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Abstract

The reference class problem in probability theory and the multiple inheritances (extensions)
problem in non-monotonic logics can be referred to as special cases of con
icting beliefs. The
current solution accepted in the two domains is the speci�city priority principle. By analyzing
an example, several factors (ignored by the principle) are found to be relevant to the priority
of a reference class. A new approach, Non-Axiomatic Reasoning System (NARS), is discussed,
where these factors are all taken into account. It is argued that the solution provided by NARS
is better than the solutions provided by probability theory and non-monotonic logics.

1 Introduction

How do we predict whether an individual has a certain property, if direct observation is impossible?
A useful method is to look for a \reference class". The class should include the individual as an
instance, and we should know something about how often the instances of the class have the desired
property, or whether its typical instances have it. Then, the prediction can be done by letting the
instance \inherit" the information from the class.

In the �eld of reasoning under uncertainty, there are (at least) two paradigms that use this
type of inference: non-monotonic logics (for example, Touretzky's inheritance network in [15]), and
probabilistic reasoning systems (for example, Pearl's Bayesian network in [9]).

In non-monotonic logics, if the only relevant knowledge is \A is an instance ofR" and \Normally,
R's instances have the property Q", a defeasible conclusion is \A has the property Q".

In probabilistic reasoning systems, under the subjective interpretation of probability, if the only
relevant knowledge is \A is an instance of R" and \The probability for R's instances to have the
property Q is p", a plausible conclusion would be \The probability for A to have the property Q is
p".

Now a problem appears: if A belongs to two classes R1 and R2 at the same time, and the two
classes lead to di�erent predictions about whether (or how probable) A has the property Q, what
conclusion can we reach? In di�erent context, the problem is referred to as \multiple inheritance
problem", \multiple extension problem", or \reference class problem" [3, 6, 7, 9, 10, 11, 15].

Though the above theories treat the problem di�erently, they have something in common: None
of them suggest a general solution to the problem, though they agree on a special case: if R2 is a
(proper) subset of R1, R2 is the correct reference class to be used.

Let us see two examples.
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1. In [15], Touretzky said: \Since Clyde is a royal elephant, and royal elephants are not gray,
Clyde is not gray. On the other hand, we could argue that Clyde is a royal elephant, royal
elephants are elephants, and elephants are gray, so Clyde is gray. Apparently there is a
contradiction here. But intuitively we feel that Clyde is not gray, even though he is an
elephant, because he is a special type of elephant: a royal elephant."

2. In [6], Kyburg said: \If you know the survival rate for 40-year old American male to be 0.990,
and also that the survival rate for 40-year old American male white-collar workers to be 0.995,
then, other things being equal, it is the latter that should constrain your beliefs and enter
your utility calculations concerning the particular 40 year old male white-collar worker John
Smith."

Let us call this principle \speci�city priority principle". It looks quite reasonable, and it is not
hard to �nd many examples to show that we do apply such a principle in common sense reasoning.
However, the following questions are still open:

1. Why is the principle correct? Can it be justi�ed by more basic axioms or assumptions?

2. Beside speci�city, what are the \other things" that in
uence the priority of a reference class?

3. When neither reference class is more speci�c than the other, what should be done?

For the �rst question, Reichenbach made it a matter of de�nition by \regarding the individual
case as the limit of classes becoming gradually narrower and narrower" [11]; Pearl said it is because
\the in
uence of the remote ancestors is summarized by the direct parents" [9].

For the second question, Reichenbach said we need to have complete statistical knowledge on
the reference class, that is, the probability for R to be Q should be supported by good statistical
data [11]. In non-monotonic logics, this corresponds to su�cient evidence which can determine
what properties a normal instance of the class has.

For the third question, few word is said, except Reichenbach's suggestion to \look for a larger
number of cases in the narrowest common class at your disposal" [11].

Dissatis�ed by the above answers, this paper is an attempt to discuss the issue of reference class
in more detail. An example, with its variations, will be discussed as a starting point, then, after
analyzing the factors that in
uence the result, the solution provided by Non-Axiomatic Reasoning
System (NARS) [16, 17, 18] is discussed and compared with the speci�city priority principle.

2 A thought experiment

Let us reconstruct Kyburg's example in the following way: Imaging that you are working for a life
insurance company, and you need to predict whether John Smith can live to 40. You have John's
personal information, and for some special reasons (such as you just woke up from a 200-year-long
sleep or you are actually an extraterrestrial spy), you have no background knowledge about the
survival rates at 40 for various groups of people. Fortunately, you have access to personal �les of
some Americans, who are alive or died in recent years, and you decide to make the prediction by
the \reference class method" de�ned above.

At �rst, knowing that John is a male, you begin to build the �rst reference class R1 by picking
up some �les randomly. R1 consists of two subsets: P1 includes the positive evidence for John's
survival, that is, American males who are more than 40 year old (including those who are already
deceased), and N1 includes the negative evidence, that is, those who died before 40. You should
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keep in mind that American males who are alive and younger than 40 (including John himself) are
neither positive evidence nor negative evidence for the prediction, so they do not belong to R1.

If you weight everyone as equal (why do not you?), your prediction should be determined by
the relative size of P1 and N1. Let us say jP1j > jN1j. Therefore you predict that John Smith can
live to 40.

After returning the �les, you have a new idea: why not consider the fact that John is, among
other things, a white-collar worker? So you build another reference class R2 similarly. Let us
assume, unfortunately, this time you �nd that jP2j < jN2j. Here you meet the reference class
problem: to see John as a \male" and a \male white-collar worker" will lead to di�erent predictions.

If we apply the speci�city priority principle here, the result should be dominated by R2, since
\male white-collar worker" is a proper subset of \male". However, it is easy to �nd a situation to
show that sometimes the result is counter-intuitive. If you have looked through 1000 �les, and all
of them are males and live to 40, and after that you �nd 1 male white-collar worker who died at
35, will you predict that John will die before 40? It seems very unlikely.

Does this mean that the speci�city priority principle is wrong? Of course not. Sample size is
obviously one of the \other things" that in
uence the priority of a reference class. One sample is
far from enough to tell us about how a \typical" or \normal" instance looks like, or to support a
statistical assertion on the instances. In such a case, the principle is inapplicable, since there is
another relevant di�erence between the two reference classes, beside their speci�cities.

If you have to make predictions in such an environment, what will you do? Let us consider a
simple psychological experiment. Assuming R1 includes positive evidence only (that is, R1 = P1,
no male is found to be died before 40), but R2 includes negative evidence only (that is, R2 = N2,
no male white-collar worker is found to be alive at 40). Even before really carrying out such an
experiment on human subjects, We are con�dent to make the following prediction: If jP1j is �xed
at a big number (say 1000), and jN2j is increased one by one, starting from 1, the predictions made
by subjects will be positive before jN2j reaching a certain point, and negative after reaching that
point. That critical point may vary from person to person, but is always smaller than jP1j.

The \sample size e�ect" can also be used to answer the following question: If a more speci�c
reference class is always better, why do not we simply use the most speci�c reference class, de�ned
by all available properties of John Smith? The reason is simple: in most situations such a class
is empty | nobody is similar to John to such an extent. With more and more properties used to
de�ne a reference class, the extension of the class becomes narrower and narrower. As a result,
fewer and fewer samples can be found to support the prediction or to against it. From this point
of view, speci�city is not preferred.

Previously, we talked about the reference classes R1 and R2, as if they are accurately de�ned.
Obviously it is a simpli�cation. Though we can ignore the boundary cases for \male", the fuzziness
in \white-collar worker" cannot be neglected so easily. As argued by fuzzy set theory [19] and
prototype theory [13], whether an instance belongs to a concept is usually a matter of degree. This
membership function is also related to the current issue: if John can be referred to as a \white-collar
worker", but not a typical one, the in
uence of R2 will be reduced.

How should we empirically determine the membership function for a concept like \white-collar
worker"? Psychologists suggest that it can be determined by the degree of similarity of the instance
to a prototype [13] or an exempli�er [8] of the concept. A common way to determine the similarity
between two concepts is to compare their properties. Like the situation of probability prediction,
similarity evaluation is also in
uenced by two factors: the proportion of shared properties and the
amount of properties that has been checked during the evaluation. As a result, we can predict that
the more properties an instance and a reference class shares, the higher the priority of the class is.
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3 Analysis of the factors

In the previous section, some factors are listed which in
uence the priority of a reference class. Let
us summarize them formally as the following: To predict whether A has property Q, two reference
classes R1 and R2 are taken into consideration. If we write \A has property Q" as A 2 Q, \A is a
member of R" as A 2 R, and \R's members have property Q" as R � Q, the problem becomes: to
evaluate (to predict its truth value or probability)

T0 : A 2 Q

from the given evaluations of

T1 : A 2 R1; T2 : A 2 R2; T3 : R1 � Q; T4 : R2 � Q:

How should we evaluate each of the above statements? As discussed in the previous section,
we can see two major factors that need to be measured: one is the frequency or proportion of the
positive evidence among all relevant evidence, and the other is the total amount of evidence that
have been considered. In the following discussion, we will refer to the weight of positive, negative,
and total evidence for Ti as w

+

i
, w�

i
, and wi, respectively, where w

+

i
+w�

i
= wi, and i = 0; 1; 2; 3; 4.

In traditional binary logic, as used in set theory, the result is straightforward. Under the
assumption of complete knowledge, there are only two types of statements: a�rmative and negative,
where either w+

i
= wi or w

�

i
= wi. Such a system is monotonic in the sense that the evaluation

of statements are insensitive to new knowledge, that is, wi is constant for all statements. In this
situation, the reference class problem cannot appear: given the consistency of the premises, the
conclusions derived along di�erent paths cannot con
ict with each other.

However, problems emerge as soon as we allow general rules (as T3 and T4) to have exceptions,
and to allow the accommodation of new evidence. If T3 is such a rule, from the fact that T1 is true,
we can no longer guarantee the truthfulness of T0, since A may turn out to be an exception. On
the other hand, since A is not necessarily included in w3, T0 is not necessarily true even if T3 has
no available negative evidence. Returning to the previous example: if the current survival rate is
1 for males at the age of 40, it does not follow that John Smith (currently 20 years old) cannot
die before 40, because the \rule" may have potential negative evidence which is not available at
present.

In such a situation, how can the \reference class method" be justi�ed? It can be derived from
a more fundamental principle: the extension (instances) and intension (properties) of a concept is
co-ordinated during the development of human classi�cation behavior [4]. As a result, we can pre-
dict extensional relations from intensional relations (e.g., to determine whether a concept includes
an instance by checking the properties of the concept), and to predict intensional relations from
extensional relations (e.g., to determine whether a concept has a property by checking the instances
of the concept).

However, with insu�cient knowledge and resources, the co-ordination between extension and
intension is imperfect, that means (1) the statements usually have both positive and negative
evidence, and (2) the current evaluations should be revised according to future evidence.

When two (or more) competing evaluations (about the same statement, but based on di�erent
sources of evidence) are taken into consideration at the same time, there are two possibilities:

1. The evidence that support them is uncorrelated, that is, they come from independent sources.
Therefore, the two pieces of evidence should be combined, since the weight of evidence is an
additive measurement. As a result, the frequency of the result is a weighted sum of the
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frequencies of the competing evaluations, and the weight of the result is the sum of the
weights of the competing evaluations (see the following section). Obviously, between the two
competing evaluations, the one with a larger weight should have a stronger in
uence on the
result.

2. The two competing evaluations are based on correlated evidence, when some evidence has
been used to supporting both evaluations. In such a case, the two pieces of evidence should
not be combined by addition. If the system has to make a decision without the help of other
information about how the evidence is correlated, the evaluation with a larger weight should
be chosen, since it is supported by more evidence, and the other is ignored.

Since in both cases the evaluation with a larger weight has a priority over the other one, let
us see how the weight is determined. Intuitively, to get a large weight for T0 (\A has property
Q"), using R1 as the reference class, both T1 and T3 must have large weights, that means, there
should be enough evidence to support the evaluation for \A is a member of R" and \R's members
have property Q". As discussed in the previous section, for T1 it means that R1 is intensionally
described by a large set of properties (shared by A), and for T3 it means that R1 is extensionally
exempli�ed by a large set of instances (shared by Q).

Since a more speci�c concept is always described by more properties than a more general
concept, the former has a priority, other things being equal. However, when there is a sample size
di�erence or typicality di�erence which favors the more general concept, the speci�city priority can
be more or less cancelled out. This conclusion from above analysis is consistent with the result of
the thought experiment in the previous section.

4 Another approach

Non-Axiomatic Reasoning System (NARS) [16, 17, 18] is an intelligent system which works and
adapts to its environment under the assumption of insu�cient knowledge and resources. As a result
of the assumption, it also meets the reference class problem.

For our current purpose, let's say that each statement in NARS has the form of S � P or S 2 P ,
where S is the subject term, and P the predicate term. Since S 2 P can be identically rewritten as
fSg � P , we will talk only about the �rst form in the following.

Intuitively speaking, either a common instance or a common property of S and P is counted as
a piece of positive evidence for S � P , with a unit weight, that is, w = w+ = 1. On the contrary,
either an instance of S which is not shared by P or a property of P which is not shared by S is
counted as a piece of negative evidence for S � P , with a unit weight, that is, w = w� = 1. For a
formal de�nition of evidence and its weight, see [17].

In NARS, the truth value of a statement, indicating how the statement is supported by available
evidence, is represented by a pair of real numbers in [0, 1], < f; c>, where f is w

+

w
, the relative

frequency of positive evidence, and c is the con�dence. Con�dence is de�ned in NARS as w

w+k
,

a monotonic increasing function of total weight, indicating the stability of the current frequency
evaluation. k, a positive constant, is assumed to be 2 in this paper. It is easy to see that given the
de�nition of truth value in terms of weight of evidence, we can also calculate the latter from the
former.

NARS can carry out several types of inference on judgments (i.e., statements with truth value).
In this paper, only three of them are mentioned: updating, revision and deduction.
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The updating rule and the revision rule are used to deal with con
icting evidence. We assume
that the system has a pair of judgments which are about the same statement:

J1 : S � P <f1; c1> and J2 : S � P <f2; c2>

At �rst, the system needs to check whether the judgments are based on correlated evidence.
This can be done somehow in NARS (see [17]), and a \Yes/No" result is reported. As discussed
before, if the evidence of the two judgments is not correlated, an evidence combination, or revision,
should be done. For the revised judgment, its weight of total, positive, and negative evidence
should be the sum of the corresponding weights of J1 and J2. Given the relations between weight
and truth value, it is easy to get the truth value of the revised judgment S � P <f0; c0>:

f0 =
w1f1 + w2f2

w1 + w2

; c0 =
w1 + w2

w1 + w2 + k

We can see from the function that the revised frequency is a weighted sum of the frequencies of the
competing judgments, and the con�dence of the revised judgment is higher than those of J1 and
J2, since evidence is accumulated through revision.

On the other hand, if the two pieces of evidence are correlated, they cannot be accumulated. In-
stead of revision, the updating rule is applied, which picks up the judgment with a higher con�dence,
and ignores the other.

The deduction rule can infer S � P <f0; c0> from M � P <f1; c1> and S �M <f2; c2>.
The truth value function is derived from T-norm and T-conorm [1, 2], and the derivation can be
found in [17]. The resulting function is:

f0 =
f1f2

f1 + f2 � f1f2
; c0 = (f1 + f2 � f1f2) c1c2

Now we are ready to see how NARS treats the reference class problem. Putting into the format
of NARS, the premises are:

J1 : A 2 R1 <f1; c1> ; J2 : A 2 R2 <f2; c2> ;

J3 : R1 � Q <f3; c3> ; J4 : R2 � Q <f4; c4> :

Since John shares one property with R1 (\male") and two properties with R2 (\male" and
\white-collar worker"), we have w1 = w+

1 = 1 and w2 = w+
2 = 2. It follows that (assuming k = 2)

f1 = f2 = 1, c1 =
1

3
, and c2 =

1

2
(the fuzziness in the concepts is temporally ignored). Under the

assumption that R1 consists of 1000 positive samples, we have f3 = 1 and c3 =
1000

1002
. Let us say

that R2 includes negative samples only, but leaves the number of samples, n, as a variable, to see
how it in
uences the �nal evaluation of A 2 Q, that is, \John Smith will live to 40". Therefore, we
have f4 = 0 and c4 =

n

n+2
.

Applying the deduction rule, from J1; J3 and J2; J4, respectively, we get

J5 : A 2 Q <1; c1c3> ; and J6 : A 2 Q <0; c2c4>

Since the knowledge that \John is male" is used to evaluate both J1 and J2, and they are used
in the derivation of J5 and J6, respectively, the evidence for J5 and J6 is correlated. As a result,
the updating rule is applied to pick up the judgment that has a higher con�dence as the conclusion.
Which reference class will win the competition?

By solving the inequality c1c3 > c2c4, we can see that
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1. When 0 < n < 4, R1 is selected. The speci�city priority of R2 is undermined by the fact that
the sample size of R2 is too small.

2. When n � 4, R2 is selected. The speci�city priority can be established even by a pretty small
sample size: with jR1j = 1000 and jR2j = 4, the prediction is still determined by R2 due to
its speci�city.

If John is not a typical white-collar worker (i.e., f2 < 1), R2's con�dence is smaller than c2c4,
so it may need a bigger n for R2 to be dominant. Therefore, when NARS is selecting a reference
class, several factors are balanced against one another, including speci�city, typicality, sample size,
and so on. It provides a generalization of the speci�city priority principle, by taking more relevant
factors into consideration.

NARS' approach is more general than the speci�city priority principle in another way. The
including of reference classes is only a special case for two judgments to be based on correlated
evidence. It follows that the speci�c priority principle is a special case of NARS' updating rule.

How about competing reference classes that do not involve correlated evidence? Let us say in the
previous examples, R1 is still for \male", but R2 is changed for \smoker and white-collar worker".
If the deduced judgments J5 and J6 are not based on correlated evidence in some other ways, the
two judgments will be combined by the revision rule of NARS. Other things being equal, R2 has
a higher priority, since it matches better with John's properties. However, in this case a higher
priority only means a higher weight in determining the frequency of the conclusion. The judgment
from the other reference class is not ignored. In this situation, the reference class competing is
solved not by choosing one of them, but by combining the two.

Let us see how NARS treats the famous \Nixon Diamond" [14]. Putting into the previous
framework, in this problem we have \Nixon" as A, \Quaker" as R1, \Republican" as R2, and
\Paci�st" as Q. It is also given that J1, J2, and J3 are positive, but J4 is negative. By deduction,
two con
icting judgments J5 (\Nixon is a paci�st") and J6 (\Nixon is not a paci�st") can be derived
as in the previous example.

Since we can assume the un-correlation of evidence of the judgments (R1 and R2 have no known
relation), J5 and J6 will be combined by the revision rule, and the result depends on the truth
value of the premises.

1. If f1 = f2, c1 = c2, f3 = 1� f4, and c3 = c4, we will get f0 = 0:5. That is, when the positive
evidence and the negative evidence exactly balance with each other, the system is indi�erent
between a positive prediction and a negative prediction.

2. If c1 > c2, and the other conditions as in (1), we will get f0 > 0:5. That is, when Nixon shares
more property with Quaker, the system will put more weight on the conclusions suggested
by the evidence about Quaker.

3. If f3 > 1 � f4 or c3 > c4, and the other conditions as in (1), we will get f0 > 0:5. That is,
when we have stronger statistical data about Quaker, the system will put more weight on the
conclusions suggested by the evidence about Quaker, too.

In any situation, what NARS does is to combine the evidence from both sources. Even if \Quaker"
is given a higher priority, the evidence provided by \Republican" still has its e�ect on the result.
On the other hand, this kind of con
ict does not always (though sometimes it does) cause complete
indi�erence or ambiguity, as it does in non-monotonic logics [15].
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5 Comparisons

Compared with non-monotonic logics and probability theory, the processing of the reference class
problem in NARS has the following characteristics:

1. While still following the speci�city priority principle, several factors, such as sample size
and degree of membership, are taken into account to quantitatively determine the priority
of a reference class, and all the factors are projected into a unique dimension, the weight of
evidence.

2. The speci�city priority principle has been generalized into a \con�dence priority principle"
which will pick up a judgment with the highest con�dence among the competing ones. The
principle is applied when the competing judgments are supported by correlated evidence. As
discussed above, speci�city is one way to get a high con�dence, and inclusion relation between
reference classes is one reason that causes evidence correlation.

3. When con
icting judgments come from di�erent sources, the revision rule is applied to com-
bine them by summarizing the evidence. This operation in unavailable in non-monotonic
logics and probability theory.

Why cannot we do similar things in non-monotonic logics and probability theory? One of the
major reasons is that the con�dence (or identically, weight of evidence) measurement cannot be
easily introduced there. From the view point of NARS, the con�dence of all the default rules (in
non-monotonic logics) and probability assignments (in probability theory) is 1, that is, they cannot
be revised by accommodating its current evaluation to new evidence.

Because in [16] we have already argued that revision cannot be done in a �rst-order probability
distribution, let us concentrate on non-monotonic logics here.

Non-monotonic logics are often referred as \defeasible logic", but actually what is defeasible are
only the conclusions derived from the default rules, rather than the rules themselves. The rules are
treated as conventions [12], which are immune from empirical revision. As long as \Birds 
y" is a
default rule, it remains to be valid no matter how many birds found later cannot 
y.

To treat default rules as convention is possible and even desired in many situations. In commu-
nication between systems (human or computer), these conventions are often intentionally followed,
and if we already have lots of evidence, or if we only study the judgment making of the system in
a short period, the in
uence of new evidence can be ignored. In these situations, a binary logic
is preferred for its simplicity and clarity. However, such assumptions about environment are not
always valid. Another thing we need to keep in mind is: when treated as conventions, these rules
become a priori to the system, and what the researchers concern about them is di�erent from when
they are treated as generalized experience. As conventions, their generation, acceptance, compari-
son, modi�cation, and rejection are no longer determined, or even in
uenced, by the experience of
the system. Though it is correct to say that \normality" or \typicality" should not be interpreted
in a pure frequentist way as \in most cases", we still have reason to argue that for many purposes,
it is better to see them as closely related to empirical evidences, and have di�erent degrees [5, 13].
Therefore, it makes sense, and often necessary, to measure the relations between the default rules
and available evidence, which cannot be done in the framework of binary logic.

In summary, though non-monotonic logics and probability theory can be successfully used in
many domains, their solution to the reference class (or multiple inheritance) problem is quite
limited. Many related factors are ignored, and the problem is unsolvable when the involved reference
classes do not include one another. For the more general problem, that is, how to revise beliefs, no
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solution is given. The problem is not one that can be solved by working harder in the two paradigms:
as shown above, the solution involves factors that are ruled out by the fundamental de�nitions of
the two paradigms. NARS is not always better than non-monotonic logics and probability theory in
all situations, but it is better when the available knowledge and resources are insu�cient. Though
still a simpli�cation, it does consider more factors than the other two.
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