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Abstract In revision, the systermodifies the certainty value of an
existing proposition.

In a probability-based reasoning system, Bayes'’ Other authors may use the two words differently (Pearl

theorem and its variations are often used torevise  19gg) putwe can still make the above distinction, no matter
the system'’s beliefs. However, if the explicit con- how the operations are named.

ditions and the implicit conditions of probability )
assignments are properly distinguished, it follows Bayes’ theorem seems to be an exception. In some systems,

that Bayes’ theorem is not a generally applicable itis used as a propagation rule, while in others, as arevision
revision rule. Upon properly distinguishing be- rule. Let’s begin our analysis with these two usages, which
lief revision from belief updating, we see that will lead us to the kernel of the debate on the limitations
Jeffrey’s rule and its variations are not revision of the Bayesian approach as a model of reasoning with
rules, either. Without these distinctions, the lim- uncertainty.

itation of the Bayesian approach is often ignored
or underestimated. Revision, in its general form,
cannot be done inthe Bayesian approach, because
a probability distribution function alone does not
contain the information needed by the operation. According to probability theory, it is necessary to define a
proposition spacé& in order for a system to represent and
calculate probabilities of propositionss is the set of all
1 INTRODUCTION propositions to be processed by the system, and may be
generated from a set of atomic propositions, using logical
operators (Wise and Henrion 1986).

2 PROPAGATION VS. REVISION

In a reasoning system that deals with uncertainty, a propo
sition can be represented d$m|, where A is a sentence As the starting point of all probability calculations, a prior
of a formal language, ana indicates the sentence’s uncer- probability distribution should be defined ¢h under the
tainty. constraints of the axioms of probability theory.

In different systems4 andm may have differentforms and To choose such a prior probability distribution for a spe-
interpretations, and the operations on them may be definegific problem domain, some background knowledge (such
differently. However, there are still operations shared byas statistical data or subjective estimates) and general prin-
many systems, in spite of all the differences (Bhatnagar angiples (such as the principle of indifference or maximum
Kanal 1986): entropy) are necessary. Let's refer to them collectlfas

) ] ] ] theimplicit condition of the distribution function, and write
Comparison: To decide which of thet;[m;] has the high-  the prior probability distribution function as

est certainty by comparinge; (¢ = 1,2,---,n).

Propagation: To geta conclusior, 1[mx 1] from a set Pe: §—1[0,1].
of premisesA4;[m;], where 4,1, is different from . )
A (i=1,2,---,n). From Bayes’ theorem, we can get the conditional probabil-

ity of A1 under the condition that ; is true (obviously, the

Revision: To modify the uncertainty value of a proposition .4 qitional probability is also based 6

A from m to m’ in the light of other propositions.
Po (A]_ A Az)

Defined as above, propagation (or inference) and revision  Pg(A41|42) = Po(42)
C 2

(or combination) are clearly different.

1)

In propagation, the systemenerates a new proposition  where A; and 4, are both inS (so 41 A A is in S, t00),
(with its certainty value) that was not among the premises.and Pc(A42) > 0. To prevent confusion, | cald, the



explicit conditionof the conditional probability assignment, BEL(z) as follows (whenP¢(y|K) > 0):
to distinguish it fromC'.
_ Po(zAylK)

Consideringthe three previously defined operations, we can ~ BEL(z|y) = K (3)
see that Bayes’ theorem, when used like this, is actually o(y|X)

a propagation rule, not a revision rule, for the following consistently with previous definitions, we refergas the
reasons. probability assignment'axplicit condition, and toC and K
o o . o as itsimplicit condition.
1. The conclusion is aonditional proposition, differing ) ] )
from the premises, which are bathconditional. What makesBEL(z) differentfromP(z) is: “all evidence”

is a dynamic concept for an open system which constantly
2. The rule derives aew probability assignment, instead accepts new knowledge from its environment, B (z)
of modifying a previous assignment. The prior (un- js time-dependent.
conditional) probability assignment df; is still valid

and available for future usages. Let's useBEL;(z) to indicate its values at timee(here time

is measured discretely by counting the coming evidence).
3. Itis unnecessary for the system to know whether
is really true when applying the theorem. The condi-
tional probability is gotten under thessumption that _
Ay is true. If the system has enough resources, it can BELo(z) = Po(z) )
calculate all possible conditional probabilities using Assuming at timet the current evidence i&;. If new
only the prior probabilities, without any “new infor-  evidence shows that is true (4 € S, andP¢(A|K;) > 0),

At time O (the initial state), all given knowledge is@\ so

mation” that has not been includeddh then, at timet + 1, BEL(z) becomes
Used in this way, Bayes’ theorem is a rule for propagating BELi41(z) = Po(|Kipa)
probability assignments from prior probabiliti®s (z) to = Pc(z|ANKy)
conditional probabilitiesP¢(z|y), not a revision rule for Po(z A A|Ky)
changingP¢(z) to a new probability distributio® ¢+ (z), = 7PC(A|Kt) ()

according to new evidence.

But when we perform the previously mentioned “compari- From (2), (3) and (5), we get

son” operation, usually what we are concerned with is the ~ BEL;11(z) = BELy(z|A)
probability of propositionsinder all available evidence. BEL,(z A A) ©)
For example, If we want to know which of; and 4, is - BEL,(4)

more likely to be true, we’ll compar®c (41) and Pe(Az) ) . 1

at the very beginning, when all of our knowledge about theComparing (6) to (1), we can see that unliRgz)'s dis-
problem isC. Later, if we get new evidence that shows tribution, BEL(z)'s distribution ismodified from time to
A3 to be true @ € S), we will comparePq(A;|A3) and time by applylng Bayes’ .th.eorem_tp transform true expllcn
Po(A|A3), which can be calculated according to (1). In conditions into the implicit condition of the distribution
such a case. to compare the “probability”.f and A, function. ToBEL(z), Bayes’ theorem is indeed a revision
the implicit conditionC' and the explicit conditiont 3 are ~ 'Ul€, nota propagation rule.

merged together to become “all available evidence”. Under the assumption that each piece of evidence is a propo-

Since the distinction between these two types of condition$ition represented aé[m| (according to the convention at
no longer seems necessary here, itis possible to “compilet€ beginning of the paper), we can easily list the precondi-

all of the explicit conditions that turn out to be true into the tions for using Bayes' theorem as a revision rule f,or a prob-
implicit condition of the probability distribution function, ~ability distribution which representing the system’s current
transforming the related conditional probabilities into new P€li€fs, considering .aII available evidence and background
unconditional probabilities. This is the “conditionalization knowledge implicitly:

principle” (Earman 1992, Levi 1983, and Weirich 1983). 1. m € {0, 1}, thatis, the new evidence is binary-valued

To distinguish this usage from the previqus one of Bayes’ so it can be simply written ag or - A4.
theorem, a new functioREL(z) can be defined of (Pearl 2. A € S, otherwise its probability is undefined.
1986), which representing the probability distributionunder

all available evidence: 3. Pc(A) > 0, otherwise it cannot be used as a denomi-

nator in Bayes’ theorem.
BEL(z) = Pc(z|K) (2)
3 EXPLICIT CONDITION VS.IMPLICIT
wherez € S, and K is the current evidence, that is, the CONDITION

conjunction of all propositions it$ that are known to be

true. - . . .
Why do we need a revision rule in a plausible reasoning

Similarly, we can define a conditional distribution for system?



We are interested in the truth values of a set of proposiprobability distribution is determined, if the above men-
tions S, but our knowledge about them is incomplete or tioned usage of Bayes’ theorem is the only rule used by the
inaccurate. At the very beginning, we have some backsystem to process new knowledge. To see it, we only need
ground knowledge€>, which provides the prior probability toremember that the new knowledge must b&,iand each
distribution for the system. Later, when the system get newtime a propositiord is provided to the system as a piece
knowledgeC’, we want it to adjust its probability distri- of new knowledge, at least and—A4 (as well as=4 A B,
bution to summarize bot’ andC”’. In such a way, the and so on) cannot be used as new knowledge in the future.
system can learn from its experience, and the defeafs in As a result, the number of different new knowledge that the
are remediable. system can learn is less thgf /2.

Of course, every information processing system has restrioMoreover, if we insist that all implicit conditions must sat-
tions about the type of new knowledge that can be acceptedsfy the three preconditions, the prior probability distribu-
However, it is reasonable to expect that the domain knowltion willdegenerate into a consistent assignment of 0 or 1 to
edge which can be put into the systamriori (in C), can  each propositioni¥, and, after the assignment, the system
also be putinto ia posteriori (in C’). will be unable to accept any new knowledge at all.

Now we can see why | distinguish implicit conditions from From a practical point of view, the restrictions set by the
explicit conditions: for the Bayesian approach, an implicit three preconditions are not trivial, since they mean that
conditionis the knowledge that we can putinto a probability although the background knowledge can be probabilistic-
distribution initially, and an explicit condition is the knowl- valued, all new knowledge must be binary-valued; no novel
edge that the system can learn hereafter by using Bayesoncept and proposition can appear in new knowledge; and
theorem as a revision rule. if a proposition is given a probability 1 or 0, such a belief

Therefore, our original question about whether Bayes’ the-CarmOt be changed in the future, no matter what happens.
' ginaiq . bay We could build such a system, but unfortunately it would be
orem can be used as a generally applicable revisionrule ¢

be broken down into three questions: & far cry from the everyday reasoning process of a human

being.
1. What type of knowledge can be represented as an eBayes’ theorem can be used as a revision rule, but with very
plicit condition? strong restrictions. These limitations are so obvious and
2. What type of know|edge can be represented as an imwell-known that they seems trivial and are often ignored.
plicit condition? Some people claim that the Bayesian approach is suffi-
3. What is the relation between them? cient for reasoning with uncertainty, and many people treat

. o .. Bayes’ theorem as a generally applicable revision rule, be-
The first question is answered by the three preconditiongause explicit conditions and implicit conditions of a prob-
given at the end of the previous section. | claim that theseypility assignment are seldom clearly distinguished in the
preconditions cannot be applied to implicit conditions in discussions (Cheeseman 1985, 1986, and 1988; Pearl 1986,

general, for the following reasons: 1987, and 1988), where it is very common that
1. An explicit condition must be a binary proposition, 1. the prior probability of propositioff is formulated as
but an implicit condition can include statistical con- P(A|K),
clusions and subjective probabilistic estimates. 2. conditional probability is formulated &3( A|E, K),

2. An explicit condition must be ir§, but knowledge 3 pgjief revision is described as the process by which

in an implicit condition only need to be related $o0 P(A|B) and P(A|C) are combined to produce
For example, “Tweety is a bird and cannot fly” can be P(A|B,C).

part of an implicit condition, even thoughincludes
only “Birds can fly”, and does not include the name what does thé& (andB, C) mean in these formulas? Pearl
“Tweety” at all. interpretedP (4| K) as “a person’s subjective belief i
3. If a proposition is assigned a prior probability of zero given a body of knowledg&™™ (Pearl 1987). Cheeseman
according taC, it cannot be used as an explicit condi- said that conditional probability statements contain the con-
tion to revise the function. However, in practical do- text (conditions) associated with their values, which “make
mains, itis possible for the proposition to be assigned aexplicit our prior knowledge” (Cheeseman 1986) Klfre-
non-zero probability according to another knowledge ally means implicit condition, then it should not be written
source’. in such a form, which suggests thatitis a propositio$;iif
it means explicit condition, then the revision process is not

Now we can see thanly certain typesof implicitconditions ~ correctly described in the above formula, whété4|B)

can be represented as explicit conditions. It follows thatif andP(A|C) share the same implicit condition (so it can be

some knowledge isn’t available when the prior probability ~ omitted).

is determined, it is impossible to be put into the system

through condiitionalization, Without a clear distinction between implicit conditions and

explicit conditions, the illusion arises that all the knowledge
In fact, whens is finite, a Bayesian system can only acceptsupporting a probability distribution can be represented by
a finite amount of (different) new knowledge after its prior explicit conditions, and can therefore be learned by the



system using Bayes’ theorem. As a result, the capacity oéquation (8) can be simplified into
Bayes' theorem is overestimated. P|V) = P(z|E)xm+

P(z|-E) x (1—m) (11)
4 UPDATING VS. REVISION . o .
If we transform the explicit condition into the implicit con-
dition by conditionalization, we end up almost with Jeffrey’s
rule. The only difference is that the prior probability is not
Updated directly, but is insteadonditionalized by a virtual
condition (the unspecified propositidn). However, no
After a prior probability distributionP ¢ is assigned to a matter which procedure is followed and how the process is
proposition spac#, if some new evidence shows that “The interpreted, the result is the same.
probability of a propositiom (4 € S) should be changed
tom”, assuming the conditional probabilities that wittor
-4 as explicit condition are unchanged, we can update th
probability assignment for every propositierin S to get
a new distribution function by using Jeffrey’s rule (Kyburg
1987 and Pearl 1988):

Now let us examine some other tools in probability theory
that have been used for revision, to see whether we ca
avoid the three preconditions.

Some other systems process uncertain evidence by provid-
ing likelihoodratios of virtual propositions (Pearl 1986 and

eckerman 1988), and this method also leads to condi-
tionalization of a virtual condition, therefore the rule is an
updating rule, too.

_ What | mean isn't that updating is not a valid operation in
Por(z) = Po(e|4) xm+ uncertain reasoning, but that it is different from revision.
Po(z|-A) x (1—m) (") In certain situations, it is more proper to interpret belief

. - changes as updatings (Dubois and Prade 1991), but revision
If we interpret "4 happens” as A's probability should be  seems to be a more general and important operation. When
changedto 1", then Bayes’ theorem, when used as arevisiafiere are conflicts among beliefs, itis unusual that one piece
rule, becomes a special case of Jeffrey's rule, where 1. of evidence can beompletely suppressed by another piece
As a generalized version, Jeffrey’s rule avoids the first pre of €vidence, even though it make sense to assume that new
condition of Bayes’ theorem, that s, the new evidence musgVidence is usually “stronger” than old evidence.
be a binary proposition. However, the other limitations are

still applicable, thatisAd € S andPC(A) > 0, otherwise 5 A DEFECT OF THE BAYESIAN

Po(z|A) is undefined.
c(z|A) is undefine APPROACH
More than that, the rule is ampdating rule, by which |

mean a very special way of changing a system’s belief

In an updating, when the new knowledge “the probabilit sTechnlcally, all the above discussed limitations of Bayes

Ytheorem and Jeffrey’s rule are known to the uncertaint
of 4 should bem” arrives, the system’s opinion oA is y y

. easoning community, but it is also a fact that they are of-
completely dominated by the new knowledge, regardless o% g Y 4

: o > en ignored or misunderstood. As a result, the limitation
Pg(A), the previous opinion about (Dubois and Prade ¢ avesian approach is usually underestimated. One rea-
1991), and then the distribution function is modified ac- y bp y ¢

. . ~son for this, as | claimed previously, is the confusing of
cordingly. Such a complete updating seldom happens iny s aation and revision, updating and revision, as well

human reasoning. Feevision in general, new evidence ogeayqjicit condition andimplicit condition of a probability
usually causes aadjustment, rather than ambandonment,  yssignment. Once again, other authors may prefer to name
of the previous opinion. these concepts differently, and what | want to insist is the
A related method was suggested to process “uncertain evirecessity of making such distinctions.

dence”E[m] (m € (0, 1)), where a “virtual propositionV ;

is introduced to represent the new knowledge as “a (unspec?—’y Bayesian approach, | mean systems where
fied) propositiorV is true, andP( E|V') = m” (Cheeseman
1986 and Nilsson 1986). Then a new conditional probabil-
ity distribution can be calculated (after considering the new

1. current knowledge is represented as a (real-valued)
probability distribution on a proposition space, and

know|edge) for each propositioﬂ c S in the fo”owing 2. new knOWIedge is learned by conditionalization.
way:
Y Using previously introduced formalism, the knowledge
P(z|V) = P(z|EAV)x P(E|V)+ base of the system at a given instant can be represented
P(z|-EAV) x P(-E|V) (8) asPg¢(z), wherez € S.

| claim that the system cannot carry out the general revision
task, that is, to learn the new knowleddgr], which may
P(z|EAV) = P(a|E) ©) conflict with the system’s current beliefs.

Under the assumption that

Actually, the conclusion directly follows from the discus-
and sions in the previous sections:

P(z|-EAV) = P(z|-E) (10) 1. It cannot be done by directly using Bayes’ theorem,



sincem may be in(0, 1), A may not be inS, and  way to backtrack a probability distribution’s implicit con-
Pz (A) may be 0. dition only from the distribution function itself, since it

2. The task cannot be formulated as “frd{A|C) and is possible for different implicit conditions to generate the
P(A|C") to get P(A|C A C')", then processed by Same prior probability distribution. The only information
Bayes’ theorem, since it is not always possible (oravailable about implicit conditions is their arrival times:

make sense) to represent implicit conditions as explicit€ current distributionis “old”, and the coming evidence is
conditions. new”. In such a case, revisions have to be simplified into

) ) . updatings.
3. It cannot be done by using Jeffrey’s rule or its vari-
ations, since usually we don't want the system’s pre-The Bayesian approach have no available revision rule, be-
vious opinionP¢(A) (if A € S) to be completely ~cause its representation is not sufficiently informative —
ignored. little information is there about the implicit condition of the
current probability distribution.
If the above arguments are accepted as valid, there are some,

further questions: is impossible for the third question to be discussed

throughoutly in this paper. Here | only want to make one
1. Dowe really need a system to do revision in the generaf|im: if the system's beliefs are still represented by a set of
sense? propositions, then the uncertainty of each proposition must
] ) ] be indicated by something that is more complicated than a

2. Why it cannot be done in the Bayesian approach?  gngle (real) number. As discussed above, the information

3. How to do it in a formal reasoning system? aboutC; cannot be derived fromn;. To revise a belief, the
belief’s implicit condition must be somehow represented.
For the first question, if we want to apply the Bayesian
approach to a practical domain, one of the the following

requirements must be satisfied: 6 ANEXAMPLE

1. The implicit condition of the initial probability distri- ~ There are several paradigms using more than one numbers
bution, that is, the domain knowledge used to deter-to represent a proposition’s uncertainty, such as Dempster-
mine the distribution, can be assumed to be immuneShafer theory (Shafer 1976), probability interval (Weichsel-
from future modifications; or berger and Bfilmann 1990), and higher-order probability

(PaalR1991). I'm also working on an intelligent reasoning

I:_system myself, which use a pair of real numbers as a propo-

sition’s “truth-value”. The comparison and evaluation of

these systems are beyond the scope of this paper, but I will
use an example processed by my system to show concretely

From artificial intelligence’s point of view, such domains the problem of the Bayesian approach that discussed in the
are exceptions, rather than general situations. In most casdd€VIous sections.

we cannot guarantee that allknowledge the system getis urfhe system, “Non-Axiomatic Reasoning System” (or
changeable, or later acquired knowledge is always “truer*NARS” for short), is described in a technical report (Wang
than earlier acquired knowledge. More than that, unden993) in detail. In the following, I'll briefly mention (with

certain conditions we even cannot guarantee that the sysrecessary simplifications) some of its properties that are
tem’s beliefs are free from internal conflicts (Wang 1993)m05t direcﬂy related to our current topic_

Therefore, we really hope a formal system can revise its . .

knowledge in the general sense. In NARS, domain knowledge is represented adgments,
) o ~and each judgment has the following form:

For the second question, let's look at the revision operation

as defined in the first section. For a propositibnf from SCP <f, c>

some evidencé€ its certainty value is evaluated ag, but

from some other evidend® its certainty value is evaluated whereS is thesubject of the judgment, and® is thepredi-

as my, then what should be the system’s opinion 4is cate. “S C P” can be intuitively understood as “S are P”,

certainty, when botli"; andC, are taken into consideration? which is further interpreted ag inheritsS’s instances and

Obviously, the result not only depends o1y andm,, but S inherits P's properties”. < f, ¢ >" is the judgment’s

also depends on the relation betwegnandC,. truth value, wheref is thefrequency of the judgment, and
c is theconfidence.

2. All modifications of the implicit condition can be
treated as updating, in the sense that when new know!
edge conflict with old knowledge, the latter is com-
pletely abandoned.

For examples, i€ is already included i€';, therm; is the

final result; ifC'; andC, come from different sources, and Inthe simplist case, the judgment’s truth value can be deter-
C, consists of large amount of statistical data, Gytonly ~ mined like this: if the system has checked the “inheritance
consists of a few examples, then the result will be closer toelation” betweers and P for n times ¢ > 0) by looking

my than tom,. at.S’s instances, and im times ¢ > m > 0) the checked

. . [ is also i, th = , = k)L
In the Bayesian approach, abowg’s become probability instance is also i, thenf = m/n, ande = n/(n + k)

assignments, an@;’'s become implicit conditions of these !k is a parameter of the system. In the current version of the
assignments. However, in probability theory, there is nosystemg = 2.



Here the meaning of is obvious: it is the inheritance Now the system can use its revision rdle mergeJ; and
relation’s “success frequency”, according to the system’s/g into

experience. The “confidence’is introduced mainly for

the purpose of revision. Given two propositions that have J7 . bird C flyer <0.9, 0.447>

the samdrequency, their confidence, that is, how difficult

the corresponding frequency can be revised by future eviHere the frequency is not modified (since the two premises
dence, may be quite different. Wheris large,c is large, ~ give the same estimation), but the confidence of the con-
too, indicating that the frequengyis based on many sam- clusion is higher, because now the frequency estimation is
ples, therefore will be more stable during a revision than asupported by more evidencéope andswan).

frequency that is only supported by several samples. Stage 3

Here is an example that shows how NARS works. The system is provided with two more judgments by the
Stage 1 user:

The system is provided with two judgments by the user: Jg . penguin C flyer <0, 0.9>

Ji: dove C flyer <0.9, 0.9> Jo: penguin C bird <1, 0.9>

J2: dove Cbird <1, 0.9> That is, “No penguin is a flyer”, and “Penguins are birds”,
which means the user tells the system that “About 90%#ISO With high confidence values.

doves are flyers”, and “Doves are birds”. The confidencegy induction, the system get from them

of the judgments are pretty high, indicating that they are

strongly supported by background knowledge of the user. Jio: bird C flyer <0, 0.288>

From these judgments, the system can use its induction rul

3 o generate a conclusion ?herefore, penguin provide a negative example for “Birds

are flyers”, but doesn’t completely “falsify” the hypothesis,
J3: bird C flyer <0.9, 0.288> because the hypothesis is treated by NARS ataisti-
cal proposition, rather than amniversal generalization in
That is, “About 90% birds are flyers”, with a low confi- Popper’s sense (Popper 1968).
dence, since the estimation of frequency is only based o

) , i i h nclusion is further
information about doves. rﬂJsmg J7 and Jyp as premises, the conclusion is furthe

revised:

Stage 2

. . . . Ji1: bird C flyer <0.6, 0.548>
The system is provided with other two judgments by the
user: The frequency of the result is lower than that/of(where
only positive examples are available), but higher tliag
(where only negative examples are available), and closer
to J; than toJ1g, since the former has a higher confidence
(that is, supported by more evidence). The order that the

That is, “About 90% swans are flyers”, and “Swans ar two promises are acquired by the system is irrelevant —

Js: swan C flyer <0.9, 0.9>

Js: swan C bird <1, 0.9>

irds” also with high confidence values. “new knoyvledge” doesn’.t have ahigherpriorityin revi§ion.
birds", also with high confid The confidence ofy; is higher than either of the premises,
Again by induction, the system get: because in revision the conclusion always summarizes the
Js . bird C flyer <0.9, 0.288> “NARS'’ revision rule: if the two premises
Js andJ3 looks identical with each other, but they comes SCP<fia> SCP<fe>
from different sources (NARS can recognize this). come from different sources, the following conclusion can be
- generated:

2This is only the simplest case, but not the general method, to

; . ScP
determine the truth value of a proposition. CP<fye>

3NARS’ induction rule: from two premises where
w + w
MCP <fi, > MCS <fo c> fo= it _
the following conclusion can be generated ¢ = wliwzil (wi = T ¢ 1,2)
SCP <f, ¢c> If the two premises come from correlative sources, the one that
where has a higher confidence is chosen as the result. This is the rule
_ in NARS that corresponds to updating as discussed in previous
f= 4 sections
_ focier . . . .
¢ T etk For a detailed discussion about the rules (as well as other rules

Sincek = 2, all inductive conclusions are hypotheses with low in NARS, such as those for deduction and abduction), see the
confidencesq < 1/3). technical report (Wang 1993).



premises, therefore supported by more evidence (comparearee to certain extent. However, | believe he was wrong
with the premises), no matter whether the premises arby saying that standard deviation can be used to capture
consistent with each other (as wh&nis generated) or in  “the change of expectations” (or revision, as defined in this

conflict with each other (as wheh is generated). paper). If we test a propositientimes, and the results are

Without detailed discussing about how the truth values areit;1 eiﬁg;npeéggzrgtt?; sggtd;;? g::;%tle%régf;%i{ﬁfﬁ:tes :zé)dltthat

g%ﬁglgtaeodultnhyve?es\;i;;/gnza;r :tg;?r?é j%rgﬁr?ﬁgeég'mpres'will remain the same” will obviously increase with Actu-
: ally, what the standard deviation measures is/éréations
1. Revision is used to summarize information about the@Mong the samples (which has little to do with revision),
same proposition that comes from different sources. but what the confidence measures, intuitively speaking, is
o . theamount of the samples.
2. All propositions are revisable.

3. When two propositions are summarized, the frequenc
of the result looks like a weighted sum of the frequen-
cies of the premises, with the weights determined b
the confidence of the premises.

Pearl said our confidence in the assessmenBEEL(E)
¥s measured by the (narrowness of the) distribution of
EL(FE|c) as ¢ ranges over all combinations of contin-
gencies, and each combinatiors weighted by its current
: o . belief BEL(c) (Pearl 1988). | agree with him thatignorance
4. The confidence of a revision conclusion is alwaysjs the |ack of confidence, and confidence can be measured
higher than the confidence of either of the premises. by how much a belief assignment can be modified by pos-
5. Frequency and confidence are two independent megible future evidence. However, in his definition, he still
surements, that is, it is impossible to determine oneassumes that all relevant future evidence causing a belief
from the other. In the above examplg;, andJ7 have  change can be represented agéphicit condition, and can
the same frequency but different confidendg;and  be processed through conditionalization. As a result, his
J10 have the same confidence but different frequencymeasurement of confidence cannot captures the ignorance

6. Generally, the two measurements of certainty havéboutimplicit conditions.

different functions in representing a system’s beliefs:No matter whether other paradigms can solve the problem,
frequency is indicating the extent to which a belief is | claim that when the “ignorance” to be represented is about
positive (“Yes, it is the case.”) or negative (“No, itis an implicit condition, it cannot be handled properly by the
notthe case.”), and confidence is indicating the extenBayesian approach. For a specific domain, if revision is a
to which a beliefis stable (“Yes, I'm sure.”) or fragile crycial operation for the solving of the practical problems,
(“No, itis only a guess.”). the Bayesian approach cannot be used, and other paradigms

. . I nsidered.
| believe that these properties are also shared by actuglhou d be considered

human uncertain reasoning.

In probability theory, especially in the Bayesian approach,7 SUMMARY

the two factors f andc) are somehow summarized into

a single “probability distribution”. When a proposition The following conclusions have been drawn:

is assigned a probability closing to 1, usually it means that

almost all the background knowledge supportthe prediction 1. Propagation and revision are different operations in
that the proposition is true, and the system already know a  reasoning systems where uncertainty is represented
lot about the proposition. When a proposition is assigned  and processed; the former generates new beliefs (with
a probability closing to 0.5, however, there are different  truth values), and the latter modifies truth values of
possibilities: sometimes it means that the system knows  previous beliefs.

little about the proposition; sometimes it means the system

knows a |0t, but the positive evidence and the nega‘[ive 2. The eXpIICIt andition and the |mp|ICIt condition of a
evidence are almost equally strong. probability assignment are different, and the latter has

o ] . a much greater capacity for representing knowledge.
Combining these two factors into a single measurement

seems fine (and sometimes even more convenient) for the3. When used as revision rules, Bayes’ theorem merges
comparison and propagation operation, but it doesn'twork  explicit condition with implicit condition. Its ability
well for the revision operation, as discussed above. is therefore limited.

Even this conclusion is not completely new. All paradigms 4. Jeffrey’s rule (and its variations) is an updating rule
that use more than one numbers to represent uncertainty (replacing old knowledge by new knowledge), rather
come from the observation that “Ignorance cannot be prop-  than a revision rule in the general sense (combining
erly represented by a real-value probability distribution”. knowledge from different sources).

However, this observation is also often misinterpreted. 5. In the Bayesian approach, there is no way to do re-

To argue against the opinion that “more than one number  vision, because the “frequency” factor and the “con-
is needed to represent uncertainty”, Cheeseman claimed fidence” factor in a probability distribution cannot be
(Cheeseman 1985) that a point value and a density func-  distinguished from each other, and these two factors
tion will give the same result in decision making, which | have different functions in revision.



6. For a system to solve the revision problem, it is notPrinceton University Press, Princeton, New Jersey.

sufiientlyinformave o representa propositons un- b, yang (1993)Non-AxiomaticReasoring System Version
y by 9 ' 2.2). Technical Report (No. 75) of Center for Research on
Concepts and Cognition, Indiana University.
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