work with
insu�cient knowledge and resources. The system answers questions in
real time according to available knowledge, which may be incomplete
(with respect to the questions to be answered), uncertain, and with
internal conicts.

In NARS, each statement has the form

S � P <F; C>
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where \S � P" is used as in the previous section, and \< F; C >"
is a pair of real numbers in [0, 1], representing the truth value of the
statement. F is the frequency of the statement, and C is the con�dence.

When both F and C reach their maximum value, 1, the statement
indicates a complete inheritance relation from S to P . This special case
is written as \S v P". By de�nition, the binary relation \v" is reexive
and transitive.

We further de�ne the extension and intension of a term T as sets of
terms:

ET = fxj x v Tg and IT = fxj T v xg

respectively. It can be proven that

(S v P )() (ES � EP )() (IP � IS)

where the �rst relation is an inheritance relation between two terms,
while the last two are including relations between two sets.

This is why \v" is called a \complete inheritance" relation | \S v
P" means that P completely inherits the extension of S, and S com-
pletely inherits the intension of P .

As mentioned before, \v" is a special case of \�". In NARS, accord-
ing to the assumption of insu�cient knowledge, inheritance relations
are usually incomplete. To adapt to its environment, even incomplete
inheritance relations are valuable to NARS, and the system needs to
know how incomplete the relation is, according to given knowledge.
Though complete inheritance relations do not appear as given knowl-
edge to the system, we can use them to de�ne positive and negative
evidence of a statement in idealized situations, just like we usually de-

�ne measurements of physical quantities in highly idealized situations,
then use them in actual situations according to the de�nition.

For a given statement \S � P" and a term M , when M is in the
extension of S, it can be used as evidence for the statement. If M is
also in the extension of P , then the statement is true, as far as M
is concerned, otherwise it is false, with respect to M . In the former
case, M is a piece of positive evidence, and in the latter case, it is a
piece of negative evidence. Similarly, if M is in the intension of P , it
becomes evidence for the statement, and it is positive if M is also in
the intension of S, but negative otherwise.

For example, if we know that iron (M) is metal (S), then iron can
be used as evidence for the statement \Metal is crystal" (S � P ). If
iron (M) is crystal (P ), it is positive evidence for the above statement
(that is, as far as its instance iron is concerned, metal is crystal). If
iron is not crystal, it is negative evidence for the above statement (that
is, as far as its instance iron is concerned, metal is not crystal). There-
fore, syntactically, \Metal is crystal" is an inductive conclusion de�ned
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in term logic; semantically, the truth value of the conclusion is deter-
mined by checking for inherited instance (extension) from the subject
to the predicate; pragmatically, the conclusion \Metal is crystal" is a
generalization of \Iron is crystal", given \Iron is metal" as background
knowledge.

Similarly, if we know that metal (P ) is crystal (M), then crystal can
be used as evidence for the statement \Iron is metal" (S � P ). If iron
(S) is crystal (M), it is positive evidence for the above statement (that
is, as far as its property crystal is concerned, iron is metal). If iron is
not crystal, it is negative evidence for the above statement (that is, as
far as its property crystal is concerned, iron is not metal). Therefore,
syntactically, \Iron is metal" is an abductive conclusion de�ned in term
logic; semantically, the truth value of the conclusion is determined by
checking for inherited property (intension) from the predicate to the
subject; pragmatically, the conclusion \Iron is metal" is an explanation
of \Iron is crystal", given \Metal is crystal" as background knowledge.

The perfect parallelism of the above two paragraphs indicates that
induction and abduction, when de�ned in term logic as above, becomes
a dual.

If the given knowledge to the system is a set of complete inheritance
relations, then the weight of positive evidence and total (positive and
negative) evidence are de�ned, respectively, as

W+ = jES \EP j+ jIP \ IS j; W = jES j+ jIP j

where set theory notations are used.
Finally, the truth value mentioned previously is de�ned as

F =W+=W; C =W=(W + 1)

Intuitively, F is the proportion of positive evidence among all evidence,
and C is the proportion of current evidence among evidence in the near
future (after a unit-weight evidence is collected). When C is 0, it means
that the system has no evidence on the proposed inheritance relation
at all (and F is unde�ned); the more evidence the system gets (no
matter positive or negative), the more con�dent the system is on this
judgment.

Now we can see that while in traditional binary logics, the truth
value of a statement qualitatively indicates whether there exists nega-
tive evidence for the statement, in NARS the truth value quantitatively
measures available positive and negative evidence.
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2.2. Inference Rules

Though the truth value of a statement is de�ned in terms of counting
in extension and intension of the two terms, it is not actually obtained

in this way in NARS. Instead, the user speci�es truth values of in-
put statements (according to the semantics described in the previous
section), and the inference rules in NARS have truth-value functions
attached to calculate the truth values of the conclusions from those of
the premises in each inference step.

In NARS, the triad of inference becomes the following:

Deduction Abduction Induction

M � P <F1; C1> P � M <F1; C1> M � P <F1; C1>
S � M <F2; C2> S � M <F2; C2> M � S <F2; C2>
|||||||| |||||||| ||||||||
S � P <F; C> S � P <F; C> S � P <F; C>

F = F1F2

F1+F2�F1F2
F = F2 F = F1

C = C1C2(F1 + F2 � F1F2) C = F1C1C2

F1C1C2+1 C = F2C1C2

F2C1C2+1

The above truth-value functions are determined in two steps: �rst,
from the de�nition of the truth value in NARS, we get the bound-
ary conditions of the functions, that is, the function values when the
premises are complete inheritance relations. Second, these boundary
conditions are extended into general situations according to certain
principles, such as the continuity of the function, the independence of
the premises, and so on. For detailed discussions, see (Wang, 1994;
Wang, 1995).

From a semantic point of view, the truth value of an inheritance
relation is determined in di�erent ways in di�erent inference types: de-
duction extends the transitivity of complete inheritance relation into
(incomplete) inheritance relation in general; abduction establishes in-
heritance relations based on shared intension; induction establishes in-
heritance relations based on shared extension. Though intuitively we
can still say that deduction is for proving, abduction is for explanation,
and induction is for generalization, these characteristics are no longer
essential. Actually here labels like \generalization" and \explanation"
are more about the pragmatics of the inference rules (that is, what the
user can use them for) than about their semantics (that is, how the
truth values of their conclusions are determined).
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Each time one of the above rules is applied, the truth value of the
conclusion is evaluated solely according to the evidence summarized in
the premises. Abductive and inductive conclusions are always uncertain
(i.e., their con�dence values cannot reach 1 even if the premises have
con�dence 1), because they never check the extension or intension of
the two terms exhaustively in one step, as deductive conclusions do.

To get more con�dent conclusions, the following revision rule is used
to combine evidence from di�erent sources:

Revision

S � P <F1; C1>
S � P <F2; C2>
||||||||
S � P <F; C>

F = F1C1(1�C2)+F2C2(1�C1)
C1(1�C2)+C2(1�C1)

C = C1(1�C2)+C2(1�C1)
C1(1�C2)+C2(1�C1)+(1�C1)(1�C2)

These two functions are derived from the relation between weight of
evidence and truth value, and the additivity of weight of evidence dur-
ing revision (Wang, 1994; Wang, 1995). The conclusion is more con�-
dent than either premise, because it is based on more evidence. The
frequency of the conclusion is more stable in the sense that it is less
sensitive (compared to either premise) to (a given amount of) future
evidence.

Using this rule to combine abductive and inductive conclusions, the
system can obtain more con�dent and stable generalizations and ex-
planations.

2.3. Inference Control

Since all statements have the same format, di�erent types of inference
can easily be mixed in an inference procedure. The premises used by the
induction rule may be generated by the deduction (or abduction, and
so on) rule, and the conclusions of the induction rule may be used as
premises by the other rules. The revision rule may merge an inductive
conclusion with a deductive (or abductive, and so on) conclusion.

NARS processes many inference tasks at the same time by time-
sharing, and in each time-slice a task (a question or a piece of new
knowledge) interacts with a piece of available knowledge. The task



8

and knowledge are chosen probabilistically according to priority val-
ues reecting the urgency of each task and the salience of each piece of
knowledge. The priority distributions are adjusted after each step, ac-
cording to the result the system obtained in that step. By doing so, the
system tries to spend more resources on more important and promising
tasks, with more reliable and useful knowledge. Consequently, in each
inference step the system does not decide what rule to use �rst, then
look for corresponding knowledge. Instead, it picks up two statements
that share a common term, and decides what rule to apply according
to the position of the shared term.

In general, a question-answering procedure in NARS consists of
many inference steps. Each step carries out a certain type of inference,
such as deduction, abduction, induction, revision, and so on. These
steps are linked together in run-time in a context-sensitive manner, so
the processing of a question or a piece of new knowledge does not fol-
low a predetermined algorithm. If the same task appears at di�erent
time in di�erent context, the processing processes and results may be
di�erent, depending on the available knowledge, the order by which the
pieces of knowledge are accessed, and the time-space resource supplied
to the task.

When the system runs out of space, it removes terms and statements
with the lowest priority, therefore some knowledge and tasks may be
permanently forgotten by the system. When the system is busy (that
is, working on many urgent tasks at the same time), it cannot a�ord
the time to answer all questions and to consider all relevant knowledge,
so some knowledge and tasks may be temporally forgot by the system.
Therefore the quality of the answers the system can provide not only
depends on the available knowledge, but also depends on the context
in which the questions are asked.

This control mechanism makes it possible for NARS to answer ques-
tions in real time, to handle unexpected tasks, and to use its limited
resources e�ciently.

3. An Example

Let us see a simple example. Assume that the following is the relevant
knowledge NARS has at a certain moment:

robin � feathered-creature <1:00; 0:90> (1)

(\Robin has feather.")

bird � feathered-creature <1:00; 0:90> (2)

(\Bird has feather.")
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swan � bird <1:00; 0:90> (3)

(\Swan is a kind of bird.")

swan � swimmer <1:00; 0:90> (4)

(\Swan can swim.")

gull � bird <1:00; 0:90> (5)

(\Gull is a kind of bird.")

gull � swimmer <1:00; 0:90> (6)

(\Gull can swim.")

crow � bird <1:00; 0:90> (7)

(\Crow is a kind of bird.")

crow � swimmer <0:00; 0:90> (8)

(\Crow cannot swim.")

Then the system is asked to evaluate the truth value of

robin � swimmer

which is like asking \Can robin swim?"
To make the discussion simple, let us assume a certain priority dis-

tribution, according to which the premises are chosen in the following
order.

[Step 1] From (1) and (2), by abduction, the system gets:

robin � bird <1:00; 0:45> (9)

Here \having feather" gives the system evidence to believe that robin is
a kind of bird, though the con�dence of the conclusion is low, because
it is only based on a single piece of evidence.

[Step 2] From (3) and (4), by induction, the system gets:

bird � swimmer <1:00; 0:45> (10)

Swan provides positive evidence for \Bird swims". Again, the con�-
dence is low.

[Step 3] From (9) and (10), by deduction, the system gets:

robin � swimmer <1:00; 0:20> (11)

As an answer to a user-asked question, this result is reported to the
user, while the system continues to work on it when resources are avail-
able. Here the system is answering \Yes" to \Can robin swim?", though
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it is far from con�dent about this answer, and it is going to look for
more evidence.

[Step 4] From (5) and (6), by induction, the system gets:

bird � swimmer <1:00; 0:45> (12)

Gull also provides positive evidence for \Bird swims".

[Step 5] (10) and (12) look identical, but since they came from
di�erent sources, they are not redundant and can be merged by the
revision rule to get:

bird � swimmer <1:00; 0:62> (13)

Evidences from di�erent sources accumulate to support a more con�-
dent conclusion.

[Step 6] From (7) and (8), by induction, the system gets:

bird � swimmer <0:00; 0:45> (14)

Crow provides negative evidence for \Bird swims".

[Step 7] From (13) and (14), by revision, the system gets:

bird � swimmer <0:67; 0:71> (15)

A compromise is formed by considering both positive and negative ev-
idence, and the positive evidence is stronger.

[Step 8] From (9) and (15), by deduction, the system gets:

robin � swimmer <0:67; 0:32> (16)

Because this conclusion is a more con�dent answer to the user question
than (13), it is reported to the user, too. In this way, the system can
change its mind after more knowledge and resources become available.

It needs to be mentioned that a typical run in NARS is much more
complex than the previous description, where we have omitted the con-
clusions that are irrelevant to the user question, and we have assumed
an order of inference that directly leads to the desired result.

For example, in Step 2 and 4, NARS actually also gets a symmetric
inductive conclusion

swimmer � bird <1:00; 0:45> (17)



11

which can be combined to become

swimmer � bird <1:00; 0:62> (18)

However, in Step 6 there is no symmetric inductive conclusion gener-
ated | since crow is not a swimmer, no matter it is a bird or not,
it provides no evidence for swimmer � bird. From the de�nition of
(positive and negative) evidence introduced earlier, it is not hard to
see that in induction and abduction, positive evidence for \X � Y "
are also positive evidence for \Y � X", but negative evidence for the
former is not counted as evidence for the latter.

In practical situations, the system may wonder around, and jump
from task to task. However, these behaviors are reasonable in the sense
that all conclusions are based on available evidence, and the choice of
task and knowledge at each step is determined by a priority distribu-
tion, which is formed by the system's experience and current environ-
mental factors (such as user requirements).

4. Discussion

In this book, the current chapter is the only one that belongs to the
term logic tradition, while all the others belong to the predicate logic
tradition. Instead of comparing NARS with the other approaches intro-
duced in the volume one by one, I will compare the two paradigms and
show their di�erence in handling abduction and induction, because this
is the origin of many minor di�erences between NARS and the other
works.

Compared with deduction, a special property of abduction and in-
duction is the uncertainty they introduced into their conclusions, that
is, even when all the premises are completely true and an abduction
(or induction) rule is correctly applied, there is no guaranty that the
conclusion is completely true.

When abduction and induction are formalized in binary logic, as
in the most chapters of this book, their conclusions become defeasible,
that is, a conclusion can be falsi�ed by any single counter-evidence (see
Lachiche, this volume). The philosophical foundation and implication
of this treatment of induction can be found in Popper's work (Pop-
per, 1959). According to this approach, an inductive conclusion is a
universally quanti�ed formula that implies all positive evidence but no
negative evidence. Though we can found many practical problems that
can be put into this framework, I believe that there are much more
that cannot | in empirical science and everyday life, it is not very
easy to get a non-trivial \rule" without counter-example. Abduction is
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similar. Staying in binary logic means that we are only interested in ex-
planations that explains all relevant facts, which are not very common,
neither.

To generate and/or evaluate generalizations and explanations with
both positive and negative evidence usually means to measure the ev-
idence quantitatively, and the ones that with more positive evidence
and less negative evidence are preferred (other things being equal). A
natural candidate theory for this is \probabilistic logic" (a combination
of �rst-order predicate logic and probability theory).

Let us use induction as an example. In predicate logic, a general con-
clusion \Ravens are black" can be represented as a universally quan-
ti�ed proposition (8x)(Raven(x) ! Black(x)). To extend it beyond
binary logic, we attach a probability to it, to allow it to be \true to a
degree". Intuitively, each time a black raven is observed, the probabil-
ity should be increased a little bit, while when a non-raven is observed,
the probability should be decreased a little bit.

Unfortunately, Hempel has found a paradox in this naive solution
(Hempel, 1943). (8x)(Raven(x) ! Black(x)) is logically identical to
(8x)(:Black(x) ! :Raven(x)). Since the probability of the latter is
increased by any non-black non-raven (such as a green shirt), so do the
former. This is highly counter-intuitive.

This chapter makes no attempt to survey the huge amount of liter-
ature on Hempel's \Raven Paradox". What I want to mention is the
fact that all the previous solutions are proposed within the framework
of �rst-order predicate logic. I will show that this problem is actually
caused by the framework itself, and the paradox does not appear in
term logic.

In �rst-order predicate logic, every general conclusion is represented
by a proposition which contains at least one universally quanti�ed vari-
able, such as the x in the previous example. This variable can be sub-
stituted by any constant in the domain, and the resulting proposition is
either true or false. If we call the constants that make it true \positive
evidence" and those make it false \negative evidence", then everything
must belongs to one of the two category, and nothing in the domain is
irrelevant. Literally, (8x)(Raven(x) ! Black(x)) states that \For ev-
erything in the domain, either it is a raven, or it is not black". Though
it is a meaningful statement, there is a subtle di�erence between it and
\Ravens are black" | the latter is about ravens, not about everything.

The situation in term logic is di�erent. In term logic \Ravens are
black" can be represented as raven � black thing, and \Non-black
things are not raven" as (thing � black thing) � (thing � raven). Ac-
cording to the de�nition, these two statements share common negative
evidence (non-black ravens), but the positive evidence for the former
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(black ravens) and the latter (non-black non-ravens) are completely
di�erent (here we only consider the extension of the concepts). The
two statements have the same truth value in binary (extensional) term
logic, because there a truth value merely qualitatively indicates whether
there is negative evidence for the statement. In a non-binary term logic
like NARS, they do not necessarily have the same truth value anymore,
so in NARS a green shirt has nothing to do with the system's belief
about whether ravens are black, just like crow, as a non-swimmer, pro-
vides no evidence for swimmer � bird, no matter it is a bird or not
(see the example in the previous section).

The crucial point is that in term logic, general statements are usually
not about everything (except when \everything" or \thing" happen to
be the subject or the predicate), and the domain of evidence is only the
extension of the subject (and the intension of the predicate, for a logic
that consider both extensional inference and intensional inference). I
cannot see how �rst-order predicate logic can be extended or revised
to do a similar thing.

In summary, my argument goes like this: the real challenge of ab-
duction and induction is to draw conclusions with conicting and in-
complete evidence. To do this, it is necessary to distinguish positive ev-
idence, negative evidence, and irrelevant information for a given state-
ment. This task can be easily carried out in term logic, though it is
hard (if possible) for predicate logic.

Another advantage of term logic over predicate logic is the relation
among deduction, abduction, and induction. As described previously, in
NARS the three have a simple, natural, and elegant relationship, both
in their syntax and semantics. Their de�nitions and the relationship
among them becomes controversial in predicate logic, which is a major
issue discussed in the other chapters of this book.

By using a term logic, NARS gets the following properties that dis-
tinguish it from other AI systems doing abduction and induction:

� In the framework of term logic, di�erent types of inference (deduc-
tion, abduction, induction, and so on) are de�ned syntactically,
and their relationship is simple and elegant.

� With the de�nition of extension and intension introduced in NARS,
it becomes easy to de�ne truth value as a function of available ev-
idence, to consistently represent uncertainty from various sources,
and to design truth-value functions accordingly. As a result, dif-
ferent types of inference can be justi�ed by the same experience-
grounded semantics, while the di�erence among them is still visi-
ble.
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� Abduction and induction become dual in the sense that they are
completely symmetric to each other, both syntactically and seman-
tically. The di�erence is that abduction collects evidence from the
intensions of the terms in the conclusion, while induction collects
evidence from the extensions of the terms. Intuitively, they still
correspond to generalization and explanation, respectively.

� With the help of the revision rule, abduction and induction at the
problem-solving level becomes incremental and open-ended pro-
cesses, and they do not follow predetermined algorithms.

� The choice of inference rule is knowledge-driven and context-sensitive.
Though in each inference step, di�erent types of inference are well-
de�ned and clearly distinguished, the processing of user tasks typi-
cally consists of di�erent types of inference. Solutions the user gets
are seldom purely inductive, abductive, or deductive.

Here I want to claim (though I have only discussed part of the
reasons in this chapter) that, though First-Order Predicate Logic is
still better for binary deductive reasoning, term logic provides a better
platform for the enterprise of AI.

However, it does not mean that we should simply go back to Aris-
totle. NARS has extended the traditional term logic in the following
aspects:

1. from binary to multi-valued,

2. from monotonic to revisable,

3. from extensional to both extensional and intensional,

4. from deduction only to multiple types of inference,

5. from atomic terms to compound terms.

Though the last issue is beyond the scope of this chapter, it needs to
be addressed briey. Term logic is often criticized for its poor express-
ibility. Obviously, many statements cannot be put into the \S � P"
format where S and P are simple words. However, this problem can be
solved by allowing compound terms. This is similar to the situation in
natural language: most (if not all) declarative sentences can be parsed
into a subject phrase and a predicate phrase, which can either be a
word, or a structure consisting of multiple words. In this way, term
logic can be expended to represent more complex knowledge.

For example, in the previous section \Non-black things are not
raven" is represented as (thing�black thing) � (thing�raven), where
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both the subject and the predicate are compound terms formed by sim-
pler terms with the help of the di�erence operator. Similarly, \Ravens
are black birds" can be represented as raven � (black thing \ bird),
where the predicate is the intersection of two simpler terms; \Sulfuric
acid and sodium hydroxide can neutralize each other" can be repre-
sented as (sulfuric acid�sodium hydroxide) � neutralization, where
the subject is a Cartesian product of two simpler terms.

Though the new version of NARS containing compound terms is
still under development, it is obvious that the expressibility of the
term-oriented language can be greatly enriched by recursively applying
logical operators to form compound terms from simpler terms.

Finally, let us re-visit the relationship between the micro-level (in-
ference step) and macro-level (inference process) perspectives of abduc-
tion and induction, in the context of NARS. As described previously,
in NARS the words \abduction" and \induction" are used to name
(micro-level) inference rules. Though the conclusions derived by these
rules still intuitively correspond to explanation and generalization, such
a correspondence does not accurately hold at the macro-level. If NARS
is given a list of statements to start with, then after many inference
steps the system may reach a conclusion, which is recognized by hu-
man observers as an explanation (or generalization) of some of the given
statements. Such a situation is usually the case that the abduction (or
induction) rule has played a major role in the process, though it is
rarely the only rule involved. As shown by the example, the answers
reported to the user by NARS are rarely pure abductive (or deductive,
inductive, and so on). In summary, though di�erent types of inference
can be clearly distinguished in each step (at the micro level), a multiple-
step inference procedure usually consists of various types of inference,
so cannot be accurately classi�ed.

As mentioned at the beginning of this chapter, Peirce introduced the
deduction/induction/abduction triad in two levels of reasoning: syllo-
gistic (micro, single step) and inferential (macro, complete process). I
prefer to use the triad in the �rst sense, because it has an elegant and
natural formalization in term logic. On the other hand, I doubt that
we can identify a similar formalization at the macro level when using
\abduction" for hypothesis generation, and \induction" for hypothesis
con�rmation. It is very unlikely that there is a single, universal method
for inference processes like hypothesis generation or con�rmation. On
the contrary, these processes are typically complex, and vary from sit-
uation to situation. For the purpose of Arti�cial Intelligence, we prefer
a constructive explanation, than a descriptive explanation. It is more
likely for us to achieve this goal at the micro level than at the macro
level.
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Because term logic has been ignored by mainstream logic and AI
for a long time, it is still too early to draw conclusions about its power
and limitation. However, according to available evidence, at least we
can say that it shows many novel properties, and some, if not all, of the
previous criticisms on term logic can be avoided if we properly extend
the logic.

References

Aristotle (1989). Prior Analytics. Hackett Publishing Company, Indianapolis, Indi-
ana. Translated by R. Smith.

Hempel, C. (1943). A purely syntactical de�nition of con�rmation. Journal of

Symbolic Logic, 8:122{143.
Peirce, C. (1931). Collected Papers of Charles Sanders Peirce, volume 2. Harvard

University Press, Cambridge, Massachusetts.
Popper, K. (1959). The Logic of Scienti�c Discovery. Basic Books, New York.
Wang, P. (1994). From inheritance relation to nonaxiomatic logic. International

Journal of Approximate Reasoning, 11(4):281{319.
Wang, P. (1995). Non-Axiomatic Reasoning System: Exploring the

Essence of Intelligence. PhD thesis, Indiana University. Available at
http://www.cogsci.indiana.edu/farg/peiwang/papers.html.


