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Abstract. NARS is an AGI project developed in the framework of reasoning 
system, and it adapts to its environment with insufficient knowledge and resources. 
The development of NARS takes an incremental approach, by extending the 
formal model stage by stage. The system, when finished, can be further augmented 
in several directions.  
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1. Introduction 

NARS (Non-Axiomatic Reasoning System) is a project aimed at the building of a 
general-purpose intelligent system, or a “thinking machine”. This chapter focuses on 
the methodology of this project, and the overall development plan to achieve this 
extremely difficult goal. There are already many publications discussing various 
aspects of NARS, which are linked from the author’s website. Especially, [1] is a 
recent comprehensive description of the project. 

If there is anything that the field of Artificial Intelligence (AI) has learned in its 
fifty-year history, it is the complexity and difficulty of making computer systems to 
show the “intelligence” as displayed by the human mind. When facing such a 
complicated task, where should we start? 

Since the only known example that shows intelligence is the human mind, it is 
where everyone looks at for inspirations at the beginning of research. However, 
different people get quite different inspirations, and consequently, take different 
approaches for AI. 

The basic idea behind NARS can be traced to the simple observation that 
“intelligence” is a capability possessed by human beings, but not by animals and 
traditional computer systems. Even if we accept the opinion that some animals and 
computers also show intelligence, they are still far inferior in this ability when 
compared to human beings. 

If we can indeed draw the boundary of “intelligent system” to include normal 
humans, but not typical animals and computer systems, then the next question is: what 
is the difference between these two types of system? Hopefully the answer to this 
question can tell us what intelligence really is. 

Even if this boundary of the category of intelligence is accepted, there are still 
many differences that can be found and justified. Now the problem becomes to identify 
a small number of them that are “essential”, in the sense that they can derive or explain 
many other differences.  



 

 

The design of NARS is based on the belief that the essence of intelligence is the 
capability to adapt to the environment and to work with insufficient knowledge and 
resources [2]. Therefore, an intelligent system should rely on constant processing 
capacity, work in real time, open to unexpected tasks, and learn from experience. 

According to this opinion, whether a system is intelligent, or how intelligent it is, 
is not determined by what the system can do, but by what it can learn to do. An 
intelligent system does not need to be identical to the human brain in internal structure, 
or the human mind in external behaviors, nor does it have to provide optimal solutions 
to certain practical problems. Instead, the system should be general, flexible, and 
creative. 

Though the above understanding of intelligence sounds simple, it does explain 
many phenomena observed in the human mind. 

Similar to its conceptual basis, the engineering plan of NARS also follows 
“minimalism”, in the sense that the goal is not to maximize the system’s performance, 
but to minimize its theoretical assumption and technical foundation, while still being 
able to realize the conception of intelligence introduced above. The scientific reason for 
following this approach is that it produces a precise and verifiable theory; the practical 
reason is that it leads to a manageable project under the restriction of available 
development resources. 

NARS is built in the form of a reasoning system, with a language for knowledge 
representation, a semantic theory of the language, a set of inference rules, a memory 
structure, and a control mechanism. The first three components are usually referred to 
as a logic. The reasoning framework has the advantage of being domain-independent, 
and combining the justifiability of individual inference steps and the flexibility of 
linking these steps together in a context-sensitive manner in run time.  

In the following, the development plan of NARS is introduced first, which shows 
how the system is built stage by stage. After that, several important but optional 
augmentations of NARS are introduced and analyzed. Finally, several topics about the 
development of this system are discussed. 

2. The NARS Roadmap 

The development of NARS takes an incremental approach. At each stage, the logic is 
extended, to give the system a more expressive language, a richer semantics, and a 
larger set of inference rules. Consequently, the system becomes more intelligent than at 
the previous stage, according to the above conception of intelligence, by being more 
adaptive and more efficient in using available knowledge and resources.  

Roughly speaking, NARS is developed in four major stages. The following 
description omits technical details and comparisons with other systems, which can be 
found in the other publications on NARS, such as [1]. 

(1) Basic reasoning 

At this stage, the system is equipped with a minimum Non-Axiomatic Logic. 
The logic uses a categorical language called “Narsese”, in which every statement 

consists of a subject term and a predicate term, linked by an inheritance relation. 
Intuitively, the statement says that the subject is a specialization of the predicate, and 
the predicate is a generalization of the subject. For example, “bird → animal” is such a 



 

 

statement, with “bird” as the subject term and “animal” as the predicate term. A “term”, 
at the current stage, is just an atomic identifier. The inheritance relation is defined as 
from one term to another term, and as being reflexive and transitive in idealized 
situations. 

For a given term, its extension is the set of its known specializations, its intension 
is the set of its known generalizations, and its meaning consists of its extension and 
intension. Therefore, given inheritance statement “bird → animal”, “bird” is in the 
extension of “animal”, and “animal” is in the intension of “bird”. 

It can be proved that a statement is true if and only if the extension of its subject is 
a subset of the extension of its predicate, and, equivalently, if the intension of its 
predicate is a subset of the intension of its subject. 

Based on this result, the statement can be made multi-valued to represent 
incomplete inheritance. For this purpose, its positive evidence is defined to be the terms 
that are either in both the extension of the subject and the extension of the predicate, or 
in both the intension of the predicate and the intension of the subject; its negative 
evidence is defined to be the terms that are either in the extension of the subject but not 
the extension of the predicate, or in the intension of the predicate but not the intension 
of the subject. Evidence is defined in this way, because as far as a piece of positive 
evidence is concerned, the statement is true; as far as a piece of negative evidence is 
concerned, the statement is false. 

For a given statement, if the amounts of positive and total (i.e., positive plus 
negative) evidence are written as w+ and w, respectively, then the truth-value of the 
statement is represented as a pair of real numbers in [0, 1], <frequency, confidence>, 
where frequency = w+ / w, and confidence = w / (w + 1). Consequently, truth-value in 
NARS uniformly represents several types of uncertainty, including randomness, 
fuzziness, and ignorance. A statement with truth-value is called a “judgment”. 

Defined in this way, Non-Axiomatic Logic has an experience-grounded semantics, 
where the meaning of each term and the truth-value of each statement are determined 
according to the relevant experience of the system, by the system itself. 

The inference rules of NARS are defined on judgments, and are designed and 
justified according to the above experience-grounded semantics. A typical inference 
rule is syllogistic, that is, it takes a pair of inheritance judgments as premises, which 
share exactly one common term, and the conclusion is an inheritance judgment 
between the other two terms. The position of the shared term determines the type of the 
inference, including the following (truth-values omitted): 

 
Deduction Abduction Induction 

M → P 
S → M 
S → P 

P → M 
S → M 
S → P 

M → P 
M → S 
S → P 

 
Each inference rule has an associated truth-value function, which calculates the 

truth-value of the conclusion from those of the premises, by determining the amount 
evidential support the conclusion gets directly from the evidence provided by the 
premises. An inference rule is valid if it can be justified according to the experience-
grounded semantics. 

There is a special rule used for revision, where the two premises contain the same 
statement, but are supported by evidence collected from different sources. The revision 



 

 

rule produces a conclusion, with the same statement as content, and a truth-value 
corresponding to the accumulated evidence from both sources. 

A belief of the system is a judgment coming from, or derived according to, the 
system’s experience. At this stage, a task that the system can carry out is either a 
question to be answered, or a piece of new knowledge (a new belief) to be absorbed.  

A belief can be used to answer questions, both of the “yes/no” type and the “what” 
type, as well as to derive new beliefs following the inference rules. For a question that 
the system has no direct answer, the syllogistic rules can also be used backward to 
produce derived questions, whose answer will lead to the answer of the original 
question, using forward inference. 

The system’s memory consists of a belief network, in which each node is named 
by a term, and each link corresponds either to a belief, or to a task. Each node with its 
incoming and outgoing links forms a concept. 

When the system is running, usually there are many tasks in its memory. The 
system assigns a priority-value to every concept, task, and belief. At each inference 
step, a concept is selected, and then a task and a belief are selected within the concept. 
All these selections are probabilistic, that is, an item with a larger priority-value has a 
higher probability to be selected. With the selected task and belief as premises, 
applicable inference rules derive new tasks and beliefs, and add them into the memory. 
When the memory is full, items (beliefs, tasks, and concepts) with the lowest priority 
values are removed to release their previous occupied space.  

After each step, the priority-values of the involved concept, task, and belief are 
adjusted, according to the immediate feedback obtained in this step. In the long run, 
larger priority-values will be given to items that are more important in the past history 
and more relevant in the current context. 

Since for a given task, the system’s processing process consists of a sequence of 
inference steps that is formed at the run time, it does not depend on a predetermined 
task-specific algorithm, but is determined by many factors in the past experience and 
current context of the system. Since these factors change constantly, the system’s 
processing path and response to a task is usually not a function of the task. That is, they 
are neither fully predictable in advance nor fully repeatable afterwards, given the task 
alone. 

Designed in this way, the system is indeed adaptive and can work with insufficient 
knowledge and resources, though it can only handle simple tasks, because of its limited 
expressive and inferential power at this stage. 

(2) First-order reasoning 

At the second stage, Non-Axiomatic Logic is extended by adding compound terms and 
variants of the inheritance relation into the language and the rules. 

The similarity relation, “↔”, is a variant of the inheritance relation (“→”), and can 
be seen as symmetric inheritance. For a statement containing two terms linked by the 
similarity relation, the positive evidence includes the terms in the extension (or 
intension) of both terms, and the negative evidence includes the terms in the extension 
(or intension) of one term but not the other.  

Inference rules involving similarity include comparison (such as to derive “S ↔ P” 
from “S → M” and “P → M”) and analogy (such as to derive “S → P” from “S ↔ M” 
and “M → P”). Again, each rule has an associated truth-value function. 



 

 

A compound term is formed by an operator from one or more component terms, 
and this composition process can be repeated to build compound terms with 
complicated internal structures. 

The meaning of a compound term has a literal part and an empirical part. The 
former comes from the meaning of its components in a way determined by the 
operator; the latter comes from the role the compound term as a whole plays in the 
experience of the system, just like how the meaning of an atomic term is determined at 
the previous stage. In different compound terms, these two parts have different relative 
significance. The more the system knows about a compound term, the less it is used in 
its literal meaning. 

The following compound terms are introduced into NARS at this stage: 
Sets. Though a term is not defined as a set in general, there are special compound 

terms corresponding to sets: 
• An extensional set is defined by exhaustively listing its instances, such as in 

“{T1, T2, … , Tn}”,  
• An intensional set is defined by exhaustively listing its properties, such as in 

“[T1, T2, … , Tn]”.  
In both cases, “T1, T2, … , Tn” are terms serving as the components of the compound, 
and “{}” and “[]” are operators for extensional set and intensional set, respectively. 

Intersections and Differences. Compound terms can be formed via set operations 
on the extensions or intensions of existing terms. Using two different terms T1 and T2 
as components, four compound terms can be defined in this way: 

• “(T1∩T2)” is their extensional intersection. Its extension is the intersection of 
the extensions of T1 and T2, and its intension is the union the intensions of T1 
and T2. 

• “(T1∪ T2)” is their intensional intersection. Its intension is the intersection of 
the intensions of T1 and T2, and its extension is the union the extensions of T1 
and T2. 

• “(T1−T2)” is their extensional difference. Its extension is the difference of the 
extensions of T1 and T2, and its intension is the intension of T1. 

• “(T1∅ T2)” is their intensional difference. Its intension is the difference of the 
intensions of T1 and T2, and its extension is the extension of T1. 

Products and Images. To represent ordinary relations among terms that cannot be 
treated as inheritance or similarity, compound terms can be used so that the statement 
is still about inheritance. For example, an arbitrary relation R among terms A, B, and C 
can be represented as an inheritance statement “(× A B C) → R”, where the subject 
term is a product “(× A B C)”, which is a compound with three components in the 
given order, and the symbol “×” is the product operator. To separate each component 
out of the compound term, the above inheritance statement can be equivalently 
rewritten into any of the following form: 

• “A → (⊥  R ◊ B C)” 
• “B → (⊥  R A ◊ C)” 
• “C → (⊥  R A B ◊)” 
In each of the three inheritance statements, the predicate term is an extensional 

image, with “⊥ ” as the operator, and “◊” as a placeholder, indicating the location of the 
subject in the relation. Symmetrically, there is also a type of compound term called 
intensional image. 



 

 

For each type of compound term defined above, there are corresponding inference 
rules for the composition and decomposition of compound terms. Consequently, the 
inference process not only produces new beliefs and tasks, but also generates new 
terms and concepts. 

At this stage, the memory architecture and control mechanism of the system are 
also revised to uniformly handle compound terms and atomic terms. 

(3) Higher-order reasoning 

Higher-order reasoning allows statements to be used as terms. At this stage, the system 
can carry out reasoning on higher-order statements, i.e., statements of statements. 

In the simplest situation, a higher-order statement is formed by an ordinary relation 
that takes a statement as argument. Such relations include “believe”, “know”, “say”, etc. 
For example, in Narsese “Birds are animals” can be represented as a (first-order) 
statement “bird → animal”, and “Peter knows that birds are animals” as a higher-order 
statement “(× {Peter} {bird → animal}) → know”. 

Another way to form higher-order statements is to use statement operators 
negations (“¬”), conjunctions (“∧ ”), and disjunctions (“∨ ”), as in prepositional 
calculus, except that here the statements are not binary, but multi-valued. Each of the 
three operators has an associated truth-value function when used to form compound 
statements. 

Two new relations are introduced between two statements: implication (“⇒”, 
intuitively meaning “if”) and equivalence (“⇔”, intuitively meaning “if-and-only-if”). 
They are isomorphic to inheritance (“→”) and similarity (“↔”), respectively. In the 
implication statement “S ⇒ P”, S is a sufficient condition of P, and P is a necessary 
condition of S. In the equivalence statement “S ⇔ P”, S and P are sufficient and 
necessary conditions of each other. 

Some of the rules of higher-order inference are isomorphic to certain rules of first-
order inference, such as 

 
Deduction Abduction Induction 

M ⇒ P 
S ⇒ M 
S ⇒ P 

P ⇒ M 
S ⇒ M 
S ⇒ P 

M ⇒ P 
M ⇒ S 
S ⇒ P 

 
Each of these rules uses the same truth-value function as its first-order counterpart.  
There are also inference rules that are specific for higher-order inference, which 

have no direct counterpart in first-order inference.  
The terms in Narsese defined so far are constant, in the sense that each term 

uniquely indicates a concept in the system. To extend the expressing power of the 
language, variable terms are introduced at this stage.  

There are two types of variable: an independent variable is named by an identifier 
with a prefix “#”, and indicates a unspecific term in the extension or intension of 
another term; a dependent variable is named by an identifier with a prefix “#” and 
followed by a list of (may be empty) independent variables, and indicate a specific-but-
unnamed term in the extension or intension of another term.  

The scope of a variable term is one statement, so that the same variable term name 
in different statements may indicate different (constant) terms in the system. 



 

 

A statement can contain multiple variables with embedded scopes. For example, 
the following sentences need to be represented in Narsese using two variables, with 
difference relationship: 

• “Every key can open every lock” is represented as: 
“(({#x} → key) ∧  ({#y} → lock)) ⇒ ((× {#x} {#y}) → open)” 

• “Every key can open a lock” is represented as: 
“({#x} → key) ⇒ (({#y(#x)} → lock) ∧  ((× {#x} {#y(#x)}) → open))” 

• “There is a key that can open every lock” is represented as: 
“({#x()} → key) ∧  (({#y} → lock) ⇒ ((× {#x()} {#y}) → open))” 

• “There is a key that can open a lock” is represented as: 
“({#x()} → key) ∧  ({#y()} → lock) ∧  ((× {#x()} {#y()}) → open))” 

There are inference rules responsible for the introduction and elimination of 
variable terms in statements. 

Again, the memory architecture and control mechanism are revised to uniformly 
handle first-order inference and higher-order inference. 

At this stage, the expressive power of Narsese is comparable to the language of 
predicate calculus (in the sense that the two roughly overlap to a large extent, though 
neither is a subset of the other). The inferential power of the logic is extended to cover 
conditional inference, hypothetical inference, and abstract inference. Different from 
predicate calculus, all inference rules in NARS are designed according to the 
assumption of insufficient knowledge and resources, and justified according to the 
experience-grounded semantics mentioned earlier. 

 (4) Procedural reasoning 

Procedural reasoning means to infer about events, operations, and goals. 
The first step in this stage is to introduce time into the logic. In the previous stages, 

the truth-value of a statement is timeless. At this stage, an event is defined as a special 
type of statement that with temporal truth-value, that is, its truth-value can change over 
time. 

In Narsese, the temporal attribute of an event is represented relatively, as defined 
with respect to another event. For two events, the simplest situations are either they 
happen at the same time, or one of them happens before the other. The other temporal 
relations between them can be represented by dividing the involved events into sub-
events, and further specifying the temporal relations among these sub-events. 

When the above two temporal relations are combined with the statement operators 
and relations, new operators and relations are formed, such as sequential conjunction 
(“,”), parallel conjunction (“;”), predictive implication (“/⇒”), retrospective 
implication (“\⇒”), and concurrent implication (“|⇒”). For example, “S /⇒ P” 
indicates that S is a sufficient precondition of P, and P is a necessary postcondition of S. 

With this representation, temporal inference can be carried out by separately 
processing the logical factor and the temporal factor in the premises, then combining 
the two results in the conclusion, such as 

 
Deduction Abduction Induction 

M /⇒ P 
S /⇒ M 
S /⇒ P 

P \⇒ M 
S /⇒ M 
S /⇒ P 

M /⇒ P 
M \⇒ S 
S /⇒ P 



 

 

 
The operations consist of a special type of event, which the system can directly 

execute, not merely observe. In other words, an operation is a statement under 
procedural interpretation, as in logic programming. With the operators and relations 
introduced above, the system can describe the preconditions (causes) and 
postconditions (consequences) of a given operation, and carry out explaining, 
predicting, planning, and skill learning by reasoning on these descriptions. 

The execution of an operation is usually accomplished by a mechanism outside the 
reasoning system, such as a hardware device with certain sensor/effecter capability, or 
another computer program with certain information-processing capability. The 
reasoning system interacts with them by issuing execution commands and collecting 
execution consequences, and these activities consist of the sensorimotor processes of 
the system as a whole. Operations toward the outside of the system correspond to 
perception and control of the environment. Operations toward the inside of the system 
correspond to self-perception and self-control. 

Operations are the means for the system to achieve goals. Before this stage, NARS 
can accomplish two types of tasks: new knowledge to be absorbed, and questions to be 
answered. At this stage, a goal is defined as a statement to be made true (or as close to 
true as possible) by executing operations. In this way, a goal can be represented as an 
event, whose preconditions and postconditions can be gradually revealed through 
reasoning on available knowledge, and eventually related to operations. 

The system uses a decision-making procedure to create new goals from desirable 
and achievable events. For this purpose, it attaches a desirability-value to each event, 
and includes their calculation as part of the inference process. 

 Furthermore, the memory architecture and control mechanism are revised to 
uniformly handle goals/operations and ordinary tasks/beliefs. 

3. The Roads beyond NARS 

The development of NARS has been carried out for more than two decades, roughly 
according to the plan described in the previous section. At the current time, the first 
three stages have been mostly finished, and the last stage should be completed in a few 
years. After throughout testing and tuning, NARS will be a general-purpose reasoning 
system, built according to the conception of intelligence as the ability to adapt with 
insufficient knowledge and resources. 

However, that will not be the end of this research. According to the above 
conception of intelligence, it is always possible to make a system more intelligent by 
extending its input/output channels to enrich its experience, or by improving its 
efficiency when using available knowledge and resources. 

After NARS per se is fully built, there are still several major ways to augment the 
capability of the system. In the following, each of them will be briefly described, as 
well as analyzed to explain why it is not considered as a necessary part of NARS. 

(1) Sensors and effectors 

NARS communicates with its environment in Narsese, whose grammar is formally 
defined. Each sentence, both input and output, can be a judgment, a question, or a goal. 



 

 

In this context, “sensors and effectors” are the input/output devises that allow the 
system to interact with the environment outside the language channel. 

Such a device can be plugged into the system, according to the operation 
mechanism introduced in the previous section. Concretely, each usage of the device can 
be triggered by a procedure call in the form of “(op, a1, …, an)”, where “op” is an 
operator (the action to be performed), and “a1, …, an” are arguments of the operation 
(information needed in performing the action). To the reasoning system, this operation 
is inheritance statement “(× {a1}… {an}) → op” under procedural interpretation. 

As mentioned previously, the system’s beliefs about an operation are represented 
mostly as its preconditions and postconditions. When the system concludes that a goal 
can be achieved by this operation, its degree of desirability is increased. If the operation 
is judged by the decision-making mechanism as sufficiently desirable and feasible, it 
becomes a goal itself, and it will be achieved directly by issuing the corresponding 
procedure call, so that the device will perform the action to the (internal or external) 
environment. The reasoning system then will collect the feedback to check if the goal 
has indeed been achieved, and to decide what to do next. 

Because of the insufficiency of knowledge and resources, the system usually never 
knows all the preconditions and postconditions of each operation, and its expectations 
are not always confirmed by its future experience. Nor can it be guaranteed that the 
executed operations correspond to the optimal way to achieve its goals. Instead, the 
system just does its best, under the restriction of available knowledge and resources.  

NARS is designed as a general-purpose system, without innate problem-specific 
tools, but these tools can be plugged into the system, and will be handled in a uniform 
manner. Consequently, NARS can be used either as an “intelligent operating system” 
with various software tools, or a “mind” of a robot with various hardware devices.   

In artificial intelligence and cognitive sciences research, some authors stress the 
importance of sensorimotor to intelligence and cognition, and argue that the mind is 
situated and embodied [3, 4]. These opinions are agreeable, as far as they are taken to 
mean that thinking is grounded in experience. However, it does not mean that thinking 
must be grounded in human sensorimotor experience. As mentioned previously, NARS 
is designed according to an experience-grounded semantics, so it is situated and 
embodied. However, since the system is not designed to duplicate concrete human 
behaviors and capabilities, it is not equipped with human sensors and effecters. For 
example, there is no doubt that vision plays a central role in human cognition, and that 
computer vision has great practical value, but it does not mean that vision is needed in 
any intelligent system. Because of these considerations, sensors and effecters are 
treated as optional parts of NARS. 

 (2) Natural languages 

As mentioned previously, NARS uses Narsese, a formally defined language, to 
communicate with its environment.  

Since the language uses an experience-grounded semantics, the truth-value of each 
statement and the meaning of each term in the language are determined by the system’s 
relevant experience. In this aspect, the language is very similar to natural languages. 

On the other hand, since the grammar of Narsese is formally defined, it is very 
different from the grammar of any natural language. For NARS to use a natural 
language to communicate with human users, it needs to learn the grammar and lexicon 
of the language. 



 

 

In NARS, natural-language learning can be carried out by the system’s general-
purpose learning mechanism on linguistic materials. Each word, phrase, and sentence 
of a natural language can be represented within the system by a term. These terms have 
a many-to-many mapping to the terms directly used in the system’s “native language”, 
Narsese, and this mapping corresponds to a symbolize relation in Narsese. The truth-
value of a symbolizing statement indicates the frequency and confidence for the 
word/phrase/sentence (in the natural language) to be used as the symbol of the term (in 
Narsese), according to the experience of the system. 

In language understanding process, NARS will not have separate parsing and 
semantic mapping phases, like in many other natural language processing systems. 
Instead, for an input sentence, the recognition of its syntactic structure and the 
recognition of its semantic structure will be carried out hand-in-hand. The process will 
start by checking whether the sentence can be understood as a whole, as the case of 
proverbs and idioms. If unsuccessful, the sentence will be divided recursively into 
phrases and words, whose sequential relations will be tentatively mapped into the 
structures of compound terms, with components corresponding to the individual 
phrases and words. If there are multiple candidates in the mapping process (i.e., 
ambiguity), the truth-values of the resulting statements will show which one is better 
supported, according to the system’s experience. 

The language production process is roughly the reverse of the understanding 
process. This process is driven by the goal of the communication, which will select or 
generate the ideas to be expressed, and then “translate” them from Narsese into the 
target natural language, according to the learned symbolizing relation. 

In this way, NARS has the potential to learn and use any natural language, as far as 
its experience in that language can be related to its experience outside that language. 
However, due to the inevitable difference in experience, the system cannot always be 
able to use a natural language as a native speaker. Even so, its proficiency in that 
language should be sufficient for many practical purposes. 

Being able to use any natural language is not a necessary condition for being 
intelligent. Since the aim of NARS is not to accurately duplicate human behaviors so as 
to pass the Turing Test [5], natural language processing is optional for the system. 

(3) Education 

NARS processes tasks using available knowledge, though the system design does not 
include a ready-made knowledge base as a necessary part. Instead, all the knowledge, 
in principle, should come from the system’s experience. In other words, NARS as 
designed is like a baby that has great potential, but little instinct.  

For the system to serve any practical purpose, extensive education, or training, is 
needed, which means to build a proper internal knowledge base (or call it belief 
network, long-term memory, etc.) by feeding the system with certain (initial) 
experience.  

Various knowledge sources will be made available for NARS, and the possibilities 
include (though not limited to): 

• Existing knowledge bases. NARS can be connected to existing knowledge 
bases, such as Cyc (for commonsense knowledge), WordNet (for linguistic 
knowledge), Mizar (for mathematical knowledge), and so on. For each of 
them, a special interface module should be able to approximately translate 
knowledge from its original format into Narsese. 



 

 

• The Internet. It is possible for NARS to be equipped with additional modules, 
which use techniques like semantic web, information retrieval, and data 
mining to directly acquire certain knowledge from the Internet, and put them 
into Narsese. 

• Natural language interface. After NARS has learned a natural language (as 
discussed previously), it should be able to accept knowledge from various 
sources in that language. 

Additionally, interactive tutoring will be necessary, which allows a human trainer 
to monitor the establishing of the knowledge base, to answer questions, to guide the 
system to form a proper goal structure and priority distributions among its concepts, 
tasks, and beliefs.  

Unlike most of the training processes currently studied in machine learning, NARS 
cannot be trained to converge to certain predetermined stimulus-response mappings. 
Instead, the situation will be more like the education of human beings, where learning 
is an open-ended process, and the tutors will have influence, but not complete control, 
of the system's behaviors. Therefore, the education theory for NARS will be similar to, 
though not necessarily identical to, that for human beings. 

To improve the efficiency of education, it is possible to copy the memory of a 
trained NARS system into other NARS systems, so that they will not need to repeat the 
training process. Also, it is possible to directly edit the memory of a system to modify 
or implant certain knowledge. In theory, all of these shortcuts should be equivalent to 
certain possible experience of the system, so they do not conflict with the principle that 
all the knowledge of NARS comes, directly or indirectly, from experience. 

One important issue to be handled through education is ethics. Unlike argued by 
some other researchers, NARS is not an attempt to design a “friendly AI”. As far as its 
initial state is concerned, the system is ethically neutral, since it can has any beliefs and 
goals. To make a NARS implementation “human friendly” means to give it certain 
beliefs and goals, which is an education task, not a design task. Even if something like 
Asimov’s “Three Laws of Robotics” is implanted into the system’s memory (which is 
possible), it still cannot fully control the system’s behaviors, due to the insufficiency of 
knowledge and resources in the system. What should and can be done is to educate an 
AI system like a child, to make it, by controlling its initial experience, to love human 
beings, and to understand how to behave to benefit the human beings, as far as its 
intelligence can tell. 

NARS is designed according to the belief that the essence of “intelligence” is in 
the ability of flexibly acquiring, deriving, and applying knowledge, but not in 
possessing a large amount of human knowledge (as argued in [6]). For this reason, the 
building of a knowledge base for a specific practical application is an optional 
augmentation of the system. 

(4) Socialization 

If multiple copies of NARS are implemented with different system parameters, 
hardware/software, and experience, they will form different beliefs and goals, and 
behave differently. However, as soon as they begin to communicate with each other, 
they will have common experience, and some consensus will be developed among the 
systems. These systems may cooperate in the solving of certain complicated problems, 
as well as compete for certain resources. 



 

 

Since NARS uses the same language, Narsese, for input and output, the current 
design needs no major change to allow communication in multi-system environment, 
which leads to socialization, a continuing process whereby the system form and adjust 
its beliefs and goals as a consequence of interaction with other systems. 

Like the case of a human mind, socialization will play an important role in the 
mental development of an AI system, which is different from the role played by 
education, though both happen as consequences of communication. In education, the 
involved systems (the trainee and the trainer) have asymmetric positions, while in 
socialization all the involved systems have similar positions.  

For an implemented NARS system, many concepts and skills can be fully acquired 
only through socialization, such as self/other distinction, speech action, game playing, 
and moral discipline. 

Furthermore, with such a multi-system community as a model, many interesting 
topics can be studied. For example, since each system in the community is based on the 
same experience-grounded semantics, the dynamics of the community as a whole will 
include the forming and changing of common knowledge, which will provide insights 
about the evolution of language, science, and culture. 

Even though socialization plays an important role in the growth of a mind (either 
natural or artificial), it is considered as optional for NARS. For a theoretical reason, it 
is because the notion of intelligence accepted in this project does not presume the 
existence of a society as part of the environment; for a practical reason, it is because to 
consider such a society is not required when the system is designed. On the other hand, 
unless each single system is properly designed, it will not be very fruitful to study how 
a multi-system community behaves. 

(5) Hardware 

As a reasoning system, the running process of NARS consists of separate inference 
steps. Since the system is built around a “term logic”, it has the property that each 
inference step happens within a “concept”, which collects beliefs and tasks about the 
same term. As a result, a concept can be naturally treated as a processing unit, which 
manages its own knowledge and resources. Different concepts independently execute a 
similar routine to carry out an inference step, and pass messages (tasks) to one another 
to cooperate in the processing of the tasks in the system. 

Such a parallel-and-localized processing mode allows NARS to achieve higher 
performance and efficiency by running on special-designed hardware. Roughly 
speaking, such a hardware system will consist of a large number of processing units, 
each with its own processor and memory, corresponding to a concept in NARS.  Each 
processing unit only needs to implement a simple algorithm, as required by an 
inference step. Such an implementation will surely achieve much higher time efficiency, 
compared to the current implementation on a general-purpose computer with a single 
CPU. 

It is important to remember that even in such a hardware implementation, the basic 
principle of the system remains the same: the system still needs to work with 
insufficient knowledge and resources. Since the number of processing unit is a constant, 
and so does the capacity of each unit, they will need to be shared by the concepts, 
because the system as a whole will producing new concepts from time to time, whose 
number will soon exceed the number of processing units. Consequently, the system still 



 

 

need time-sharing and space-sharing, and it is only that what to be shared is not a single 
CPU and RAM, but many processing units. 

Some people blame the von Neumann computer for the past failure of AI, but the 
argument is not convincing. It is true that the current computer architecture is not 
designed especially for AI, but it has not been proved that it cannot be used to 
implement a truly intelligent system. Special hardware is optional for NARS, since the 
system can be fully implemented in the current hardware/software platform, though 
special hardware will surely make it work better. 

(6) Evolution 

Under the assumption of insufficient knowledge, all object-level knowledge in NARS 
can be modified by the system’s various learning mechanisms. For example, the truth-
value of any belief is revisable, and the priority-value of any belief, task, or concept is 
adjustable. All these changes are driven by the system’s experience. 

However, the current design of NARS does not support any experience-driven 
change of the meta-level knowledge of the system, which includes the grammar of 
Narsese, the factors determining truth-value and meaning, the inference rules, the 
resource-allocation mechanism, the priority-distribution strategy, as well as the values 
of system parameters. Meta-level knowledge is determined when the system is 
designed, and remains fixed during the system’s life cycle, because any change may 
destroy the system’s consistency and integrity. 

In principle, a change in meta-level knowledge, that is, the system design, has the 
possibility of increasing the system’s intelligence, though it is usually a dangerous 
experiment. For NARS, such changes are left for a separate evolution process, which is 
not carried out by the reasoning/learning mechanisms in the current design. 

The evolution of NARS will follow ideas similar to genetic algorithm [7]. First, a 
multi-dimensional design space will be determined, in which each dimension 
corresponds to a specific aspect of the system’s design, and valid values on the 
dimension correspond to possible design choices for that aspect. In this way, a concrete 
system design can be represented by a point in the design space, whose coordinates 
form the “genetic code” of the system. 

To search for the best design using genetic algorithm, a population of systems will 
be maintained, and in each generation, fitness values of the systems will be evaluated. 
When the next generation of system is produced, systems with higher fitness values 
will have a higher chance to be parents of new systems, which partially inherit the 
genetic codes of their parents. Some random mutation may also happen to the genetic 
code of a new system. In the long run, the natural selection process will produce 
systems with better fitness, which in this context means higher intelligence. 

Though such an evolution process may indeed produce more intelligent NARS 
systems, it should not be confused with the experience-driven learning processes in 
NARS, which is what intelligence is about. In general, we should see intelligence and 
evolution as two different forms of adaptation. Roughly speaking, intelligence is 
achieved through experience-driven changes (“learning” or “conditioning”) within a 
single system, while evolution is achieved through experience-independent changes 
(“cross-over” or “mutation”) across generations of systems. The “intelligent” changes 
are more justifiable, gradual, and reliable, while the “evolutionary” changes are more 
incidental, radical, and risky. Though the two processes do have some common 
properties, their basic principles and procedures are quite different. 



 

 

4. Discussions 

In this section, several issues about the development plan of NARS are discussed, in 
the context of the Artificial General Intelligence Research Institute Workshop. 

(1) Why to aim at a principle 

The first major feature that distinguishes NARS from other AI projects is its conception 
of “intelligence”, that is, the principle of adaptation with insufficient knowledge and 
resources. To most people, “intelligence” is more closely associated with concrete 
behaviors, capabilities, and functions that are similar to those of a human being. 

This topic was initially addressed in [2], and has also been discussed in other 
publications on NARS, such as [1]. In the following, it is approached from a slightly 
different perspective.  

As stated at the beginning of the chapter, the boundary of “intelligent system” 
should be drawn in such a way, so as to include normal humans, but not typical animals 
and computer systems. On the other hand, we do not want to make the notion too 
narrow to take the human mind as the only possible form of intelligence. 

According to this point of view, to ask an AI system to be indistinguishable from 
human in behavior is too strong a request. For example, Turing proposed his “Imitation 
Game” as a sufficient condition for an intelligent system to pass, though he admitted 
that it might not be a necessary condition. He just thought that “if, nevertheless, a 
machine can be constructed to play the imitation game satisfactorily, we need not be 
troubled by this objection.” [5]. 

Similarly, even though the human brain is indeed the only known way to produces 
intelligence, to take it as the only possible way to do that shows a lack of imagination. 

On the other hand, to identify intelligence as the ability of solving certain concrete 
problem seems to make it too easy, no matter how hard the problem is. For example, 
the IBM computer system Deep Blue defeated the world chess champion, but many 
people still do not think it as intelligent, because it can do little beside chess. Indeed, 
almost all computer systems and animals can do something better than human beings, 
but they do not be called “intelligent” because of that. Otherwise, the concept of 
intelligence would be trivialized. 

Many people enter the field of AI with a vague feeling that what we call 
“intelligence” in our everyday language has certain fundamental difference from how a 
conventional computer system works, and being more intelligent does not means to 
evaluate arithmetic expressions faster, to remember phone numbers for a longer period, 
or to accurately repeat a complicated procedures for more times. Instead, it is 
associated with being more general, flexible, and creative. These features are displayed 
by an intelligent system in its problem-solving behaviors in various domains, but 
cannot, and should not, be bounded to a certain type of problem. Instead, they should 
be described as produced by a general principle, through a mechanism realizing the 
principle, which can be applied to various problems in various domains. 

Such a “principle-based” conception of intelligence also helps for establishing the 
identity of a new research field, whether we choose to call it AI or AGI (Artificial 
General Intelligence). According to this definition, AI is different from theoretical 
Computer Science in that the latter normally study computer systems working with 
sufficient (though may be limited) knowledge and resources, while AI assume the 
opposite; AI is different from cognitive modeling in that the latter attempts to duplicate 



 

 

the details of human behavior, while AI only attempts to duplicate the general 
principles abstracted from concrete human behavior. 

For practical reasons, almost all problems currently labeled as “AI” share the 
common nature that they need to be solved by adaptive systems working with 
insufficient knowledge and resources, and what we do not have yet is a normative 
theory for how to build such systems. 

(2) Why to take a unified approach 

Intelligence, as displayed in the human cognition process, can be studied from various 
perspectives. Consequently, traditional AI research has evolved into many subfields, 
each has its problems and proposed solutions, such as search, reasoning, learning, 
planning, perception, action, etc. To build an AGI, it is very natural to adopt an 
integrative approach, by combining the most premising solution in each subfield to 
cover all aspects of intelligence. 

Another justification of the integrative approach is that since every AI techniques 
has its strength and weakness, to use all of them together should give us the best 
solution. As a consequence, people have attempted to integrate multiple techniques, 
like rule-based, case-based, statistical, connectionist, evolutionary, robotic, etc., into a 
hybrid system, in which each technique is used for what it is best for. 

The above opinions are all reasonable, and integrative AGI projects have achieved 
interesting results, as described in several chapters of this volume. However, it is not 
the only possibility. 

NARS does not take an integrative approach, but a unified approach. Though its 
design has been influenced by the ideas of different schools in AI and Cognitive 
Sciences, the resulting technique is a singleton, rather than a “toolbox” consists of 
multiple independently developed tools. 

It is possible for NARS to follow a unified approach, first because of its aim. As 
mentioned previously, in this research “intelligence” is seen as a principle, not a group 
of loosely related capabilities or functions. It is much more likely to use a single 
technique to realize a principle, than to realize multiple independent capabilities. 

The unified approach is adopted in NARS, not because it is easier than the 
integrative approach, but because it has theoretical and practical advantages. 

Scientific research always prefers unified explanation of complicated phenomena. 
Driven by similar motivations, many previous AI projects attempted to use a single 
technique to cover most of the field, if not all of it. General Problem Solver tried to 
treat all problem-solving processes as heuristic search [8]; the Fifth Generation  
Computer System was based on the assumption that many AI problems can be solved 
by parallel inference [9]. Their failures make many people to believe that AGI cannot 
be achieved by a single technique, given its well-known complexity. However, this 
kind of evidence is far from conclusive. The previous failures may be caused by their 
selections of aims and/or techniques, and they cannot rule out the possibility that when 
the aim of the research is properly set, certain technique can achieve it. Also, a system 
based on a single technique can still produce very complicated behavior, given the 
complexity of the environment of the system. 

From an engineering point of view, the most difficult part of the integrative 
approach is not in the building of individual “modules” using different techniques, but 
in organizing them into a whole [10]. To passing data from module to module is easy, 
but it is hard to interpret the data in a wide range of situations consistently in different 



 

 

modules, because the involved techniques have been developed on very different 
theoretical foundations. When an integrative/hybrid system does not work properly, it 
is not easy to say what is wrong, because the lack of a common basis of the system. On 
the contrary, the development and evaluation of a unified system is much better guided 
by the theory behind the technique. Even if it eventually fails to cover the whole field, 
we can still get a much more clear picture about the capability and limitation of the 
technique, compared to the situation where the technique is just one of several in the 
system. 

Since NARS can use various techniques as tools for practical problems, it will not 
attempt to directly use a single technique on all problems. Instead, the heterogeneous 
tools will be handled in a unified manner. For a concrete problem, the system will 
prefer to apply an available tool, and it is when no such a tool is there or can be easily 
made, will the system try to solve it using the reasoning ability. 

Finally, even though human intelligence can be studied from different perspective, 
there is still evidence suggesting the close relationship of the various facets. As Piaget 
commented, intelligence “appears as a total system of which one cannot conceive one 
part without bring in all of it” [11].  

In summary, now it is still too early to decide whether AGI is better pursued by an 
integrative approach or a unified approach. What is argued above is that the unified 
approach is not as obviously wrong as many people currently believe. 

(3) Why to work in a reasoning system 

Even among people who agree that AGI may be achieved using a single technique, 
reasoning system, or logic-based system, is still not favorable, for various reasons [12]. 
Typical objects include: 

• “Reasoning must be applied on materials provided by a sensorimotor 
mechanism, which was also evolved before high-level cognition.” 

• “Logic is too abstract, while real intelligence should be grounded, situated, 
and embodied.” 

• “Logic is too rigid to capture the flexibility of intelligent behaviors, which are 
often irrational.” 

• “Reasoning technique has been studied in AI for decades, and the results are 
not promising.” 

These opinions are all acceptable, as far as the involved “logic” refers to first-order 
predicate logic or its variants, such as non-monotonic logics. However, people often 
forget that in its original and broad sense, “logic” is just the attempt of capturing valid 
patterns of inference in a content-independent manner, and “inference” is just the 
process by while new knowledge is derived from existing knowledge. First-order 
predicate logic was originally designed to provide a logic foundation for mathematics, 
so if it cannot be used to capture the patterns of human thinking in general, it still does 
not mean that no logic can do that. 

The logic implemented in NARS, Non-Axiomatic Logic, is fundamentally 
different from traditional mathematical logic, in that it is an attempt to capture the 
principle of adaptation with insufficient knowledge and resources. In this logic, a 
“term” is an identifiable item or pattern in the system’s experience; a “statement” is an 
relation between two terms indicating their substitutability; the “truth-value” of a 
statement measures how a statement is supported or refuted by the system’s 



 

 

experience; the “meaning” of a term indicates the role it plays in the system’s 
experience; the function of an “inference rule” is to accomplish a single inference step, 
which build term(s) and/or statement(s) to summarize the information in existing ones; 
and an “reasoning process” is a sequence of step to carry out the tasks needed by the 
system for surviving and adapting. Since the notion of “reasoning” is used in a very 
broad sense, it covers many activities that are usually called by other names, such as 
“learning”, “planning”, “perceiving”, and so on. 

Such a system is situated and embodied, since truth and meaning are grounded in 
the system’s experience, and they are sensitive to the change of context. The behaviors 
of the system are “rational” with respect to its available knowledge and resources, 
though there is no guarantee that all of its predictions will be confirmed by its future 
experience, or to be judged by an observer as “rational” according to knowledge and 
resources that are unavailable to the system.  

In this way, the reasoning technique used in NARS not only solves or avoids many 
problems in traditional logic-based AI systems, but also has many advantages over 
competing techniques (such as problem-specific algorithms, Bayesian networks, 
connectionist models, genetic algorithms, and reactive robots): 

• It uses a domain-independent language for knowledge representation, which is 
more expressive than problem-specific data structures or numerical vectors in 
coding items and patterns in the system’s experience. 

• It uses an experience-grounded semantics to associate the terms and 
statements to the items and patterns in the (symbolic and/or sensorimotor) 
experience of the system. 

• It uses inference rules to regulate individual steps of its working process, and 
each rule is justifiable in a domain-independent manner, according to the 
semantics. 

• It allows the system to arrange the individual steps into task-processing 
processes at run time, so as to achieve flexibility and creativity. Consequently, 
the system can handle novel tasks by the cooperation of reliable basic actions, 
according to experience and context. 

Though building a reasoning system is not necessarily the only way to AGI, there 
are reasons to say that it seems more promising than the other proposed alternatives.  

(4) Why to have these stages and augmentations 

As described earlier, the development if NARS can be roughly divided into four stages, 
each of which is built on the top of the previous ones. After completion, NARS can be 
further augmented in (at least) six different directions, which are largely independent of 
each other. 

This plan makes the development of the system incremental, in the sense that in 
each phase of the project, the immediate aim is relatively simple and clear, so it is 
possible to be carried out with a small expense. After each phase, the system is “more 
intelligent”, in terms of its ability of adapting to its environment and its efficiency of 
using its knowledge and resources. 

Though this incremental development builds the system one part as a time, it does 
not make the approach “integrative”, since each stage is not built in isolation, but on 
top of the previous parts. Each of the six augmentations is indeed developed 
independent of each other, but is still based on NARS as a whole. 



 

 

On the other hand, this dependency is one-way, since an earlier stage in NARS 
does not depend on the later stages, and the design of NARS as a whole does not 
depend on any of the augmentations. As discussed previously, though each 
augmentation makes the system more intelligent, and has important practical 
application, it is optional for an AGI system. On the contrary, NARS is the common 
core of any AGI system developed by following this approach. 

Almost for every augmentation listed before, there are people who believe that it is 
more crucial than the ability of reasoning for an AGI, or argue that it should be taken as 
a necessary part of any AGI, together with reasoning. If we analyze each of these 
arguments in detail, we will see that it is usually based on a conception of intelligence 
that identifies it with certain human behavior or capability. As stated before, such a 
conception tends to define intelligence too close to its only known exemplifier, human 
intelligence, to explore the possible forms of intelligence. 

In that case, why the ability of reasoning is absolutely necessary for an AGI? As 
discussed above, in NARS the notion of “reasoning” is extended to represent a 
system’s ability to predict the future according to the past, and to satisfy the unlimited 
resources demands using the limited resources supply, by flexibly combining justifiable 
micro steps into macro behaviors in a domain-independent manner. There are reasons 
to believe that any AGI needs this ability.  

Because of this, NARS is not merely a reasoning system, but an attempt to model 
the core of any thinking machine in an abstract manner. To satisfy additional 
requirements, we may also plug various sensors and effecters into the machine, teach it 
natural languages, train it with commonsense and domain-specific knowledge, put it 
into a multi-system community, run it in specially-designed hardware, or let it evolve 
from generation to generation. Even so, we still need to build the core first. 
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