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Abstract

An experience-grounded semantics is introduced for an intelligent reasoning system,
which is adaptive, and works with insufficient knowledge and resources. According
to this semantics, truth and meaning are defined with respect to the experience
of the system — the truth value of a statement indicates the amount of available
evidence, and the meaning of a term indicates its experienced relations with other
terms. The major difference between experience-grounded semantics and model-
theoretic semantics is that the former does not assume the sufficiency of knowledge
and resources. This approach provides new ideas to the solution of some important
problems in cognitive science.
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1 Introduction

In this paper, a new semantic theory is proposed for Artificial Intelligence (AI)
reasoning systems.

Generally speaking, semantics is the study of the relation between a language
and the environment in which the language is used. The language can be ei-
ther artificial or natural. The former usually has well-defined grammar rules
followed by the users of the language (so they are often also called “formal
language” or “symbolic language”), while the latter is usually evolved in his-
tory, described by some loose grammar rules that may change from time to
time, and from place to place. This paper concentrates on the semantics of
artificial language, though the discussion is also related to natural language.
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An automatic (computerized) reasoning system usually consists of the follow-
ing major components:

• a formal language for (internal) knowledge representation and (external)
communication with the environment,

• a semantic theory that links the language to the environment,
• a set of inference rules that derives new knowledge from given knowledge,

and answer questions according to available knowledge,
• a memory structure that stores the knowledge, questions, and intermediate

results,
• a control strategy that decides what tasks to carry out and what rules to

apply in each step.

Usually the first three components are referred to as consisting of a logic, while
the last two as the implementation of the logic in a computer system.

In such a system, the semantic theory plays two major roles:

• It specifies how the language should be translated into other (natural or
artificial) languages in communication, so that other (human or computer)
systems know how to “talk” with this system. For this purpose, the semantic
theory needs to specify how the meaning of words and sentences of the
language is determined by relating them to the outside the language.

• It provides justification for the inference rules, that is, to explain why these
rules, not others, are proper to be used to carry out inference on the lan-
guage. For this purpose, the semantic theory needs to specify how the truth
value of declarative sentences of the language is determined, so that the
rules can be validated as preserving truth in the inference process.

The study of the semantics of formal languages has been dominated by model
theory (and its variations and extensions) for decades. This paper will ar-
gue that though model-theoretic semantics is proper for many purposes, it
is inappropriate for the intelligent reasoning system under discussion, where
we need a fundamentally different semantic theory. In this kind of semantics,
both meaning and truth are defined with respect to the experience of the sys-
tem. Briefly speaking, an experience-grounded semantics first defines the form
of experience a system can have, then defines truth value and meaning as
functions of given experience.

There have been many philosophical, linguistic, and psychological discussions
on truth, meaning, and semantics, as well as their relationship with experience.
The aim of this paper is not to provide another argument in these debates.
Instead, here we try to address the related issues from an angle which has been
missing in the discussions, that is, to provide a fully formalized and computer-
ized alternative to model-theoretic semantics. In this way, many issues in the
study of semantics can be explored in a more concrete and detailed manner.
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In the following, we first introduce the semantic problem we need to solve,
and explain why model-theoretic semantics cannot be used there. Then, a new
semantics is formally specified. Finally, this approach is compared with the
traditional approach, and some of the implications of this theory are described.

2 The semantic problems in NARS

2.1 NARS overview

NARS (Non-Axiomatic Reasoning System) is an intelligent reasoning system.
It is designed according to the belief that intelligence can be explained and
reproduced as the capacity for a system to adapt to its environment with insuf-
ficient knowledge and resources (Wang, 1995a). In this paper, we focus on the
semantics of the system. For the other aspects of the system, see the references
and a demo at the author’s website.

As a computerized reasoning system, NARS uses an artificial language, Nars-
ese, to communicate with its environment. The syntax of this language is
precisely specified in a formal grammar. Because NARS, in the current ver-
sion, only interacts with its environment through this language, the “environ-
ment” of the system consists of a human user or another computer system.
The system accepts declarative knowledge and questions (as sentences of the
language) from its environment. To answer the questions according to the
knowledge, it needs a memory to store them, and some inference rules to de-
rive conclusions from given premises. These rules are formalized and built into
the system when it is designed.

NARS is “intelligent” in the sense that it is adaptive, and works with insuffi-
cient knowledge and resources.

By “adaptive”, we mean that NARS uses its experience (i.e., the history of its
interaction with the environment) as the guidance of its inference activities.
For each question, it looks for an answer that is most consistent with its
experience (under the restriction of available resources).

By “insufficient knowledge and resources”, we mean that the system has the
following properties:

Finite: The system has a constant information processing capacity. As a re-
sult, it cannot be assumed that all requirements for processor time and
storage space can be satisfied.

Real-time: All tasks have time requirements attached. As a result, it cannot

3



be assumed that the system can spend as much time as it wants on a
problem. Nor can it be assumed that new problems only show up when the
system is idle.

Open: No constraints are put on the content of knowledge and questions that
the system needs to process, as long as they are expressible in Narsese. As a
result, it cannot be assumed that new knowledge will always be consistent
with old knowledge. Nor can it be assumed that all required answers are
deductively implied by the current knowledge.

When NARS is designed, we need a semantic theory. To communicate with
NARS, we need to know how each term (or sentence) of Narsese means to the
system, and how it should be understood by a human user or another computer
system. To derive new knowledge from available knowledge, we need to choose
inference rules whose validity can be justified. These two problems correspond
to the two central issues in semantics, “meaning” and “truth”, respectively.
Obviously, we want the semantic theory to be consistent with the working
definition of intelligence accepted in NARS, as well as to be well supported
by the previous research results in cognitive science.

2.2 Model-theoretic semantics

The most natural choice of semantics in NARS is to use a model-theoretic
semantics (which was indeed our initial attempt).

The basic of model-theoretic semantics can be roughly described as the fol-
lowing. For a formal language L, a model M consists of descriptions about
objects and their factual relations in a domain. The descriptions are written in
another language Lm, which is a meta-language, and can either be a natural
language, like English, or another formal language. An interpretation I maps
the words in L onto the objects and relations in M. According to this theory,
the meaning of a word in L is defined as its image in M under I, and whether
a statement in L is true is determined by whether it is mapped by I onto a
fact in M.

The study of formal languages was started as part of the study about the
foundation of mathematics by Frege, Russell, Hilbert, and others. A basic
motivation of using formal languages is to avoid the ambiguity in natural lan-
guage, so that objective and accurate artificial languages are created. Model-
theoretic semantics was founded by Tarski’s work. Although Tarski’s primary
target was formal language, he also hoped that the ideas could be applied to
reform everyday language (Tarski, 1944).

To directly use this kind of semantics in a reasoning system (such as NARS)
means to understand the meaning of a word in Narsese according to the object
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or relation it refers to (under a given interpretation), and to choose inference
rules that are truth-preserving under all possible interpretations. According
to this view point, as Tarski put it, “semantics is a discipline which deals with
certain relations between expressions of a language and the objects ‘referred
to’ by those expressions.” (Tarski, 1944)

According to model-theoretic semantics, for any formal language L, the nec-
essary and sufficient condition for its terms to have meaning and for its state-
ments to have truth value is the existence of a model. In different models, the
meaning of terms and truth value of statements may change; however, these
changes are not caused by using the language. A reasoning system R that pro-
cesses sentences in L does not depend on the semantics of L when the system
runs. That means, on the one hand, that R needs no access to the meanings
of terms and truth values of statements — it can distinguish terms only by
their forms, and derive statements from other statements only according to
its (syntactically defined) inference rules, but it puts little constraint on how
the language can be interpreted. On the other hand, what knowledge R has
and what operations R performs have no influence on the meaning and truth
value of the terms and sentences involved.

Such a treatment is desired in pure mathematics. As Russell put it, “If our hy-
pothesis is about anything, and not about some one or more particular things,
then our deductions constitute mathematics. Thus mathematics may be de-
fined as the subject in which we never know what we are talking about, nor
whether what we are saying is true” (Russell, 1901). In mathematical logic,
abstract patterns of ideal inference are studied, and the patterns can be ap-
plied to different domains by constructing different models. Here we do enjoy
the freedom provided by the separation of “syntactic processing” and “se-
mantic interpretation”. The study of semantics has contributed significantly
to the development of meta-mathematics. As Tarski said, “As regards the ap-
plicability of semantics to mathematical science and their methodology, i.e.,
to meta-mathematics, we are in a much more favorable position than in the
case of empirical sciences.” (Tarski, 1944)

As all normative theories, model-theoretic semantics is based on certain as-
sumptions, and it should be applied to a problem only when the assumptions
are satisfied. In asserting the existence of a model M, the theory presumes that
there is, at least in principle, a consistent, complete, accurate, and static de-
scription of (the relevant part of) the environment in a language Lm, and that
such a description, a “state of affairs”, is at least partially known, so that the
truth values of some statements in L can be determined accordingly. These
statements then can be used as premises for the following inference activi-
ties. It is also required that all valid inference rules must be truth-preserving,
which implies that only true conclusions are desired. After the truth value of
a statement is determined, it will not be influenced by the system’s activity.
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Such conditions hold only when a system has sufficient knowledge and re-
sources with respect to the problems to be solved. “Sufficient knowledge”
means that the desired results can be obtained by deduction from initially
available knowledge alone, so no additional knowledge will be necessary; “suf-
ficient resources” means that the system can afford the time–space expense
of the inference, so no approximation will be necessary. These are exactly the
assumptions we usually accept when working within a mathematical theory.
Therefore, it is no surprise that model-theoretic semantics works fine there.

Of course, what we just described is merely the basic form of model-theoretic
semantics. Many variations and extensions of model-theoretic semantics have
been proposed for various purposes, such as possible worlds, multi-valued
propositions, situational calculus, and so on (Barwise and Perry, 1983; Carnap,
1950; Halpern, 1990; Kyburg, 1992; Zadeh, 1986). However, these approaches
still share the same fundamental framework: for a reasoning system R work-
ing in an environment E with a language L (for knowledge representation
and communication), the semantics of L is provided by descriptions of E in
another language Lm and a mapping between items in L and Lm.

No matter how the details are specified, this kind of semantics treats the
semantics of L as independent of the two processes in which R is involved
(and where the language L plays a central role): first, the communication
between R and E, and second, the internal reasoning activity of R. According
to model-theoretic semantics, these processes are purely syntactic, in the sense
that only the form of the words and the structure of the sentences are needed.
Since the above two processes can be referred to as the “external experience”
and “internal experience” of the system, we say that model-theoretic semantics
is “experience independent”, and it does not even need to assume the existence
of a reasoning system R that actually uses the language.

2.3 Why NARS does not use model-theoretic semantics

Though model-theoretic semantics can be applied to NARS, it provides little
help for the design and use of the system. If we give Narsese a model, it tells
us what the words mean to us, but says nothing about what they mean to the
system, which does not necessarily have access to our model. Similarly, the
model tells the truth value of statements to us, but not to the system.

By “to the system”, we mean that to solve the semantic problems in NARS
(that is, to understand the language and to justify the rules), we need to
explain why the system treats each term and statement as different from other
terms and statements, and such explanation should be based on the relation
between the language and the world, not merely on the syntactic natures
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defined within the system. Since the relation between NARS (the system in
which the language is used) and its environment (which is the “world” to the
system) is indicated by the experience of the system, the semantic features of a
term or statement has to be determined according to its role in the experience
of the system, because in NARS there is no other way to talk about the outside
world.

If we still define truth as “agreement with reality”, in the sense that truth
values cannot be threatened by the acquisition of new knowledge or the op-
eration of the system, then no statement can ever be assigned a truth value
by the system under the assumption of insufficient knowledge and resources,
because by the very definition of open system, all knowledge can be challenged
by future experience. Moreover, since non-deductive inferences (which are ab-
solutely necessary when knowledge is insufficient) are not truth-preserving in
the model-theoretic sense, they are hardly justifiable in the usual way. Model-
theoretic semantics also prohibits the system from using the same term to
mean different things in different moments (which is often inevitable when re-
sources are in short supply, to be discussed later), because meaning is defined
as independent of the system’s activity.

However, it is not true that in such a situation semantic notions like “truth”
and “meaning” are meaningless. If that were the case, then we could not talk
about truth and meaning in any realm except mathematics, because our mind
faces exactly the same situation.

For an intelligent system likes NARS (or for adaptive systems in general),
the concept of “truth” still makes sense, because the system believes certain
statements, but not other statements, in the sense that the system chooses its
actions according to the expectation that the former, not the latter, will be
confirmed by future experience; the concept of “meaning” still makes sense,
because the system uses the terms in Narsese in different ways, not because
they have different shapes, but because they correspond to different experi-
ences.

For these reasons, in NARS we need an “experience-grounded” semantics, in
which truth and meaning are defined according to the experience of the system.
Such a theory is fundamentally different from model-theoretic semantics, but
it still qualifies to be a “semantics”, in a broad (and original) sense of the
notion.

The idea that truth and meaning can be defined in terms of experience is
not a new one. For example, it is obviously related to the theory of pragma-
tism of Peirce, James, and Dewey. In recent years, related philosophical ideas
and discussions can be found in the work of Putnam and many others (Dum-
mett, 1978; Field, 2001; Fodor, 1987; Lynch, 1998; Putnam, 1981; Segal, 2000;
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Wright, 1992). In linguistics and psychology, similar opinions can be found in
(Barsalou, 1999; Ellis, 1993; Kitchener, 1994; Lakoff, 1988; Palmer, 1981).

In AI research, the situation is different. Unlike in philosophy, linguistics, and
psychology, where model-theoretic semantics (with the related theories, such
as realism, the correspondence theory of truth, and the reference theory of
meaning) is seen as one of several candidate approaches in semantics (by both
sides of the debates), in AI not only that this semantics is accepted by the
“logic-based” approach toward AI (McCarthy, 1988; Nilsson, 1991), but also
it is taken to be the only possible semantics, both by its proponents and its
critics. As McDermott said: “The notation we use must be understandable to
those using it and reading it; so it must have a semantics; so it must have a
Tarskian semantics, because there is no other candidate” (McDermott, 1987).
When people do not like this semantics, they usually abandon it together with
the idea of formal language and inference rules, and turn to neural networks,
robots, dynamic systems, and so on, with the hope that they can generate
meaning and truth from perception and action (Birnbaum, 1991; Brooks, 1991;
Harnad, 1990; Smolensky, 1988; van Gelder, 1997).

Therefore, though the philosophical foundation of model-theoretic semantics
is under debate, and its suitability for a natural language is controversial, few
people have doubt about its suitability for a formal language. We have not
seen a formal semantics that is not model-theoretic, and even such a concept
may sound self-contradictory to some people.

In the following, we show that such a “non-model-theoretic formal semantics”
is not only possible, but also necessary for intelligent systems.

3 An experience-grounded semantics

In this paper, we describe the semantics of NARS and a simplified version
of Narsese. The other aspects of the system are only briefly introduced when
necessary. For the inference rules used in NARS, see (Wang, 1994b, 2001a);
for the control mechanism of the system, see (Wang, 1996c); for an overall
description of the system, see (Wang, 1995a).

3.1 Inheritance and extension/intension

Narsese, the formal language used in NARS, is a categorical language, which
is different from predicate language, because of the use of subject-predicate
format in its sentences.
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In its simplest form, a term is a string of letters in an alphabet. It corre-
sponds to the name of a concept in NARS, and roughly to a word in a natural
language.

The inheritance relation, “→”, is a relation from one term to another. It is
defined by its two properties: reflexivity and transitivity. That is, for any terms
x, y, and z, we always have “x → x”, and if we have “x → y” and “y → z”,
then we also have “x → z”.

An inheritance statement consists of two terms related by the inheritance
relation. In the statement “S → P”, S is the subject term and P is the
predicate term. “S → P” means that S is a specialization of P , and P is a
generalization of S. It roughly corresponds to “S is a kind of P” in English.
For example, “raven → bird” corresponds to “Raven is a kind of bird”.

The idealized experience of NARS is defined as a finite set of inheritance state-
ments, K. It can be seen as the initial knowledge the system obtained from
its interaction with the environment. The system’s idealized knowledge, K∗, is
the transitive closure of K, generated by the following algorithm:

(1) Let K∗ = K;
(2) For each pair of propositions “x → y” and “y → z” in K∗, put “x → z”

into K∗ (if it is not already there).

The last step is iterated over and over again until all possibilities have been
exhausted. For a finite K, K∗ is generated in finite steps.

For an arbitrary inheritance statement “x → y” and given (idealized) experi-
ence K, the statement can be treated as a binary proposition (as in proposi-
tional calculus), and its truth value is determined by the following algorithm:

if x and y are the same term, then return true
else if “x → y” is in K∗, then return true
else return false

Therefore, in idealized situation, there are two types of “truth” in NARS:

Analytic truth: An inheritance statement is true by definition, if its subject
and predicate are the same term (because inheritance defined as a reflexive
relation), no matter what the experience of the system is.

Synthetic truth: An inheritance statement is true according to experience,
if its subject and predicate are different terms, and the statement is in the
experience of the system, or can be derived from it by the transitivity of
inheritance relation.

To specify how a particular term T is related to other terms, the extension
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and intension of T , relative to experience K, are defined as the sets of terms
TE = {x |x → T} and T I = {x |T → x}, respectively. That is, the extension
of T includes all known specializations of T , and the intension of T includes
all known generalizations of T . Extension and intension are defined in such a
symmetric way that for any result about one of them, there is a corresponding
result about the other. Each statement in the system’s knowledge reveals part
of the intension for the subject term and part of the extension for the predicate
term. For example, “S → P” indicates that S is in the extension of P , and P
is in the intension of S.

In NARS, the meaning of a term T consists of its extension TE and intension
T I , according to given experience K. Therefore, the meaning of a term is its
experienced (inheritance) relations with other terms.

From the previous definitions of “inheritance”, “extension”, and “intension”,
it is not difficult to get the following result (where “≡” means “if and only
if”):

(S → P ) ≡ (SE ⊆ PE) ≡ (P I ⊆ SI)

This result says that the statement “There is an inheritance relation from S
to P” is equivalent to both “P inherits the extension of S” (the extension
of P includes the extension of S) and “S inherits the intension of P” (the
intension of S includes the intension of P ). This is the reason that “→” is
called an inheritance relation. Here we use the word “inheritance” as a “two-
way” relationship between two terms, and when one term get something from
the other, the latter also get something else from the former.

Intuitively, such a relation indicates that one term can be used as, or inherits
the relations of, the other in a certain way. If a system know “S → P”, then
S can substitute P in sentences of the form “P → x”, and P can substitute
S in sentences of the form “x → S”. The other way around, if every x that
satisfies “x → S” also satisfies “x → P”, or every x that satisfies “P → x” also
satisfies “S → x”, we have “S → P”. This result shows that the two major
semantic notions “truth” (of statements) and “meaning” (of terms) have a
close relationship in NARS.

Now we have finished our description of a simple experience-grounded seman-
tics. For a reasoning system whose experience consists of (binary) inheritance
statements, the meaning of any term and truth value of any inheritance state-
ment can be determined according to given experience.
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3.2 Evidence and truth value

In the above discussion we only defined binary inheritance statements, which
are either true or false. They give us a way to further define inheritance state-
ments that are true to a degree. For this purpose, we first need to define
evidence.

The previous theorem identifies an inheritance relation (from one term to
another) to two subset relations (between the extensions and intensions of
the two terms, respectively). Therefore, we can define “partial inheritance” by
“partial subset”, since the latter is already a familiar notion in set theory.

For a subset relation S1 ⊆ S2 between two sets, it is natural to define its
positive evidence as elements in subset (S1 ∩S2), and its negative evidence as
elements in subset (S1 − S2).

Since inheritance is about both extension and intension, we define (positive
and negative) evidence for an inheritance statement “S → P” as the following:

• A piece of positive evidence is a term M such that M ∈ (SE ∩ PE) or
M ∈ (P I ∩ SI).

• A piece of negative evidence is a term M such that M ∈ (SE − PE) or
M ∈ (P I − SI).

The intuition behind the above definition is: since “S → P” states that “S
inherits the intension of P , and P inherits the extension of S”, then M is
a piece of positive evidence if as far as M is concerned the inheritance is
true, and M is a piece of negative evidence if as far as M is concerned the
inheritance is false.

To measure the amount of evidence, here we simply use the size of the corre-
sponding set. Therefore, we have

w+ = |SE ∩ PE|+ |P I ∩ SI |,

w− = |SE − PE|+ |P I − SI |,

w = w+ + w− = |SE|+ |P I |.

Here w+ and w− are the amounts of positive and negative evidence, respec-
tively. Their sum, w, is the amount of all available evidence for “S → P”.

Though in principle all the information that we want to put into a truth
value is representable by any two of the above three values, it is not always
natural or convenient for the purpose of NARS. Instead of using “absolute
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measurements” as truth value, we often prefer “relative measurements”, such
as real numbers in the interval [0, 1].

A natural relative measurement is the frequency (or proportion) of positive
evidence among all evidence, f = w+/w. Because w is the number of times
that the proposed inheritance statement is checked, and w+ is the number of
times that the statement is confirmed, f indicates the “success frequency” of
the inheritances (of extension and intension) between the two terms, according
to the experience of the system.

To represent a truth value by a frequency value alone is not enough for NARS.
As an open system, it also needs a way to measure the stability of the frequency
measurement with respect to future evidence. For this purpose, we compare
the current amount of evidence, w, to a constant amount of future evidence,
k, and define the confidence of a statement as c = w/(w + k).

Intuitively, confidence is the ratio of the amount of the “all current evidence”
to the amount of the “all evidence in the near future”. It indicates how much
the system knows about the inheritance relation. Since k is a constant, the
more the system knows about the inheritance relation (i.e., the bigger w is),
the more confident the system is about the frequency, since any effect of the
evidence arriving in the near future will be relatively smaller. For our current
purposes, k can be any positive number, and in the current implementation,
k = 1 is used as a default. For a detailed discussion on confidence, see (Wang,
2001b).

From the above definitions, it is easy to see that the two measurements, f
and c, are independent of each other, in the sense that from the value of one,
the value of the other cannot be determined, or even bounded. Therefore, in
NARS the truth value of a statement is represented by a pair of real numbers
in [0, 1]. A statement plus its truth value is called a judgment, and it has the
form “ S → P <f, c>”.

Because NARS is designed under the assumption of insufficient knowledge
and resources, all the judgments within the system are supported by finite
evidence — that is, w is positive and finite, so 0 < c < 1. Beyond the normal
truth values, there are two limiting cases useful for the interpretation of truth
values and the justification of inference rules:

Null evidence: This is represented by c = 0 (or w = 0). It means that
the system knows nothing at all about the inheritance relation (so f is
undefined).

Full evidence: This is represented by c = 1 (or w = ∞). It means that the
system already has complete information about the statement (so no future
modification of the truth value is possible).
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Especially, “S → P < 1, 1 >” is exactly the binary inheritance statement
“S → P” we introduced previously. In this special case, the effects of negative
evidence and future evidence can be ignored, and the inheritance relation is
“complete”.

Now let us see the whole picture described so far: NARS uses a formal lan-
guage, Narsese, for knowledge representation and communication, and the
sentences of the language are inheritance judgments of the form “S → P <
f, c >” (more complicated statements will be introduced later). Obviously,
now whether a term x is in the extension or the intension of T is also a matter
of degree, measured by a truth value as defined above.

Therefore, Narsese has been given an experience-grounded semantics. A sub-
set of Narsese, in which all judgments have truth value < 1, 1 >, is used to
represent the idealized experience K. According to a given K, the truth value
<f, c> of any given statement “S → P” can be evaluated (by comparing the
extensions and intensions of S and P ), and the meaning of any given term
T can be determined (by evaluating its extensional statements “x → T” and
intensional statements “T → x” for every term x in K).

3.3 Ideal and actual experience

As mentioned at the beginning of the paper, the above defined experience-
grounded semantics plays two major roles in the design and use of NARS:
language understanding and rule justification.

If “raven → black-thing < 9/10, 10/11 >” is a piece of knowledge within
NARS, then it indicates that the system believes the inheritance statement
“raven → black-thing” to the extent that as if the statement has been tested
10 times in idealized situations, and in 9 of them the relation is confirmed
(with the system parameter k set to 1). Also, this knowledge contributes to the
meaning of terms “raven” (by indicating that “black-thing” is in its intension
to the extent measured by <9/10, 10/11>) and “black-thing” (by indicating
that “raven” is in its extension to the extent measured by <9/10, 10/11>).
This does not imply, of course, that the system actually got the truth value
by carrying out the testings — such “ideal evidence” cannot be obtained
practically. Indeed, the system may have checked the relation more than 10
times, or the conclusion may have been derived from other knowledge or even
directly provided by the environment. But no matter how the truth value
“< 9/10, 10/11>” is generated in practice (there are infinitely many ways it
could arise), it can always be understood in a unique way, as stated above.

Since truth value is defined with respect to available evidence, in NARS the
validity of inference rules can still be defined as “truth preserving”, but now in
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the sense that the truth value of the conclusion is evaluated according to the
evidence provided by the premises. For example, in NARS the induction rule
derives “bird → black-thing < 1, 1/2 >” from “raven → bird < 1, 1 >” and
“raven → black-thing <1, 1>”, because the premises indicate that “raven”
provides a piece of positive evidence for the conclusion, and this is indeed the
information embedded in the truth value of the conclusion. In this way, the
semantics (the definitions of evidence and truth value) provides constraints
for the inference rules, where truth-value functions calculate the truth value
of the conclusion from the truth values of the premises. For detailed discussion
about the inference rules, see (Wang, 1994b, 2001a).

In NARS, ideal experience is used to define meaning and truth value and to
design inference rules, while actual experience is used to determine truth value
and meaning. Such a definition is desired, because, as Krantz put it, “numerical
statements are meaningful insofar as they can be translated, using the mapping
conventions, into statements about the original qualitative structure” (Krantz,
1991). In other words, the “ideal experience” is used here as an “ideal meter-
stick” to measure the degree of truth. Like all measurements, though its unit is
defined in an idealized situation, it is not used only in idealized situations. In
(Putnam, 1981), Putnam treated truth as only defined under “epistemically
ideal conditions”, but can be used in non-ideal situations. He compared this
treatment with the notion of a “frictionless plane”, which is an important
concept in physics, though cannot be practically obtained. In NARS, “truth”
is a statement with truth value <1, 1>. By definition, it cannot be obtained
in an open system like NARS, though it can be infinitely approached by actual
knowledge, as well as used in the semantic foundation of the system.

We cannot directly use the actual experience, which is a sequence of inheri-
tance judgments, to define meaning and truth value, because that would cause
circular definition — the judgments in experience have truth values them-
selves. What we have done is to first build the semantics for a special subset
of the language where truth value is binary, then use it to build the seman-
tics of the entire language. In this way, each actual input judgment is seen
as corresponding to a set of idealized judgments. To define truth values and
meanings in terms of experience does not give the judgments in the system’s
actual experience any privilege. Just like any others, their truth value can also
be changed by other sections of the system’s experience.

Another factor that makes actual experience different from ideal experience is
the insufficiency of resources. Due to the lack of memory space, not all of the
system’s experience will be remembered; due to the lack of processing time,
some remembered judgments will be ignored. Consequently, the truth value
of a sentence or the explicit meaning of a term is usually based on partial
experience, or a section of the system’s actual experience.
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Working under time pressure, NARS does not attempt to judge the truth
value of a statement according to all available (relevant) knowledge. Instead,
the system allocates a certain amount of time for each task (such as a question
to be answered, or a piece of new knowledge to be digested) according to the
current resource request/supply situation (such as how many other tasks are
under processing), and reports the best (e.g., most confident) answer it finds
for each question with the given knowledge and resources.

For the same reason, when a term is used by the system to answer a question,
only some, but not all, of its relations with other terms are taken into account.
The system maintains a priority ranking among the relations, according to how
important and relevant they are. The system gives relations with high priority
more chance to be used, and adjusts the priority distribution according to the
feedback from processing results (Wang, 1995a, 1996c).

Therefore, for an actual judgment in NARS, its truth value is understood in
terms of idealized experience, but the value itself either directly comes from
the environment (in that case, it is assigned by the user or another system
according to the semantics of NARS) or comes from certain inference rule
(in that case, it is calculated according to the semantics of NARS from other
available judgments). For an actual term in NARS, its meaning is indicated by
its available relations with other terms. In this way, both truth and meaning
are eventually determined by the system’s actual experience, though usually
in a complicated manner.

3.4 Basic inference rules

NARS uses syllogistic inference rules. A typical syllogistic rule takes two judg-
ments sharing a common term as premises, and derives a conclusion, which is
a judgment between the two unshared terms. For inference among inheritance
judgments, there are three possible combinations if the two premises share
exactly one term:

{M→P <f1, c1>, S→M <f2, c2>} ` S→P <Fded>

{M→P <f1, c1>, M→S <f2, c2>} ` S→P <Find>

{P→M <f1, c1>, S→M <f2, c2>} ` S→P <Fabd>

The three rules above correspond to deduction, induction, and abduction, re-
spectively, as indicated by the names of the truth-value functions. In each of
these rules, the two premises come with truth values <f1, c1> and <f2, c2>,
and the truth value of the conclusion, <f, c>, is a function of them — accord-
ing to the experience-grounded semantics, the truth value of the conclusion is
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evaluated with respect to the evidence provided by the premises.

These truth-value functions are designed in the following procedure:

(1) Treat all relevant variables as binary variables taking 0 or 1 values, and
determine what values the conclusion should have for each combination
of premises, according to the semantics.

(2) Represent the variables of conclusion as Boolean functions of those of the
premises, satisfying the above conditions.

(3) Extend the Boolean operators into real number functions defined on [0,
1] in the following way:

not(x) = 1− x

and(x1, ..., xn) = x1 ∗ ... ∗ xn

or(x1, ..., xn) = 1− (1− x1) ∗ ... ∗ (1− xn)

(4) Use the extended operators, plus the relationship between truth value
and amount of evidence, to rewrite the functions as among truth values
(if necessary).

For the above rules, the resulting functions are:

Fded : f = f1f2 c = f1f2c1c2

Find : f = f1 c = f2c1c2/(f2c1c2 + k)

Fabd : f = f2 c = f1c1c2/(f1c1c2 + k)

When two premises contain the same statement, but comes from different
sections of the experience, the revision rule is applied to merge the two into a
summarized conclusion:

{S→P <f1, c1>, S→P <f2, c2>} ` S→P <Frev>

Frev : f = f1c1/(1−c1)+f2c2/(1−c2)
c1/(1−c1)+c2/(1−c2)

c = c1/(1−c1)+c2/(1−c2)
c1/(1−c1)+c2/(1−c2)+1

The above function is derived from the additivity of the amount of evidence
and the relation between truth value and amount of evidence.

The revision rule can be used to merge less confident conclusions, so as to
get more confident conclusions. In this way, patterns repeatedly appear in the
experience can be recognized and learned.
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3.5 Other types of statement in Narsese

The inheritance statement “S → P” is the basic form of statement in Narsese,
but it is not the only form. In addition to it, the language contains other types
of statements, which are all built upon this basic form.

Derived inheritance relations: Beside the inheritance relation defined pre-
viously, NARS also includes several of its variations. For example,
• The similarity relation “↔” is symmetric inheritance. For example, “raven
↔ crow” means “Raven is similar to crow”;

• The instance relation “◦→” is an inheritance relation where the subject
term is treated as an atomic instance of the predicate term. For example,
“Tweety ◦→ bird” means “Tweety is a bird”;

• The property relation “→◦” is an inheritance relation where the predicate
term is treated as a primitive property of the subject term. For example,
“raven →◦ black” means “Ravens are black”.

Compound terms: In inheritance statements, the (subject and predicate)
terms not only can be simple terms (as in the above examples), but also
can be compound terms formed by other terms with a logical operator. For
example, if A and B are terms, then
• their extensional intersection (A∩B) is a compound term, initially defined

by (A ∩B)E = (AE ∩BE) and (A ∩B)I = (AI ∪BI).
• their intensional intersection (A∪B) is a compound term, initially defined

by (A ∪B)I = (AI ∩BI) and (A ∪B)E = (AE ∪BE);
Initially, the meaning of a compound is determined according to its logical
relation with its components (its “definition”), but as soon as the system
begins to get (input or derived) judgments on the compound, they also
contribute to its meaning, and such contributions cannot always be reduced
to its components. Therefore the principle of compositionality in semantics
is only partially true in NARS.

Ordinary relation: In NARS, only the inheritance relation and its varia-
tions are defined as logic constants that are directly recognized by the infer-
ence rules. All other relations are converted into inheritance relations with
compound terms. For example, an arbitrary relation R among three terms
A, B, and C is usually written as R(A, B, C), which can be equivalently
rewritten as one of the following inheritance statements (i.e., they have the
same meaning and truth value):
• (× A B C) → R, where the subject term is a compound (× A B C).

This statement says “The relation among A, B, C (in that order) is an
instance of the relation R.”

• A → (⊥ R � B C), where the predicate term is a compound (⊥ R � B C)
with a “wildcard”, �. This statement says “A is such an x that satisfies
R(x, B, C).”

• B → (⊥ R A � C). Similarly, “B is such an x that satisfies R(A, x, C).”
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• C → (⊥ R A B �). Again, “C is such an x that satisfies R(A, B, x).”
Higher-order term: In NARS, a statement can be used as a term, and called

a “higher-order” term. For example, “Bird is a kind of animal” is represented
by statement “bird → animal”, and “People know that bird is a kind of ani-
mal” is represented by statement “(bird → animal)◦→(⊥ know people �)”,
where the subject term is a statement. Compound higher-order terms are
also defined: if A and B are higher-order terms, so do their negations (¬A
and ¬B), disjunction (A ∨B), and conjunction (A ∧B).

Higher-order relation: Higher-order relations are the relations whose sub-
ject term and predicate term are both higher-order terms. In NARS, there
are two of them defined as logic constants:
• implication, “⇒”, which intuitively corresponds to “if-then”, and is de-

fined as isomorphic to inheritance, “→”;
• equivalence, “⇔”, which intuitively corresponds to “if-and-only-if”, and is

defined as isomorphic to similarity, “↔”.

For each type of terms/statements, its meaning/truth-value is defined simi-
larly to how we define meaning/truth-value for term/statement in inheritance
relation. There are inference rules taking these statements as premises or con-
clusions. Detailed discussion about them is beyond the scope of this paper.
They are mentioned here merely to show that the proposed semantics does
not only support a simple formal language.

With the above term/statement types, the expressive and inferential power of
Narsese is greatly enriched. There is no one-to-one mapping between sentences
in this language and those in first-order predicate calculus, though approxi-
mate mapping is possible for many sentences. While first-order predicate cal-
culus may still be better for representing mathematical knowledge, this new
language will be better for representing empirical knowledge, partially because
of its experience-grounded semantics.

4 Comparison and discussion

Experience-grounded semantics is different from model-theoretic semantics in
several important aspects, and their comparison is related to many issues in
cognitive science. In this section we only discuss some of them.
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4.1 Experience vs. model

Though both are descriptions of an environment (or “world”), “model” and
“experience” are different in the following aspects:

• A model is static, whereas experience stretches out over time.
• A model is a complete description of (the relevant part of) an environment,

whereas experience is only a partial description of it.
• A model must be consistent, whereas judgments in experience may conflict

with one another.
• A model of language L is described in another language Lm, whereas ex-

perience can be represented in L itself.
• The existence of a model M of L is independent of the existence of a sys-

tem R using L. Even when both M and R exist, they are not necessarily
related to each other in any way. On the contrary, an experience must be
the experience of a system.

These two types of descriptions serve different purposes. In general, we can
distinguish two types of reasoning systems:

Axiomatic system: All inference processes in the system start from a con-
stant set of (consistent) axioms. Whether a statement is a theorem depends
on whether it can be proved according to the axioms, and how many steps
the proof needs does not matter.

Non-axiomatic system: New knowledge is added into the system from time
to time. The system has to answer questions according to available knowl-
edge, which may be incomplete and inconsistent. The inference process is
bounded by the available time-space of the system.

Clearly, an axiomatic system assumes the sufficiency of knowledge and re-
sources with respect to the questions to be answered, and makes no attempt
to answer questions beyond the scope of available knowledge and resources —
when such a question is provided, the system simply replies “I don’t know”,
“Invalid question”, or gives no reply at all. On the contrary, a non-axiomatic
system assumes the insufficiency of knowledge and resources with respect to
the questions to be answered, and always attempts to answer a question with
available knowledge and resources, which means that the system may revise
its beliefs from time to time.

Generally speaking, human mind works with insufficient knowledge and re-
sources (Medin and Ross, 1992). Therefore, human inference process is more
similar to that of a non-axiomatic system, than to an axiomatic one. However,
for certain relatively mature and stable knowledge, it is more efficient to treat
them as an axiomatic (sub)system (within the whole non-axiomatic system).
This is exactly the role played by mathematics. In such a theory, we do not
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talk about concrete objects and properties. Instead, we talk about abstract
ones, which are fully specified by postulations and conventions. After we fig-
ure out the implications of these postulations and conventions, we can apply
such a theory into many situations, because as far as the postulations and
conventions can be “instantiated” by substituting the abstract concepts with
the concrete ones, all the ready-made implications follows. This is the picture
provided by model-theoretic semantics.

On the other hand, if the knowledge embedded in a reasoning system is not
mathematical, but empirical, then what we have is fundamentally a non-
axiomatic system, in which the concepts are no longer abstract and can be
interpreted freely — no matter how an external observer interprets them, for
the system their meaning and truth come from experience, and an experience-
grounded semantics should be used.

Some researchers suggest that the reasoning system itself (human or com-
puter), rather than the world it deals with, should be used as the “domain”
of the language the system uses. Thus, one could posit that the meaning of a
particular term is a particular “concept” that the system has, and the truth
value of a statement is the system’s “degree of belief” in that statement. This
idea sounds reasonable, but it does not answer the original question: how are
“concepts” and “degrees of belief” dependent upon the outside world? With-
out an answer to that question, such a solution “simply pushes the problem
of external significance from expressions to ideas” (Barwise and Perry, 1983),
that is, to turn the problem of word meaning into the problem of concept
meaning. The meaning of concepts is not simpler than the meaning of words
at all. It often changes from time to time and from place to place, and such
changes cannot always be attributed to the changes in the world. People in
different cultures and with different languages usually have different opinions
on what “objects” are there even if they are in the same environment (Whorf,
1956). People often use concepts metaphorically (Lakoff, 1987) or with great
“fluidity” (Hofstadter and FARG, 1995). These issues are hard to handle in
model-theoretic semantics. In NARS, since a term is the name of a concept,
the meaning/truth defined for the language and the meaning/truth defined for
the concepts system are isomorphic to each other, so the current discussion
applies to both.

Though overall NARS uses experience-grounded semantics, there are still
places where model-theoretic semantics is used. One example is the variables
in the inference rule. As mentioned previously, the induction rule of NARS
derives “S → P <f, c>” from “M → P <f1, c1 >” and “M → S <f2, c2 >”.
Written in this way, the variables S, M , and P have no experience-related
meaning until they are instantiated by constant terms “bird”, “raven”, and
“black-thing”, respectively, and then the meaning of the variables is deter-
mined by the meaning of the constants. Similarly, when mathematical knowl-
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edge is provided to NARS, it will be used with model-theoretic semantics.

4.2 Language and uncertainty

As mentioned previously, Narsese is a categorical language, in which each
statement consists of a subject term and a predicate term, related together by
an inheritance relation (or its variations). This type of language is exemplified
by Aristotle’s syllogism (Aristotle, 1989; Bocheński, 1970; Englebretsen, 1981).

In NARS, inheritance relations and its variations (similarity, instance, prop-
erty, implication, and equivalence) are logical constants, whose meaning is
fixed, and independent of the system’s experience, while the meaning of the
other relations (ordinary relations, such as “part of”, “between”, “younger
than”, “know”, “believe”) is defined by their extension and intension, and
therefore is experience-dependent.

The meaning of inheritance relation is closely related to many well-known
relations — for instance, “is-a” (in semantic networks) (Brachman, 1983),
“belongs to” (in Aristotle’s syllogisms), “subset” (in set theory), “inheritance
assertion” (Touretzky, 1986), as well as many relations studied in AI, com-
puter science, psychology, and philosophy, such as “type–token”, “category–
instance”, “class–object”, “general–specific”, and “superordinate–subordinate”.
What makes inheritance (as defined in NARS) different from the others is: it
is a relation between two terms, and the relation is completely defined by the
two properties: reflexivity and transitivity.

A comprehensive comparison between NARS and first-order predicate calculus
is beyond the scope of this paper. For the discussion of semantics, here we only
explain one reason for NARS to abandon predicate calculus, that is, predicate
calculus does not handle the concept “evidence” properly.

For example, “Ravens are black” is represented in first-order predicate calculus
as a universally quantified proposition: (∀x)(Raven(x) → Black(x)). A natu-
ral idea, “Nicod’s Criterion”, is to take black ravens as its positive evidence,
non-black ravens as its negative evidence, and non-ravens (black or not) as
irrelevant. However, this approach leads to Hempel’s “Confirmation Paradox”
(Hempel, 1943). According to Hempel, since (∀x)(¬Black(x) → ¬Raven(x))
is equivalent to (∀x)(Raven(x) → Black(x)). Non-black non-ravens (such as a
green shirt) are positive evidence of the former, and therefore are also positive
evidence of the latter. This conflicts with Nicod’s Criterion.

Though almost all previous discussions (e.g. Swinburne, 1973) treat this prob-
lem as a paradox of logic, it is actually a paradox of first-order predicate logic.
It appears because in first-order predicate logic all general statements contains
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universally quantified variables which can be instantiated by any constant in
the domain, so nothing is irrelevant, and a general statement is always talking
about everything in the domain. Furthermore, only negative evidence con-
tribute to the truth value of such a proposition.

It is no longer the case in a categorical language like Narsese. Here for “Ravens
are black”, black ravens are positive evidence, non-black ravens are nega-
tive evidence, and non-ravens are not directly relevant. On the other hand,
for “non-black things are not ravens”, non-black non-ravens (including green
shirts) are positive evidence, non-black ravens are negative evidence, and
ravens are not directly relevant. So in NARS the two statements have the
same negative evidence but different positive evidence. In first-order predicate
logic, truth value only depends on the existence of negative evidence, so these
two statements are equivalent, and Hempel’s paradox follows. On the contrary,
since in NARS truth value is determined both by positive and negative evi-
dence, these two statements are no longer equivalent, and may have different
truth values. Consequently, the paradox does not appear in NARS.

A related issue is why NARS does not directly use probability theory to rep-
resent and calculate a truth value. This issue has been discussed in previous
publications (Wang, 1993, 1996a, 2001b), so here we only briefly address it.
From our previous definition of truth value, it is easy to recognize its relation-
ship with probability theory. Intuitively speaking, the frequency measurement
is similar to probability, and the confidence measurement is related to the
size of sample space, so that each judgment corresponds to a probability dis-
tribution function. However, truth values of different judgments cannot been
treated as belonging to the same probability distribution, because each of them
has its own evidence space (defined by the extension of its subject and the
intension of its predicate), and its truth value is evaluated according to differ-
ent body of evidence. If we use the terminology of probability theory, then the
truth value functions in NARS correspond to cross-distribution calculations,
which are not specified in standard probability theory.

There are other publications comparing NARS with other uncertainty rep-
resentation and processing approaches, such as fuzzy logic (Wang, 1996b),
Dempster-Shafer theory (Wang, 1994a), and non-monotonic logics (Wang,
1995b). In general, NARS is different from them, because none of the ex-
isting approaches fully satisfies the assumption of insufficient knowledge and
resources, so none of them can be used with an experience-grounded semantics.
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4.3 On meaning

The definition of meaning in the experience-grounded semantics of NARS has
the following implications:

(1) The meaning of a term is its experienced relations with other terms.
(2) The meaning of a term consists of its extension and intension.
(3) Each time a term is used in an inference process, only part of its meaning

is involved.
(4) Meaning changes with time and context.
(5) Meaning is subjective, but not arbitrary.

As said previously, a human observer can still interpret the terms appearing in
NARS freely by identifying them with words in a natural language or human
concepts, but that is their meaning to the interpreter, and has nothing to do
with the system itself. For example, if the term bird never appears in the
system’s experience, it is meaningless to the system (though meaningful to
English speakers). When “bird → animal <1, 0.8>” appears in the system’s
input stream, the term “bird” begins to have meaning to the system, revealed
by its inheritance relation with “animal”. As the system knows more about
“bird”, its meaning becomes richer and more complicated. The term “bird”
may never mean the same to NARS as to a human (because we cannot expect
a computer system to have human experience), but we cannot say that “bird”
is meaningless to the system for this (human chauvinistic) reason. As long as
a term has experienced relations with other terms, it becomes meaningful to
the system, no matter how poor its meaning is.

An adaptive system never processes a term only according to its shape without
considering its position in the system’s experience. The shape of a term may
be more or less arbitrary, but its experienced relations with other terms are
not.

By saying so, we do not mean that a word in a natural language gets its
meaning only by its relation with other words in the language, because hu-
man experience is not limited to a language channel, but closely related to
sensation, perception, and action (Barsalou, 1999; Harnad, 1990). However,
the general principle is still applicable here, that is, a word gets its meaning
by its experienced relations with the system’s other experiential components,
which may be words, perceptive images, motor sequences, and so on. In a sys-
tem like this, the meaning of a word is much more complex than in a system
whose experience is limited to a language channel, but it does not rule out the
latter case as a possible way for words (terms, symbols) to be meaningful. For
example, a software agent can get all of its experience in this manner, and we
cannot deny that it is genuine experience.
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For a symbolic system built according to an experience-grounded semantics,
all the symbols that the system has are already grounded — in the system’s ex-
perience, of course. The crucial point here is that for a symbol to be meaningful
(or grounded), it must be related somehow to the environment. However, such
a relation is not necessarily via sensory–motor mechanism. The experience of
a system can be symbolic, as in the case of NARS. This type of experience
is much simpler and “coarse-grained” than sensory–motor experience, but it
is real experience, so it can ground the symbols which appear in it, just as
words in natural language are grounded in human experience. In the future,
when NARS can accept visual input, an image will be related to the concept
of “Mona Lisa”, so it does not merely means “a painting by Leonardo da
Vinci”. This additional link changes the meaning of the concept, but it does
not change the semantic principle of the system: the meaning of the concept
is not completely determined by the “object in the world referred to by it”.

The definition of meaning in NARS is similar to conceptual role semantics and
semantic network (Harman, 1982; Kitchener, 1994; Quillian, 1968), where the
meaning of a concept (or word) is defined by the role it plays in a conceptual
system (or a natural language). The difference between experience-grounded
semantics and those theories are:

• In NARS, the relations among terms are not definitional or linguistic, but
experienced relations that happen in the interaction between a system and
its environment, therefore they are dynamic and subjective in nature.

• In NARS, the relations between a term and others are concretely specified
by its extension and intension, consisting of inheritance relations, whose
meaning and properties are formally specified.

• In NARS, whenever a term is used, only part of its meaning is involved.
In other words, the “current meaning” of a term is not exactly its “general
meaning” in the long run.

Traditionally, extension and intension refer to two aspects of the meaning of a
term: roughly speaking, its instances and its properties. A term’s extension is
usually defined as a set of objects in a “physical world” that are denoted by the
given term; the term’s intension is usually defined as a concept in a “Platonic
world” which denotes or describes the given term (Bocheński, 1970; Inhelder
and Piaget, 1969; Kitchener, 1994). In spite of minor differences among the
exact ways the two words are used by different authors, they always indicate
relations between a term in a language and something outside the language.
However, in the current theory, they are defined using (the two sides of) an
inheritance relation between two terms, which is within the language, yet even
so, the definition still keeps the intuitive quality that “extension” refers to
instances, and “intension” refers to properties.
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Similar ideas are called “dictionary-go-round” by Harnad — he hopes that
meaning of symbols can “be grounded in something other than just more
meaningless symbols” (Harnad, 1990). Here we should notice a subtle differ-
ence: in experience-grounded semantics, the meaning of a term is not reduced
into the meaning of other terms (that will indeed lead to circular definition in
a finite language), but defined by its relations with other terms. These relations
are formed during the interaction between a system and its environment, and
are not arbitrary at all. Another relevant factor is that in NARS, the inheri-
tance relation and its variations are logical constants in the language. Their
meaning is innate to the system, because they are directly recognized by the
inference rules and control mechanism. Even when all the terms in an input
statement are novel, the inheritance relation is known. Therefore, NARS is
not “getting meaning out of meaningless”.

As mentioned previously, due to insufficient resources, the system cannot con-
sult all known judgments associated with a term each time the term is used.
Instead, in NARS a priority distribution is maintained among these judg-
ments, which determines the chance for a certain judgment to be taken into
consideration at a certain time. The distribution is adjusted by the system
according to the feedback of each inference step (to make the more useful
knowledge more accessible), as well as according to the current context (to
make the more relevant knowledge more accessible). Consequently, the mean-
ing of a term become context-dependent — it does not only depend on what
the system knows about the term, but also depends on the system’s current
tasks and how the relevant judgments are ranked in terms of their priority.
When the system gets new knowledge, or turns to another question, the mean-
ing of the involved terms may change (more or less). Again, these changes are
anything but arbitrary, and the meaning of some terms may remain relatively
stable during a certain period. Without such a restriction, a “relational” theory
of meaning cannot be practically used, because in a sufficiently complicated
system, a concept may (in principle) be related to other concepts in infinite
number of relations, and to take all of them into account is impossible.

Since the meaning of a term is determined by the system’s experience, it is
fundamentally subjective. However, as soon as the term is used in the commu-
nication with another system, the two systems begin to have common experi-
ence, and they gradually know how the term is used by the other. In the long
run, meaning of such terms gradually become “objective” in the sense that it
reflects the common usage of the term within the language community, and
less biased by the idiosyncratic usage of a single system. Therefore, we can still
understand what NARS means by a certain term and agree with a belief of
the system, because of the partial overlap of its conceptual system with ours.
However, we cannot expect its conceptual system to be identical to that of a
human being, due to the fundamental difference between its experience and
our experience. Accurately speaking, no two people have identical conceptual
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systems (so misunderstanding and disagreements happen all the time), but
we can still communicate, and understand each other to various extents on
various topics, because we co-exist in the same world, therefore have shared
experience.

This conclusion to an extent agree with Wittgenstein’s claim that the meaning
of a word is its use in the language (Wittgenstein, 1999). For NARS, the
meaning of a term, such as “game”, is not determined by a definition or a
set of “things” in the world, but by how the term is related to the other
terms according to the system’s experience. As a result, there may be no
common property shared by all instances of “game”. Instead, there is only
a “family resemblance” among them, indicated by the overlapping properties
here or there (without a definitive property for all of them). In this way,
the semantics of NARS also implies a new theory of categorization, which is
discussed in (Wang, 2002).

4.4 On truth

As defined previously, in NARS “truth” corresponds to statements with truth
value < 1, 1 >, and it can only be approached, but not reached, by actual
knowledge in the system. In general, in NARS truth is a matter of degree,
represented by a <f, c> pair.

The definition of truth value in the experience-grounded semantics of NARS
has the following implications:

(1) Truth is a matter of degree, and is determined by the extent to which the
two terms in the statement can be substituted by each other in certain
ways.

(2) A truth value consists of a pair of real numbers, one for the relative
amount of positive evidence, and the other for the relative amount of all
available evidence.

(3) A truth value is assigned to a statement according to the past experi-
ence of the system. It does not indicates whether the statement will be
consistent with future experience, though an adaptive system behaves
according to it.

(4) The truth value of a statement may change within a system according to
experience and context.

(5) Truth is subjective, but not arbitrary.

Model-theoretic semantics provides a “correspondence” theory of truth, where
the truth value of a statement is determined by whether it agrees with the
world, as described in a meta-language. According to model-theoretic seman-
tics, “truth value” and “degree of belief” are fundamentally different — a
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system can strongly believe a false statement. This is from the viewpoint of
an observer who knows the “objective truth” and can compare it with a sys-
tem’s belief. However, for the system itself who has insufficient knowledge and
resource, the sole way to judge the truth of a statement is to consult expe-
rience. Here “experience” is used in the broad sense, not limited to personal
perceptual experience only. In this situation, “truth value” and “degree of
belief” are conceptually the same.

In everyday language, for a statement S, to say “S is true” is different from
to say “I believe S”, though their difference is not necessarily fundamental.
The former is like “S is not only believed by me, but also by everyone else
(or that will be the case)”. The latter is like “S sounds true to me, though
may be not to the others”. When we use the word “truth”, we do imply
certain objectivity, but it is more about “from every people’s point of view”
than about “as the world really is”. We can still say that in NARS “true”
means “agree with reality”, except that here reality is only revealed by the
system’s experience. When later we find a previous belief to be “false”, it
does not mean that we have had a chance to directly check the belief with
reality (bypassing our experience), but that it conflicts with our updated belief
based on more experience. With such a semantics, we can still say “I strongly
believe S, though it may be false”, which means “I can image it to be rejected
in the future”. All of these differences cannot be used to argue that truth value
cannot be the same as degree of belief.

If we talk about such a system from an observer’s point of view, then the
situation may be different. For example, if we have control over the experience
of NARS, we may construct a situation in which the system strongly believes in
a false statement. However, here “false” is from our point of view, and judged
according to our knowledge about the system’s future experience, which is not
available to the system yet. Still, the general principle, that is, truth value is
a function of experience, remains the same.

By accepting such a semantics, we do not reject the principle of naturalism
— that is, the natural world, with objects and relations among them, exists
independent of us, and it is the origin of all our knowledge (Kitchener, 1994).
What we stress here is that all descriptions of such an objective world in a
system with insufficient knowledge and resources are intrinsically revisable.
The interaction between the system and its environment is a process of assim-
ilation and accommodation (Piaget, 1960), which usually does not maintain a
one-to-one mapping between the terms/statements within the system and the
objects/facts beyond the system.

Such a semantics provides a justification for non-deductive inferences. As re-
vealed by Hume’s “induction problem”, our predications about future expe-
rience cannot be infallible (Hume, 1748). From limited past experience, we
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cannot get accurate descriptions of “state of affairs”, neither can we know
how far our current knowledge is from such an objective description. Based
on this, Popper made the well-known conclusion that an inductive logic is
impossible (Popper, 1959). However, from the previous discussion, we can see
that what is really pointed out by Hume and Popper is the impossibility of
an inductive logic with a model-theoretic semantics.

If the answers provided by NARS are fallible, in what sense these answers are
“better” than arbitrary guesses? This leads us to the concept of “rationality”.
When infallible predictions cannot be obtained (due to insufficient knowledge
and resources), answers based on past experience are better than arbitrary
guesses, if the environment is relatively stable. To say an answer is only a
summary of past experience (thus no future confirmation guaranteed) does
not make it equal to an arbitrary conclusion — it is what “adaptation” means.
Adaptation is the process in which a system changes its behaviors as if the
future is similar to the past. It is a rational process, even though individual
conclusions it produces are often wrong. For this reason, valid inference rules
(deduction, induction, abduction, and so on) are the ones whose conclusions
correctly (according to the semantics) summarize the evidence in the premises.
They are “truth-preserving” in this sense, not in the model-theoretic sense that
they always generate conclusions which are immune from future revision.

An important nature of the definition of truth value in NARS is that the
“extensional factor” and the “intensional factor” are merged. Although it is
possible to develop extensional logics or intensional logics separately (Wang,
1994b), we also need systems that can mix them together, because the coordi-
nation of the extension and intention of concepts is an important principle in
the development of human cognition (Inhelder and Piaget, 1969), and when
evidence is used to judge a conceptual relation, extensional evidence and in-
tensional evidence are often compared and combined. We may determine the
extension (instances) of a concept according to its intension (properties), or
the other way around, and seldom judge a relation between concepts by con-
sidering the extensional or intensional factor only. Having defined extension
and intension as each other’s “dual” in the previous section, we now have good
reason to treat them uniformly in our development of NARS.

One important character of experience-grounded semantics is its dynamic and
subjective nature. The truth value of a judgment changes from time to time
in NARS, due to the arrival of new evidence. The system’s inference activity
also changes the truth values of judgments by combining evidence from dif-
ferent sections of the experience. Since truth values are based on the system’s
experience, they are intrinsically subjective. To be more precise, the system’s
knowledge is not an objective description of the world, but a summary of its
own experience, so it is from the system’s point of view. Even two systems in
precisely the same environment may have different knowledge, obtained from
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their different individual experiences.

To say that truth values are dynamic and subjective does not mean that they
are arbitrary. Different systems in the same environment can achieve a certain
degree of “objectivity” by communicating to one another and thus sharing
experience. However, here “objective” means “common” or “unbiased”, not
“observer-independent”. The common knowledge are still bounded by the ex-
periences of the systems involved, though no longer by that of a single system.

The model-theoretic “truth” still has its place in NARS, though it plays a sec-
ondary role here. Whenever mathematical (or other conventional) statements
are under consideration, their truth values are fixed, and are independent of
the system’s experience and the system’s degrees of belief on them. We still
do not know the truth value of Goldbach’s Conjecture, though it has been
confirmed in all the previous testing cases. Similarly, we can let NARS say “I
don’t know whether S is true” whenever in the system statement S has a low
confidence value. Such a usage of the word “true” does not conflict with the
fact that in the system S does have a truth value, calculated according to the
system’s experience.

From a philosophical point of view, this definition of truth is similar to Put-
nam’s “rational acceptability” (Putnam, 1981). In AI, a similar approach is
discussed in Kowalski’s paper “Logic without Model Theory”, in which he
defines “truth” as a relationship between sentences of the knowledge base
and observational sentences (Kowalski, 1994). However, the technical details
of these two approaches are quite different. For instance, Kowalski still uses
first-order predicate logic.

5 Conclusion

In this paper, we introduces a new semantic theory, in which meaning and
truth are defined according to the experience of a system. This approach is
fundamentally different from model-theoretic semantics. The former assumes
insufficient knowledge and resources, while the latter assumes sufficient knowl-
edge and resources. The former is mostly for empirical science and everyday
thinking, while the latter is mostly for mathematics.

Since these two types of semantics are based on different assumptions and serve
different purposes, they are not really competitors. The current problem is that
many people take model-theoretic semantics as the only possible semantics,
and apply it to situations where its assumptions cannot be satisfied. Therefore,
in a practical sense, this new semantics is competing with model-theoretic
semantics in AI and cognitive science. In this kind of fields, an experience-
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grounded semantics may be more fruitful than a model-theoretic semantics.

Since NARS is a normative theory of intelligent reasoning, not a descriptive
theory of it, the semantics proposed here is about how truth and meaning
should be used in a system, not how they are actually used in the human
mind. We do not present it as a psychological or linguistic model of truth
and meaning. However, since the human mind is basically an adaptive system
evolved in an environment where its knowledge and resources are generally
insufficient with respect to the problems to be solved, we do believe that
in general this model is closer to a descriptive model than model-theoretic
semantics is. Though it is not the major goal of the current research, it will be
interesting to explore the implications of this theory in philosophy, linguistics,
and psychology.

Human beings often (if not always) judge the truth value of a statement ac-
cording to experience and determine the meaning of a word according to its
relations with other words. This is not a novel idea to philosophers, psychol-
ogists, and linguists. However, few people tried to apply it to an artificial
language defined by a formal grammar. People often implicitly assume that
the semantics of a formal language has to be model-theoretic. Actually, a lan-
guage can be “formal” in two different senses. In a weak sense, it means that
the language is artificial, and formed according to a formal grammar; in a
strong sense, it means that the language is also used with a model-theoretic
semantics. Narsese is “formal” in the weak sense only. In this paper, we show
that it is possible to give the language a non-model-theoretic formal semantics.

The semantics of NARS is not the only possible experience-grounded seman-
tics. For systems designed for different purposes, other instances of this kind
of semantics can be developed. Though they may have different forms, they
should share the same theoretical foundation, that is, semantic notions of a
language, such as meaning and truth, are defined as functions of the experience
of a system using the language.

The NARS project is based on the belief that “intelligence” should be treated
as the capacity of adaptation with insufficient knowledge and resources. In this
sense, the experience-grounded semantics introduced here is the semantics
for intelligent systems. From the above discussion, we can see that such a
semantics addresses many important problems in a consistent manner, and
suggests a new direction for AI and cognitive science.
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