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Abstract. This paper describes the self-awareness and self-control mechanisms
of a general-purpose intelligent system, NARS. The system perceives its internal
environment basically in the same way as how it perceives its external environ-
ment, though the sensors involved are completely different. NARS uses a “self”
concept to organize its relevant beliefs, tasks, and operations. The concept has an
innate core, though its content and structure are mostly acquired gradually from
the system’s experience. The “self” concept and its ingredients play important
roles in the control of the system.

Functions like “self-awareness”, “self-control”, and “self-consciousness” are closely
related to advanced forms of intelligence. The difficulty of realizing these functions in
a machine is both technical and theoretical, as there is no widely accepted theory about
them, and even their definitions are highly controversial. This paper is not an attempt
to address all relevant issues. Instead, we will present the relevant aspects of NARS
(Non-Axiomatic Reasoning System), a formal model of general intelligence, which has
been mostly implemented and is under testing and tuning.

In the following, the conceptual design of NARS is briefly introduced first, then the
parts mostly relevant to “self” are described in more detail. Finally, the major design
decisions are compared with the related works.

1 NARS Introduction

NARS is designed according to the hypothesis that “intelligence” is the ability for a sys-
tem to adapt to its environment and to work with insufficient knowledge and resources.
Under the length restriction, in this paper the system is only introduced very briefly. For
details of the system, see the related papers3 and books [14, 17].

NARS is a reasoning system, with a formal language, Narsese, for knowledge repre-
sentation, and a formal logic, NAL (Non-Axiomatic Logic), for inference using Narsese
sentences as premises and conclusions. NAL belongs to the “term logic” tradition where
the smallest component of the language is a term, and “subject-copula-predicate” is the
simplest format of statement. “S → P ” is a basic form of statements, and is called
inheritance statement, where S is the subject term, P the predicate term, and “→” the
inheritance copula. The intuitive meaning of “S → P ” is “S is a special case of P ” and

3 Mostly accessible at https://cis.temple.edu/˜pwang/papers.html
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“P is a general case of S”. For example, “robin → bird” corresponds to “Robin is a
type of bird”.

In its simplest form, a term is just a string of symbols from an arbitrary alphabet.
Starting from these “atomic” terms, compound terms can be composed recursively, each
with a connector and a list of component terms. Different term connectors represent
different relations among the components, as shown by the following examples:

– Sets: Term {Tom, Jerry} is an extensional set specified by enumerating its in-
stances; term [small, yellow] is an intensional set specified by enumerating its
properties.

– Intersections and differences: Term (bird ∩ swimmer) represents “birds that
can swim”; term (bird− swimmer) represents “birds that cannot swim”.

– Products and images: The relation “John is the uncle of Zack” is represented as
“({John} × {Zack}) → uncle-of”, “{John} → (uncle-of / � {Zack})”, and
“{Zack} → (uncle-of / {John} �)”, equivalently.

– Statement: “John knows soccer balls are round” can be represented as a higher-
order statement “{John} → (know / � {soccer-ball → [round]})”, where the
statement “soccer-ball→ [round]” is used as a term.

Beside the inheritance copula (‘→’, “is a type of”), NAL also has three other cop-
ulas: similarity (‘↔’, “is similar to”), implication (‘⇒’, “if-then”), and equivalence
(‘⇔’, “if-and-only-if”), and the last two are used between two statements.

A statement is a compound term with a truth-value. It can be formed using two terms
and a copula, as well as using statement connectors negation (‘¬’), conjunction (‘∧’),
and disjunction (‘∨’), which are defined similarly (but not utilizing Boolean functions)
to those in propositional logic [14]. There are several special types of statements needed
for NARS to reason on procedural knowledge as in logic programming [7]:

Event: a statement with a time-dependent truth-value. Two events may happen sequen-
tially or concurrently. Compound events can describe a sequence of events or parts
of a complex event. By comparing the occurrence time of an event with the current
time, the event gets a tense like “past”, “present”, or “future”.

Operation: an event directly realizable by the system itself via executing the associ-
ated code or command. Formally, an operation is an application of an operator on a
list of arguments, written as op(a1, . . . , an). Intuitively, it is a procedure call, where
the argument list includes both input and output arguments.

Goal: an event the system wants to realize. It is a statement with an associated “desire-
value”, indicating the extent to which the system desires a situation where the state-
ment is true.

Since NARS is designed under the Assumption of Insufficient Knowledge and Re-
sources (AIKR for short), the truth-value of a statement measures the extent of eviden-
tial support, not the agreement with a corresponding fact. In NAL, a truth-value is a
pair of real numbers in [0,1] × (0,1), where the first number, frequency, measures the
proportion of positive evidence of the statement among all available evidence, while
the second number, confidence, measures the proportion of currently available evidence
among the total amount of available evidence at a moment in the future, after new evi-
dence of a constant amount is collected.
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Defined in this way, truth in NARS is “experience-grounded”. Similarly, the mean-
ing of a term is determined by how it is related to other terms in the system’s experience.
As the experience of a system grows over time, the truth-value of statements and the
meaning of terms in the system change accordingly. This experience-grounded seman-
tics (EGS) is fundamentally different from the traditional model-theoretic semantics,
since it defines truth and meaning according to a (dynamic and system-specific) ex-
perience, rather than a (static and system-independent) model. In the simplest imple-
mentation of NARS, its experience is a stream of Narsese sentences, which will be
summarized to become the knowledge of the system.

NAL uses (formal) inference rules to derive new knowledge from existing knowl-
edge. Since every piece of knowledge, also known as belief, is true to a degree, each
inference rule has a truth-value function that calculates the truth-value of the conclusion
according to the evidence provided by the premises.

As a term logic, typical inference rules in NAL are syllogistic, and takes two premises
(with one common term) to derive a conclusion (between the other two terms). The NAL
rules of this type include deduction, induction, and abduction, as specified by Peirce
[10], though the truth-value of every statement is extended from {0, 1} to [0,1]×(0,1)
[14]. Among the three, deduction is a rule that carries out strong inference, as its con-
clusions can approach the maximum confidence 1 for affirmative premises of high con-
fidence, while the other two carry out weak inference, where the confidence of the con-
clusions has a constant upper bound less than 1 for all premises.

Under AIKR, NARS may have inconsistent beliefs, that is, the same statement may
obtain different truth-values according to different evidential bases. When the system
locates such an inconsistency, it either uses the revision rule to produce a more confident
conclusion by pooling the evidence (if the evidence bases are disjoint), or use the choice
rule to pick the belief with higher confidence (if the evidence bases are not disjoint).

NAL also has compositional rules that compose or decompose compound terms ac-
cording to the definition of their connector, so as to summarize the system’s experience
more efficiently.

The inference rules of NAL can be used in both forward inference (from exist-
ing beliefs to derived beliefs) and backward inference (from existing beliefs and ques-
tions/goals to derived questions/goals).

Equipped with these inference rules, NARS can carry out the following types of
inference tasks:

– to absorb new experience into the system’s beliefs, as well as to spontaneously
derive some of their implications;

– to achieve the input goals (and the derived goals) by selectively executing the avail-
able operations according to the system’s beliefs;

– to answer the input questions (and the derived questions) according to the system’s
beliefs.

Under AIKR, new tasks can enter the system at any time, each with its own time
requirement, and its content can be any Narsese statement. Working in such a situation,
usually NARS cannot perfectly accomplish all tasks in time, but has to allocate its lim-
ited time and space resources among them, and has to dynamically adjust the allocation
according to the change of context and the feedback to its actions.
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In the memory of NARS, beliefs and tasks are organized into concepts, according
to the terms appearing in them. Therefore, for a term T , concept CT refers to all beliefs
and tasks containing T . For example, the beliefs on “robin → bird” are referred to
within concepts Crobin and Cbird, as well as other relevant concepts. A “concept” in
NARS is a unit of both storage and processing, and models the concepts found in human
thinking [14].

To indicate the relative importance of concepts, tasks, and beliefs to the system,
priority distributions are maintained among them. The priority of an item (concept, task,
or belief) summarizes the attributes to be considered in resource allocation, including
its intrinsic quality, usefulness in history, relevance to the current context, etc. Therefore
items with higher priority values will get more resources.

NARS runs by repeating an inference cycle consisting of the following major steps:

1. Select a concept within the memory.
2. Select a task referred by the concept.
3. Select a belief referred by the concept.
4. Derive new tasks from the selected task and belief by the applicable inference rules.
5. Adjust the priority of the selected belief, task, and concept according to the context

and feedback.
6. Selectively put the new tasks into the corresponding concepts, and report some of

them to the user.

All selections in the above steps are probabilistic, biased by priority, that is, the
probability for an item to be selected is positively correlated to its priority value. Con-
sequently, the tasks will be processed in a time-sharing manner, with different speeds.
For a specific task, its processing does not follow a predetermined algorithm, but is the
result of many inference steps, whose combination is formed at runtime, so is neither
predictable nor repeatable accurately, because both the external environment and the
internal state of the system change in a non-circular manner.

2 “Self” in NARS

In this paper we focus on the aspects of NARS that are directly relevant to self-awareness
and self-control. Therefore we will not fully discuss the following topics often involved
in the related discussions:

– “Higher-order statement” in NARS covers “statement about statement”, “knowl-
edge about operations”, etc., which are often taken as functions of “metacognition”
[5]. Since such knowledge is typically about individual statements or operations,
not about the system as a whole, it is not discussed here. For how this kind of
knowledge is processed in NARS, see [14, 17].

– NARS constantly compares the certainty of beliefs, and dynamically allocates its
resources among competing tasks. Even though the relevant mechanisms are indeed
at the meta-level with respect to beliefs and tasks, they are implicitly embedded in
the code, so not generally accessible to the system’s deliberation, nor can they be
modified by the system itself, therefore they are also not discussed here.
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– NARS has mechanisms for feeling and emotion, which are important parts of self-
awareness and self-control. However, since they have been discussed in detail in
our recent publication [18], they will only be mentioned briefly in this paper.

NARS’ beliefs about itself start at its built-in operations. Operation op(a1, . . . , an)
corresponds to a relation the system can establish between itself and the arguments, so
it is equivalent to statement “(×, {SELF}, {a1}, . . . , {an})→ op” (where the subject
term is a product term written in the prefix format), since it specifies a relation among
the arguments plus the system identified by the special term SELF .

Similar to the case of logic programming [7], here the idea is to uniformly repre-
sent declarative knowledge and procedural knowledge. So in NARS knowledge about
the system itself is unified with knowledge about others. For instance, the operation
“open this door” is represented as “(×, {SELF}, {door 1}) → open” 4, while “John
opened this door” as “(×, {John}, {door 1}) → open” (tense omitted to simplify the
discussion). In this way, imitation can be carried out by analogical inference.

As mentioned previously, in NARS the meaning of a concept is gradually acquired
from the system’s experience. However, this “experience-grounded semantics” (EGS)
does not exclude the existence of innate concepts, beliefs, and tasks. In the above ex-
ample, ‘SELF ’ is such a concept, with built-in operations that can be directly executed
from the very beginning. Such operations depend on the hardware/software of the host
system, so are not specified as parts of NARS, except that they must obey the format
requirements of Narsese. According to EGS, in the initial state of NARS, the meaning
of a built-in operation is procedurally expressed in the corresponding routine, while the
meaning of ’SELF ’ consists of these operations. To the system, “I am whatever I can
do” or “I am whatever I can do and feel” are possible ways to express this situation,
since in NARS sensation and perception are also operations.

As the system begins to have experience, the meaning of every concept will be
more or less adjusted as it is experienced, directly or indirectly. For a built-in operation,
the system will gradually learn its preconditions and consequences, so as to associate
itself with the goals it can achieve. It is like when we know how to raise our hand first,
and then know it as a way to get the teacher’s attention. The ‘SELF ’ concept will be
enriched in this way, as well as through its relations with other concepts representing
objects and other systems in the outside environment. Therefore, self starts from “what
I can do” to include “what I am composed of”, “how I look like”, “what my position is
in the society”, etc. “Self” does not have a constant meaning determined by a denotation
or definition. Instead, the system gradually learns who it is, and its self-image does not
necessarily converge to a “true self”.

An operation may be completely executed by the actuator of the host system (e.g.,
A NARS-based robot raises a hand or moves forward), or partly by another coupled
system or device (e.g., A NARS-based robot pushes a button or issues a command to
another robot). NARS has an interface for such “external” operations to be registered.

NARS is designed to allow all kinds of operations to be used in a “plug-and-play”
manner, i.e., to be connected to the system at run time by a user or the system itself. A
learning phase is usually needed for an operation to be used properly and effectively.

4 Here, the inheritance copula encodes that the relation between {SELF} and {door 1}, is a
special case of opening.
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In principle, no operation is necessarily demanded in every NARS implementation,
except a special type of “mental” operations that work on the system’s own “mind”.
There are several groups of mental operations, including:

Task generation. An inference task in NARS can either be input or derived recur-
sively from an input task. The derivation process does not change the type of the
task (new/activated belief, goal, or question). However, in certain situations a task
needs to be generated from another one of a different type. For example, a new
belief (“It is cold.”) may trigger a new goal (“Close the window!”). This relation
is represented as an implication statement where the consequent is not a statement,
but an operation call, similar as in a production rule.

Evidence disqualification. By default, the amount of supporting evidence for every
belief accumulates over time. Therefore, though the frequency value of the belief
may either increase or decrease (depending on whether the new evidence is pos-
itive or negative), its confidence value increases monotonically. This treatment is
supplemented by a mental operation that allows the system to doubt a belief by
decreasing its confidence value to a certain extent.

Concept activation. The resource allocation mechanism of NARS already implements
a process similar to activation spreading in neural networks. When a new task is
added into a concept, the priority of the concept is increased temporarily, and in-
ference in the concept may cause derived tasks to be sent to its neighbors, so their
priority (activation) levels will be increased, too. As a supplement, a mental opera-
tion allows the system to pay attention to a concept without new tasks added.

Feeling. The system can check the readings of its sensors embedded in its “body” and
“mind”, so as to “feel” its status, and use the reports to decide its actions. This
mechanism has been described in [18]. Beside emotional status, the system can
also feel how novel a new input is (so as to give it the attention it deserves) or how
busy itself is (so as to decide its resource allocation strategy).

In general, mental operations supplement and influence the automatic control mech-
anism, and let certain actions be taken as the consequence of inference. Mental opera-
tions contribute to the system’s self-concept by telling the system what is going on in its
mind, and allow the system to control its own thinking process to a certain extent. For
instance, the system can explicitly plan its processing of a certain type of task. After
the design and implementation phases, the system needs to learn how to properly use
its mental operations, just like it needs to learn about the other operations.

In NARS, “experience” refers to the system’s input streams. In the simplest imple-
mentation of NARS, the system has only one input channel, where the experience is
a stream of Narsese sentences like S1, T1, S2, T2, . . . , Sn, Tn from the channel, where
each Si is a Narsese sentence, with Ti to be the time interval between it and the next
sentence. A buffer of a constant size n holds the most recent experience.

In more complicated implementations, there are also “sensory” channels each ac-
cepting a stream of Narsese terms from a sensory organ. Here a sensor can recognize a
certain type of signal, either from the outside of the system (such as visual or audio sig-
nals), or from the inside of the system. Within the system, the sensation can come either
from the body (somatosensory) or from the mind (mental). Such a channel provides a
certain type of “internal experience”. Somatosensory input will be especially important
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for a robotic system, as it needs to be aware of its energy level, network connection
status, damages in parts, etc.

A mental sensation may come from the execution of a mental operation, such as
the “feeling” operation mentioned above. Also, mental sensations appear as the trace
of the system’s inference activity. During each inference cycle, the system “senses” the
concept that was selected for processing, and the implication relationship between the
premises and the conclusion. Later, this experience can be used to answer questions like
“What has been pondered” or “Where does that conclusion come from”, asked either
by the system itself or by someone else, as well as used in future inference activities.

On the input buffers the system carries out certain channel-specific preprocessing to
form compound terms corresponding to the spatiotemporal patterns of the input. There
is also a global buffer that holds a stream of Narsese sentences after preprocessing,
where the terms typically combine the data from multiple channels. In this aspect, the
external and internal experiences are handled basically in the same way.

A special type of belief formed in this way is the temporal implications between
the mental events sensed within the system and the outside events observed by the
system. The system will believe that it is some of its ideas that “cause” a certain action
to be performed in its environment, and such beliefs will coordinate its “mind” and its
“body”.

The internal experience of NARS is the major source of its self-knowledge. Under
AIKR, this type of knowledge is also uncertain and incomplete, and is under constant
revision. Furthermore, it is subjective and from the first-person perspective. In these
aspects, NARS is fundamentally different from the “logical AI” approach [9].

There is no space in this paper to provide working examples, so interested readers
should visit the OpenNARS project website.5

3 Comparison to Related Work

Restricted by paper length, here we only compare NARS with the related AI works, and
not address the huge literature in psychology and philosophy on self, consciousness, and
the related topics.

Though many approaches have been proposed for self-awareness and self-control
in various forms, most AI systems do not have a “self” concept (no matter under what
name) [5]. Such a concept is used in NARS, mainly because concept provides a flexible
unit for representation and processing, so every identifiable pattern in experience and
notion in thought is handled as a concept. Since an intelligent system has the needs to
know about itself, it is natural for such a concept to be used to collect all the self-related
beliefs and tasks together.

According to the semantics of NARS, the meaning of a concept (or a term naming a
concept) is completely determined by its relation with other concepts (or terms). While
for most concepts such relations are all acquired from the system’s experience, the sys-
tem is not born with a blank memory. Each built-in operation contributes meaning to

5 Source code, working examples, and documentations of the current implementation of NARS
can be found at http://opennars.github.io/opennars/
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the concept of SELF , by relating the system as a whole to the events it can perceive
and/or realize. Starting from these operations, the SELF concept will eventually in-
volve beliefs about

– what the system can sense and do, not only using the built-in operations, but also the
compound operations recursively composed from them, as well as the preconditions
and consequences of these operations;

– what the system desires and actively pursues, that is, its motivational and emotional
structure;

– how the system is related to the objects and events in the environment, in term of
their significance and affordance to the system;

– how the system is related to the other systems, that is, the “social roles” played by
the system, as well as the conversions in communication and interactions.

All these aspects will make the system’s self concept richer and richer, even to the level
of complexity that we can meaningfully talk about its “personality”, that is, what makes
this system different from the others, due to its unique nature and nurture.

This treatment is fundamentally different from identifying “self” with a physical
body or a constant mechanism within the system. “Self” is not left completely to a
mysterious “emergent process”, neither. In NARS, the concept of “self” starts with
a built-in core, then evolves according to the system’s experience. In the process, the
self-concept organizes the relevant beliefs and tasks together to facilitate self-awareness
and self-control. This is consistent with Piaget’s theory that a child learns about self and
environment by coordinating sensations (such as vision and hearing) with actions (such
as grasping, sucking, and stepping), and gradually progresses from reflexive, instinctual
action at birth to symbolic mental operations [11].

A widely agreed conclusion in psychology is that a mental process can be either
automatic (implicit, unconscious) or controlled (explicit, conscious), with respect to the
system itself. The former includes innate or acquired stimulus-response associations,
while the latter includes processes under cognitive control, such as “response inhibition,
attentional bias, performance monitoring, conflict monitoring, response priming, task
setting, task switching, and the setting of subsystem parameters, as well as working
memory control functions such as monitoring, maintenance, updating, and gating.” [4]

Various “dual-process” models have been proposed in psychology to cover both
mechanisms. Such models are also needed in AI, even though the purpose here is not
to simulate the human mind in all details, but to benefits from the advantages of both.
In general, controlled processes are more flexible and adaptive, while automatic pro-
cesses are more efficient and reliable. In such a system, there are meta-level processes
that regulate object-level processes [5, 8, 13, 12], and such works are also covered in the
study of machine consciousness [1, 3]. Even though this “object-level vs. meta-level”
distinction exists in many systems, the exact form of the boundary between the two dif-
fer greatly, partly because of the architecture of the systems involved. A process should
not be considered “meta” merely because it gets information from another process and
also influences the latter, since the relation can be symmetric between the two, while
normally the object-level processes have no access to the meta-level processes.

As a reasoning system, in NARS “control” means to select the premises and the
rule(s) for each inference step, so as to link the individual inference steps into problem-
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solving processes. The primary control mechanism is coded in a programming lan-
guage, and is independent of the system’s experience. It is automatic and unconscious,
in the sense that the system does not “think” about what to do in each step, but is
context- and data-driven, while the data involved comes from associations biased by
dynamic priority distributions. On top of this, there are mental operations that are ex-
pressed in Narsese and invoked by the system’s decisions, as a result of “conscious”
inference activities. This meta-level deliberative control does not change the underly-
ing automatic routines, but supplement and adjust them.

Deliberative control in NARS is mainly achieved by mental operations, and this
treatment is different from the meta-cognition implemented in the other systems [5] in
that the operations in NARS are light-weight, rather than decision-making procedures
that compare the possible actions in detail with a high computational cost. Also, the pre-
conditions of these operations are largely learned from experience, not predetermined.
As these operations can be combined into compounds, the system will gradually learn
problem-solving skills, as a form of self-programming [16].

In general, NARS treats its “external experience” and “internal experience” in the
same way, and the knowledge about the system itself has the same nature as other
knowledge in NARS. Under AIKR, self-knowledge is incomplete, uncertain, and often
inconsistent, which is the contrary of what is assumed by the “logical AI” school [9].
The system can only be aware of the knowledge reported by certain mental operations
and those in the input buffers, and even this knowledge does not necessarily get enough
attention to reveal its implications. The control aspect is the same, that is, the system
can only make limited adjustments, so cannot “completely reprogram itself”, and nor
can it guarantee the absolute correctness of its self-control behaviors.

If self-awareness and self-control are required in an intelligent system, why are such
functions absent in most of the AI systems developed so far?

Like many controversies in AI, the different opinions on this matter can be traced
back to the different understandings of “AI” [15]. As the mainstream AI aims at the
solving of specific problems, the systems are usually equipped with problem-specific
algorithms. Even in learning systems that do not demand manually-coded algorithms,
they are still approximated by generalizing training data. In general such systems have
little need to add itself into the picture, and even meta-cognition can be carried out
without an explicit “self” concept involved [5].

In AGI systems, the situation is different. Here we have projects aimed at simu-
lating the human brain according to psychological theories [6, 2], which surely needs
to simulate the self-related cognitive functions. Even in the function-oriented projects,
self-awareness and self-control are desired to meet the requirements for the system to
work in various situations [13, 12].

For NARS, the need for self-awareness and self-control follows from its working
definition of intelligence, that is, adaptation under AIKR [15]. To adapt to the environ-
ment and to carry out its tasks, the system needs to know what it can do and how it is
related to the objects and other systems in the environment, and an explicitly expressed
“self” will organize all the related knowledge together, so as to facilitate reasoning and
decision making.
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NARS treats SELF like other concepts in the system, except that it is a “reserved
word” which has innate associations with the built-in operations, including the men-
tal operations. NARS also treats internal and external experience uniformly, so self-
awareness and self-control have nothing magical or mysterious, but are similar to how
the system perceives and acts upon the external environment.

Though the study of self-awareness and self-control in NARS is still at an early
stage, the conceptual design described above has been implemented, and is under testing
and tuning. There are many details to be refined, however we believe the overall design
is in agreement with the scientific knowledge on these processes in the human mind,
and also meets the needs and restrictions in AGI systems.
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