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Abstract

In a probability-based reasoning system, Bayes’
theorem and its variations are often used to revise
the system’s beliefs. However, if the explicit con-
ditions and the implicit conditions of probability
assignments are properly distinguished, it follows
that Bayes’ theorem is not a generally applicable
revision rule. Upon properly distinguishing be-
lief revision from belief updating, we see that
Jeffrey’s rule and its variations are not revision
rules, either. Without these distinctions, the lim-
itation of the Bayesian approach is often ignored
or underestimated. Revision, in its general form,
cannot be done in the Bayesian approach, because
a probability distribution function alone does not
contain the information needed by the operation.

1 INTRODUCTION

In a reasoning system that deals with uncertainty, a propo-
sition can be represented asA[m], whereA is a sentence
of a formal language, andm indicates the sentence’s uncer-
tainty.

In different systems,A andmmay have different forms and
interpretations, and the operations on them may be defined
differently. However, there are still operations shared by
many systems, in spite of all the differences (Bhatnagar and
Kanal 1986):

Comparison: To decide which of theAi[mi] has the high-
est certainty by comparingmi (i = 1; 2; � � � ; n).

Propagation: To get a conclusionAn+1[mn+1] from a set
of premisesAi[mi], whereAn+1 is different from
Ai (i = 1; 2; � � � ; n).

Revision: To modify the uncertainty value of a proposition
A fromm tom0 in the light of other propositions.

Defined as above, propagation (or inference) and revision
(or combination) are clearly different.

In propagation, the systemgenerates a new proposition
(with its certainty value) that was not among the premises.

In revision, the systemmodifies the certainty value of an
existing proposition.

Other authors may use the two words differently (Pearl
1988), but we can still make the above distinction, no matter
how the operations are named.

Bayes’ theorem seems to be an exception. In some systems,
it is used as a propagation rule, while in others, as a revision
rule. Let’s begin our analysis with these two usages, which
will lead us to the kernel of the debate on the limitations
of the Bayesian approach as a model of reasoning with
uncertainty.

2 PROPAGATION VS. REVISION

According to probability theory, it is necessary to define a
proposition spaceS in order for a system to represent and
calculate probabilities of propositions.S is the set of all
propositions to be processed by the system, and may be
generated from a set of atomic propositions, using logical
operators (Wise and Henrion 1986).

As the starting point of all probability calculations, a prior
probability distribution should be defined onS, under the
constraints of the axioms of probability theory.

To choose such a prior probability distribution for a spe-
cific problem domain, some background knowledge (such
as statistical data or subjective estimates) and general prin-
ciples (such as the principle of indifference or maximum
entropy) are necessary. Let’s refer to them collectly asC,
theimplicit condition of the distribution function, and write
the prior probability distribution function as

PC : S ! [0; 1]:

From Bayes’ theorem, we can get the conditional probabil-
ity of A1 under the condition thatA2 is true (obviously, the
conditional probability is also based onC):

PC(A1jA2) =
PC(A1 ^A2)

PC(A2)
(1)

whereA1 andA2 are both inS (soA1 ^ A2 is in S, too),
and PC(A2) > 0. To prevent confusion, I callA2 the



explicit conditionof the conditionalprobabilityassignment,
to distinguish it fromC.

Considering the three previously defined operations, we can
see that Bayes’ theorem, when used like this, is actually
a propagation rule, not a revision rule, for the following
reasons:

1. The conclusion is aconditional proposition, differing
from the premises, which are bothunconditional.

2. The rule derives anew probability assignment, instead
of modifying a previous assignment. The prior (un-
conditional) probability assignment ofA 1 is still valid
and available for future usages.

3. It is unnecessary for the system to know whetherA2
is really true when applying the theorem. The condi-
tional probability is gotten under theassumption that
A2 is true. If the system has enough resources, it can
calculate all possible conditional probabilities using
only the prior probabilities, without any “new infor-
mation” that has not been included inC.

Used in this way, Bayes’ theorem is a rule for propagating
probability assignments from prior probabilitiesPC(x) to
conditional probabilitiesPC(xjy), not a revision rule for
changingPC(x) to a new probability distributionPC0(x),
according to new evidence.

But when we perform the previously mentioned “compari-
son” operation, usually what we are concerned with is the
probability of propositionsunder all available evidence.

For example, If we want to know which ofA1 andA2 is
more likely to be true, we’ll comparePC(A1) andPC(A2)
at the very beginning, when all of our knowledge about the
problem isC. Later, if we get new evidence that shows
A3 to be true (A3 2 S), we will comparePC(A1jA3) and
PC(A2jA3), which can be calculated according to (1). In
such a case, to compare the “probability” ofA1 andA2,
the implicit conditionC and the explicit conditionA 3 are
merged together to become “all available evidence”.

Since the distinction between these two types of conditions
no longer seems necessary here, it is possible to “compile”
all of the explicit conditions that turn out to be true into the
implicit condition of the probability distribution function,
transforming the related conditional probabilities into new
unconditional probabilities. This is the “conditionalization
principle” (Earman 1992, Levi 1983, and Weirich 1983).

To distinguish this usage from the previous one of Bayes’
theorem, a new functionBEL(x) can be defined onS (Pearl
1986), which representing the probabilitydistributionunder
all available evidence:

BEL(x) = PC(xjK) (2)

wherex 2 S, andK is the current evidence, that is, the
conjunction of all propositions inS that are known to be
true.

Similarly, we can define a conditional distribution for

BEL(x) as follows (whenPC(yjK) > 0):

BEL(xjy) =
PC(x ^ yjK)

PC(yjK)
(3)

Consistently with previous definitions, we refer toy as the
probabilityassignment’sexplicit condition, and toC andK
as itsimplicit condition.

What makesBEL(x) different fromP (x) is: “all evidence”
is a dynamic concept for an open system which constantly
accepts new knowledge from its environment, soBEL(x)
is time-dependent.

Let’s useBELt(x) to indicate its values at timet (here time
is measured discretely by counting the coming evidence).

At time 0 (the initial state), all given knowledge is inC, so

BEL0(x) = PC(x) (4)

Assuming at timet the current evidence isKt. If new
evidence shows thatA is true (A 2 S, andPC(AjKt) > 0),
then, at timet+ 1,BEL(x) becomes

BELt+1(x) = PC(xjKt+1)

= PC(xjA^Kt)

=
PC(x ^AjKt)

PC(AjKt)
(5)

From (2), (3) and (5), we get

BELt+1(x) = BELt(xjA)

=
BELt(x ^A)

BELt(A)
(6)

Comparing (6) to (1), we can see that unlikeP (x)’s dis-
tribution,BEL(x)’s distribution ismodified from time to
time by applying Bayes’ theorem to transform true explicit
conditions into the implicit condition of the distribution
function. ToBEL(x), Bayes’ theorem is indeed a revision
rule, not a propagation rule.

Under the assumption that each piece of evidence is a propo-
sition represented asA[m] (according to the convention at
the beginning of the paper), we can easily list the precondi-
tions for using Bayes’ theorem as a revision rule for a prob-
ability distribution which representing the system’s current
beliefs, considering all available evidence and background
knowledge implicitly:

1. m 2 f0; 1g, that is, the new evidence is binary-valued,
so it can be simply written asA or:A.

2. A 2 S, otherwise its probability is undefined.

3. PC(A) > 0, otherwise it cannot be used as a denomi-
nator in Bayes’ theorem.

3 EXPLICIT CONDITION VS. IMPLICIT
CONDITION

Why do we need a revision rule in a plausible reasoning
system?



We are interested in the truth values of a set of proposi-
tions S, but our knowledge about them is incomplete or
inaccurate. At the very beginning, we have some back-
ground knowledgeC, which provides the prior probability
distribution for the system. Later, when the system get new
knowledgeC 0, we want it to adjust its probability distri-
bution to summarize bothC andC 0. In such a way, the
system can learn from its experience, and the defects inC
are remediable.

Of course, every information processing system has restric-
tions about the type of new knowledge that can be accepted.
However, it is reasonable to expect that the domain knowl-
edge which can be put into the systema priori (in C), can
also be put into ita posteriori (in C 0).

Now we can see why I distinguish implicit conditions from
explicit conditions: for the Bayesian approach, an implicit
condition is the knowledge that we can put into a probability
distribution initially, and an explicit condition is the knowl-
edge that the system can learn hereafter by using Bayes’
theorem as a revision rule.

Therefore, our original question about whether Bayes’ the-
orem can be used as a generally applicable revision rule can
be broken down into three questions:

1. What type of knowledge can be represented as an ex-
plicit condition?

2. What type of knowledge can be represented as an im-
plicit condition?

3. What is the relation between them?

The first question is answered by the three preconditions
given at the end of the previous section. I claim that these
preconditions cannot be applied to implicit conditions in
general, for the following reasons:

1. An explicit condition must be a binary proposition,
but an implicit condition can include statistical con-
clusions and subjective probabilistic estimates.

2. An explicit condition must be inS, but knowledge
in an implicit condition only need to be related toS.
For example, “Tweety is a bird and cannot fly” can be
part of an implicit condition, even thoughS includes
only “Birds can fly”, and does not include the name
“Tweety” at all.

3. If a proposition is assigned a prior probability of zero
according toC, it cannot be used as an explicit condi-
tion to revise the function. However, in practical do-
mains, it is possible for the proposition to be assigned a
non-zero probability according to another knowledge
sourceC0.

Now we can see thatonly certain types of implicit conditions
can be represented as explicit conditions. It follows thatif
some knowledge isn’t available when the prior probability
is determined, it is impossible to be put into the system
through conditionalization.

In fact, whenS is finite, a Bayesian system can only accept
a finite amount of (different) new knowledge after its prior

probability distribution is determined, if the above men-
tioned usage of Bayes’ theorem is the only rule used by the
system to process new knowledge. To see it, we only need
to remember that the new knowledge must be inS, and each
time a propositionA is provided to the system as a piece
of new knowledge, at leastA and:A (as well as:A ^B,
and so on) cannot be used as new knowledge in the future.
As a result, the number of different new knowledge that the
system can learn is less thanjSj=2.

Moreover, if we insist that all implicit conditions must sat-
isfy the three preconditions, the prior probability distribu-
tion will degenerate into a consistent assignment of 0 or 1 to
each proposition inS, and, after the assignment, the system
will be unable to accept any new knowledge at all.

From a practical point of view, the restrictions set by the
three preconditions are not trivial, since they mean that
although the background knowledge can be probabilistic-
valued, all new knowledge must be binary-valued; no novel
concept and proposition can appear in new knowledge; and
if a proposition is given a probability 1 or 0, such a belief
cannot be changed in the future, no matter what happens.
We could build such a system, but unfortunately it would be
a far cry from the everyday reasoning process of a human
being.

Bayes’ theorem can be used as a revision rule, but with very
strong restrictions. These limitations are so obvious and
well-known that they seems trivial and are often ignored.

Some people claim that the Bayesian approach is suffi-
cient for reasoning with uncertainty, and many people treat
Bayes’ theorem as a generally applicable revision rule, be-
cause explicit conditions and implicit conditions of a prob-
ability assignment are seldom clearly distinguished in the
discussions (Cheeseman 1985, 1986, and 1988; Pearl 1986,
1987, and 1988), where it is very common that

1. the prior probability of propositionH is formulated as
P (AjK),

2. conditional probability is formulated asP (AjE;K),

3. belief revision is described as the process by which
P (AjB) and P (AjC) are combined to produce
P (AjB;C).

What does theK (andB, C) mean in these formulas? Pearl
interpretedP (AjK) as “a person’s subjective belief inA
given a body of knowledgeK” (Pearl 1987). Cheeseman
said that conditionalprobability statements contain the con-
text (conditions) associated with their values, which “make
explicit our prior knowledge” (Cheeseman 1986). IfK re-
ally means implicit condition, then it should not be written
in such a form, which suggests that it is a propositioninS; if
it means explicit condition, then the revision process is not
correctly described in the above formula, whereP (AjB)
andP (AjC) share the same implicit condition (so it can be
omitted).

Without a clear distinction between implicit conditions and
explicit conditions, the illusionarises that all the knowledge
supporting a probability distribution can be represented by
explicit conditions, and can therefore be learned by the



system using Bayes’ theorem. As a result, the capacity of
Bayes’ theorem is overestimated.

4 UPDATING VS. REVISION

Now let us examine some other tools in probability theory
that have been used for revision, to see whether we can
avoid the three preconditions.

After a prior probability distributionP C is assigned to a
proposition spaceS, if some new evidence shows that “The
probability of a propositionA (A 2 S) should be changed
tom”, assuming the conditional probabilities that withA or
:A as explicit condition are unchanged, we can update the
probability assignment for every propositionx in S to get
a new distribution function by using Jeffrey’s rule (Kyburg
1987 and Pearl 1988):

PC0(x) = PC(xjA)�m +

PC(xj:A)� (1�m) (7)

If we interpret “A happens” as “A’s probability should be
changed to 1”, then Bayes’ theorem, when used as a revision
rule, becomes a special case of Jeffrey’s rule, wherem = 1.

As a generalized version, Jeffrey’s rule avoids the first pre-
condition of Bayes’ theorem, that is, the new evidence must
be a binary proposition. However, the other limitations are
still applicable, that is,A 2 S andPC(A) > 0, otherwise
PC(xjA) is undefined.

More than that, the rule is anupdating rule, by which I
mean a very special way of changing a system’s beliefs.
In an updating, when the new knowledge “the probability
of A should bem” arrives, the system’s opinion onA is
completely dominated by the new knowledge, regardless of
PC(A), the previous opinion aboutA (Dubois and Prade
1991), and then the distribution function is modified ac-
cordingly. Such a complete updating seldom happens in
human reasoning. Forrevision in general, new evidence
usually causes anadjustment, rather than anabandonment,
of the previous opinion.

A related method was suggested to process “uncertain evi-
dence”E[m] (m 2 (0; 1)), where a “virtual proposition”V
is introduced to represent the new knowledge as “a (unspeci-
fied) propositionV is true, andP (EjV ) = m” (Cheeseman
1986 and Nilsson 1986). Then a new conditional probabil-
ity distribution can be calculated (after considering the new
knowledge) for each propositionx 2 S in the following
way:

P (xjV ) = P (xjE ^ V ) � P (EjV ) +

P (xj:E ^ V )� P (:EjV ) (8)

Under the assumption that

P (xjE ^ V ) = P (xjE) (9)

and

P (xj:E ^ V ) = P (xj:E) (10)

equation (8) can be simplified into

P (xjV ) = P (xjE)�m +

P (xj:E)� (1�m) (11)

If we transform the explicit condition into the implicit con-
dition by conditionalization,we end up almost with Jeffrey’s
rule. The only difference is that the prior probability is not
updated directly, but is insteadconditionalized by a virtual
condition (the unspecified propositionV ). However, no
matter which procedure is followed and how the process is
interpreted, the result is the same.

Some other systems process uncertain evidence by provid-
ing likelihood ratios of virtual propositions (Pearl 1986 and
Heckerman 1988), and this method also leads to condi-
tionalization of a virtual condition, therefore the rule is an
updating rule, too.

What I mean isn’t that updating is not a valid operation in
uncertain reasoning, but that it is different from revision.
In certain situations, it is more proper to interpret belief
changes as updatings (Dubois and Prade 1991), but revision
seems to be a more general and important operation. When
there are conflicts among beliefs, it is unusual that one piece
of evidence can becompletely suppressed by another piece
of evidence, even though it make sense to assume that new
evidence is usually “stronger” than old evidence.

5 A DEFECT OF THE BAYESIAN
APPROACH

Technically, all the above discussed limitations of Bayes’
theorem and Jeffrey’s rule are known to the uncertainty
reasoning community, but it is also a fact that they are of-
ten ignored or misunderstood. As a result, the limitation
of Bayesian approach is usually underestimated. One rea-
son for this, as I claimed previously, is the confusing of
propagation and revision, updating and revision, as well
asexplicit condition andimplicit condition of a probability
assignment. Once again, other authors may prefer to name
these concepts differently, and what I want to insist is the
necessity of making such distinctions.

By Bayesian approach, I mean systems where

1. current knowledge is represented as a (real-valued)
probability distribution on a proposition space, and

2. new knowledge is learned by conditionalization.

Using previously introduced formalism, the knowledge
base of the system at a given instant can be represented
asPC(x), wherex 2 S.

I claim that the system cannot carry out the general revision
task, that is, to learn the new knowledgeA[m], which may
conflict with the system’s current beliefs.

Actually, the conclusion directly follows from the discus-
sions in the previous sections:

1. It cannot be done by directly using Bayes’ theorem,



sincem may be in(0; 1), A may not be inS, and
PC(A) may be 0.

2. The task cannot be formulated as “fromP (AjC) and
P (AjC0) to get P (AjC ^ C 0)”, then processed by
Bayes’ theorem, since it is not always possible (or
make sense) to represent implicit conditions as explicit
conditions.

3. It cannot be done by using Jeffrey’s rule or its vari-
ations, since usually we don’t want the system’s pre-
vious opinionPC(A) (if A 2 S) to be completely
ignored.

If the above arguments are accepted as valid, there are some
further questions:

1. Do we really need a system to do revision in the general
sense?

2. Why it cannot be done in the Bayesian approach?

3. How to do it in a formal reasoning system?

For the first question, if we want to apply the Bayesian
approach to a practical domain, one of the the following
requirements must be satisfied:

1. The implicit condition of the initial probability distri-
bution, that is, the domain knowledge used to deter-
mine the distribution, can be assumed to be immune
from future modifications; or

2. All modifications of the implicit condition can be
treated as updating, in the sense that when new knowl-
edge conflict with old knowledge, the latter is com-
pletely abandoned.

From artificial intelligence’s point of view, such domains
are exceptions, rather than general situations. In most cases,
we cannot guarantee that all knowledge the system get is un-
changeable, or later acquired knowledge is always “truer”
than earlier acquired knowledge. More than that, under
certain conditions we even cannot guarantee that the sys-
tem’s beliefs are free from internal conflicts (Wang 1993).
Therefore, we really hope a formal system can revise its
knowledge in the general sense.

For the second question, let’s look at the revision operation
as defined in the first section. For a propositionA, if from
some evidenceC1 its certainty value is evaluated asm1, but
from some other evidenceC2 its certainty value is evaluated
asm2, then what should be the system’s opinion onA’s
certainty, when bothC1 andC2 are taken into consideration?
Obviously, the result not only depends onm 1 andm2, but
also depends on the relation betweenC1 andC2.

For examples, ifC2 is already included inC1, thenm1 is the
final result; ifC1 andC2 come from different sources, and
C1 consists of large amount of statistical data, butC2 only
consists of a few examples, then the result will be closer to
m1 than tom2.

In the Bayesian approach, abovemi’s become probability
assignments, andCi’s become implicit conditions of these
assignments. However, in probability theory, there is no

way to backtrack a probability distribution’s implicit con-
dition only from the distribution function itself, since it
is possible for different implicit conditions to generate the
same prior probability distribution. The only information
available about implicit conditions is their arrival times:
the current distribution is “old”, and the coming evidence is
“new”. In such a case, revisions have to be simplified into
updatings.

The Bayesian approach have no available revision rule, be-
cause its representation is not sufficiently informative —
little information is there about the implicit condition of the
current probability distribution.

It is impossible for the third question to be discussed
throughoutly in this paper. Here I only want to make one
claim: if the system’s beliefs are still represented by a set of
propositions, then the uncertainty of each proposition must
be indicated by something that is more complicated than a
single (real) number. As discussed above, the information
aboutCi cannot be derived frommi. To revise a belief, the
belief’s implicit condition must be somehow represented.

6 AN EXAMPLE

There are several paradigms using more than one numbers
to represent a proposition’s uncertainty, such as Dempster-
Shafer theory (Shafer 1976), probability interval (Weichsel-
berger and P¨ohlmann 1990), and higher-order probability
(Paaß1991). I’m also working on an intelligent reasoning
system myself, which use a pair of real numbers as a propo-
sition’s “truth-value”. The comparison and evaluation of
these systems are beyond the scope of this paper, but I will
use an example processed by my system to show concretely
the problem of the Bayesian approach that discussed in the
previous sections.

The system, “Non-Axiomatic Reasoning System” (or
“NARS” for short), is described in a technical report (Wang
1993) in detail. In the following, I’ll briefly mention (with
necessary simplifications) some of its properties that are
most directly related to our current topic.

In NARS, domain knowledge is represented asjudgments,
and each judgment has the following form:

S � P <f; c>

whereS is thesubject of the judgment, andP is thepredi-
cate. “S � P ” can be intuitively understood as “S are P”,
which is further interpreted as “P inheritsS’s instances and
S inheritsP ’s properties”. “< f; c >” is the judgment’s
truth value, wheref is thefrequency of the judgment, and
c is theconfidence.

In the simplist case, the judgment’s truth value can be deter-
mined like this: if the system has checked the “inheritance
relation” betweenS andP for n times (n > 0) by looking
atS’s instances, and inm times (n � m � 0) the checked
instance is also inP , thenf = m=n, andc = n=(n+ k).1

1k is a parameter of the system. In the current version of the
system,k = 2.



Here the meaning off is obvious: it is the inheritance
relation’s “success frequency”, according to the system’s
experience. The “confidence”c is introduced mainly for
the purpose of revision. Given two propositions that have
the samefrequency, their confidence, that is, how difficult
the corresponding frequency can be revised by future evi-
dence, may be quite different. Whenn is large,c is large,
too, indicating that the frequencyf is based on many sam-
ples, therefore will be more stable during a revision than a
frequency that is only supported by several samples.2

Here is an example that shows how NARS works.

Stage 1

The system is provided with two judgments by the user:

J1 : dove � flyer <0:9; 0:9>

J2 : dove � bird <1; 0:9>

which means the user tells the system that “About 90%
doves are flyers”, and “Doves are birds”. The confidence
of the judgments are pretty high, indicating that they are
strongly supported by background knowledge of the user.

From these judgments, the system can use its induction rule
3 to generate a conclusion

J3 : bird � flyer <0:9; 0:288>

That is, “About 90% birds are flyers”, with a low confi-
dence, since the estimation of frequency is only based on
information about doves.

Stage 2

The system is provided with other two judgments by the
user:

J4 : swan � flyer <0:9; 0:9>

J5 : swan � bird <1; 0:9>

That is, “About 90% swans are flyers”, and “Swans are
birds”, also with high confidence values.

Again by induction, the system get:

J6 : bird � flyer <0:9; 0:288>

J6 andJ3 looks identical with each other, but they comes
from different sources (NARS can recognize this).

2This is only the simplest case, but not the general method, to
determine the truth value of a proposition.

3NARS’ induction rule: from two premises

M � P <f1; c1>; M � S <f2; c2>

the following conclusion can be generated

S � P <f; c>

where
f = f1

c = f2c1c2
f2c1c2+k

Sincek = 2, all inductive conclusions are hypotheses with low
confidences (c < 1=3).

Now the system can use its revision rule4 to mergeJ3 and
J6 into

J7 : bird � flyer <0:9; 0:447>

Here the frequency is not modified (since the two premises
give the same estimation), but the confidence of the con-
clusion is higher, because now the frequency estimation is
supported by more evidence (dove andswan).

Stage 3

The system is provided with two more judgments by the
user:

J8 : penguin � flyer <0; 0:9>

J9 : penguin � bird <1; 0:9>

That is, “No penguin is a flyer”, and “Penguins are birds”,
also with high confidence values.

By induction, the system get from them

J10 : bird � flyer <0; 0:288>

Therefore, penguin provide a negative example for “Birds
are flyers”, but doesn’t completely “falsify” the hypothesis,
because the hypothesis is treated by NARS as astatisti-
cal proposition, rather than anuniversal generalization in
Popper’s sense (Popper 1968).

Using J7 and J10 as premises, the conclusion is further
revised:

J11 : bird � flyer <0:6; 0:548>

The frequency of the result is lower than that ofJ7 (where
only positive examples are available), but higher thanJ10
(where only negative examples are available), and closer
to J7 than toJ10, since the former has a higher confidence
(that is, supported by more evidence). The order that the
two promises are acquired by the system is irrelevant —
“new knowledge” doesn’t have a higher priority in revision.
The confidence ofJ11 is higher than either of the premises,
because in revision the conclusion always summarizes the

4NARS’ revision rule: if the two premises

S � P <f1; c1>; S � P <f2; c2>

come from different sources, the following conclusion can be
generated:

S � P <f; c>

where

f = w1f1+w2f2
w1+w2

c = w1+w2
w1+w2+1 (wi =

ci
1�ci

; i = 1;2)

If the two premises come from correlative sources, the one that
has a higher confidence is chosen as the result. This is the rule
in NARS that corresponds to updating as discussed in previous
sections.

For a detailed discussion about the rules (as well as other rules
in NARS, such as those for deduction and abduction), see the
technical report (Wang 1993).



premises, therefore supported by more evidence (compared
with the premises), no matter whether the premises are
consistent with each other (as whenJ7 is generated) or in
conflict with each other (as whenJ11 is generated).

Without detailed discussing about how the truth values are
calculated in NARS, we can still get some general impres-
sions about how revisions are carried out in NARS:

1. Revision is used to summarize information about the
same proposition that comes from different sources.

2. All propositions are revisable.

3. When two propositionsare summarized, the frequency
of the result looks like a weighted sum of the frequen-
cies of the premises, with the weights determined by
the confidence of the premises.

4. The confidence of a revision conclusion is always
higher than the confidence of either of the premises.

5. Frequency and confidence are two independent mea-
surements, that is, it is impossible to determine one
from the other. In the above example,J6 andJ7 have
the same frequency but different confidence;J6 and
J10 have the same confidence but different frequency.

6. Generally, the two measurements of certainty have
different functions in representing a system’s beliefs:
frequency is indicating the extent to which a belief is
positive (“Yes, it is the case.”) or negative (“No, it is
not the case.”), and confidence is indicating the extent
to which a belief is stable (“Yes, I’m sure.”) or fragile
(“No, it is only a guess.”).

I believe that these properties are also shared by actual
human uncertain reasoning.

In probability theory, especially in the Bayesian approach,
the two factors (f and c) are somehow summarized into
a single “probability distribution”. When a proposition
is assigned a probability closing to 1, usually it means that
almost all the background knowledge support the prediction
that the proposition is true, and the system already know a
lot about the proposition. When a proposition is assigned
a probability closing to 0.5, however, there are different
possibilities: sometimes it means that the system knows
little about the proposition; sometimes it means the system
knows a lot, but the positive evidence and the negative
evidence are almost equally strong.

Combining these two factors into a single measurement
seems fine (and sometimes even more convenient) for the
comparison and propagation operation, but it doesn’t work
well for the revision operation, as discussed above.

Even this conclusion is not completely new. All paradigms
that use more than one numbers to represent uncertainty
come from the observation that “Ignorance cannot be prop-
erly represented by a real-value probability distribution”.
However, this observation is also often misinterpreted.

To argue against the opinion that “more than one number
is needed to represent uncertainty”, Cheeseman claimed
(Cheeseman 1985) that a point value and a density func-
tion will give the same result in decision making, which I

agree to certain extent. However, I believe he was wrong
by saying that standard deviation can be used to capture
“the change of expectations” (or revision, as defined in this
paper). If we test a propositionn times, and the results are
the same, then the standard deviation of the results is 0, that
is, independent ton. But our confidence about “the result
will remain the same” will obviously increase withn. Actu-
ally, what the standard deviation measures is thevariations
among the samples (which has little to do with revision),
but what the confidence measures, intuitively speaking, is
theamount of the samples.

Pearl said our confidence in the assessment ofBEL(E)
is measured by the (narrowness of the) distribution of
BEL(Ejc) as c ranges over all combinations of contin-
gencies, and each combinationc is weighted by its current
beliefBEL(c) (Pearl 1988). I agree with him that ignorance
is the lack of confidence, and confidence can be measured
by how much a belief assignment can be modified by pos-
sible future evidence. However, in his definition, he still
assumes that all relevant future evidence causing a belief
change can be represented as anexplicit condition, and can
be processed through conditionalization. As a result, his
measurement of confidence cannot captures the ignorance
aboutimplicit conditions.

No matter whether other paradigms can solve the problem,
I claim that when the “ignorance” to be represented is about
an implicit condition, it cannot be handled properly by the
Bayesian approach. For a specific domain, if revision is a
crucial operation for the solving of the practical problems,
the Bayesian approach cannot be used, and other paradigms
should be considered.

7 SUMMARY

The following conclusions have been drawn:

1. Propagation and revision are different operations in
reasoning systems where uncertainty is represented
and processed; the former generates new beliefs (with
truth values), and the latter modifies truth values of
previous beliefs.

2. The explicit condition and the implicit condition of a
probability assignment are different, and the latter has
a much greater capacity for representing knowledge.

3. When used as revision rules, Bayes’ theorem merges
explicit condition with implicit condition. Its ability
is therefore limited.

4. Jeffrey’s rule (and its variations) is an updating rule
(replacing old knowledge by new knowledge), rather
than a revision rule in the general sense (combining
knowledge from different sources).

5. In the Bayesian approach, there is no way to do re-
vision, because the “frequency” factor and the “con-
fidence” factor in a probability distribution cannot be
distinguished from each other, and these two factors
have different functions in revision.



6. For a system to solve the revision problem, it is not
sufficiently informative to represent a proposition’s un-
certainty by a single number.
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