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Abstract. This paper analyzes the three most common interpretations
of probability (frequentist, subjective, and logical) in the context of AGI,
and argues that probability theory cannot serve a central role in the
theoretical foundation of AGI.

1 Probability and Its Interpretations

Probability theory is the most mature formal model for uncertainty representa-
tion and calculation, and has been successfully applied to solve many problems
in various domains. In particular, it has played a central role in some represen-
tative models in AI [1, 2], Cognitive Science [3, 4], as well as AGI [5, 6]. Even so,
there are some long-standing issues that have not obtained enough attention.
Consequently, probability theory is often misused, and the research results are
not properly justified. I have analyzed some related issues previously [7–10], and
will approach the problem from a different angle in this paper, by focusing in
the interpretation of “probability” with respect to AGI.

A probability function P is defined on a sample space Ω by assigning each
event A (represented by a subset of Ω) a real number in [0, 1]. P (A) is called “the
probability that event A occurs”, and the function is based on axioms P (Ω) = 1
and P (A ∪B) = P (A) + P (B) if A and B are disjoint [11, 12].

As a formal model, probability theory specifies the (valid) calculations within
a probability function, without saying much about how to apply the theory to
a practical situation. For this purpose, the notion of “probability” needs to be
interpreted, by mapping the probability function into a concrete measurement
in the domain. The best known interpretations of probability are [13, 14]:

Frequentist interpretation. P (A) is the limit of the occurrence frequency of
event A in a sequence of observations.

Subjective interpretation. P (A) is the degree of belief of a cognitive system
on belief A at a certain moment.

Logical interpretation. P (A) is the degree of support or confirmation hypoth-
esis A obtains from a body of evidence.

One common feature of all of the above interpretations is that P (A) is not
an intrinsic property of A, but is relative, with respect to a sequence of obser-
vations, a cognitive system at a certain time, or a body of evidence. Without
such a “reference point”, P (A) cannot be meaningfully decided. One problem
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in the discussions is that “probability” is used without a clear specification of
the reference point, which often lead to implicitly changing of reference. Since
different reference points often assigns different probability values to the same
event, such changes are invalid in the discussions.

Even worse, in some discussions different interpretations are implicitly mixed
with each other. Of course, different interpretations are related to each other,
but it does not mean that they can be directly mixed together.

Even if an interpretation of probability is clearly specified and faithfully fol-
lowed, there are still serious issues that prevent probability theory from playing
a central role in AGI. In the following, I will analyze the issues encountered by
each of the above three interpretations in AGI.

2 The Frequentist Interpretation

The frequentist interpretation of probability is the standard interpretation used
in mathematical statistics. Now the problem is that whether an AGI system can
be built using this idea. Since a major function of intelligence is to predict the
future, some people may expect an AGI to find the probability of any event.

Now the task is to calculate PS(A), the limit of the occurrence frequency of an
arbitrary event A in a sequence S. According to the usual expression, the sample
space Ω is the set of all possible and distinct outcomes of some experiment, and
each event is a subset of Ω. Though such a setting is natural for some simple and
well-defined experiments (such as throwing dice or picking balls out of an urn),
many experiments or observations do not have such well-defined results. Can we
list all possible consequences of a government policy? What is the sample space
of an AGI that has to deal with “unanticipated situations”?

One approach is not to categorize the phenomena in the outside world, but
focus on what the system can perceive from the outside world. It is a common
practice to represent the system’s experience as a stream of percepts that are
from a constant set Ω [2]. Considering the uncertainty in the environment, it
seems natural to assign probability to the occurring of each perception. However,
since the units of perception are not always the individual percepts, but often
the patterns formed by the percepts, the probability values are no longer in a
function defined on Ω but on Ωn (if a pattern can be simply represented as a
Cartesian product of n percepts). When the environment is described at multiple
levels of granularity, the descriptions will correspond to n values that differ in
magnitude. It will be hard to get the probability values at all these levels.

There is a more fundamental question: how can we know that an event under
discussion has a probability? After all, not all sequences converge to a limit, and
in principle it is impossible to decide whether a sequence has a limit only from
finite observations. For instance, the price of a stock changes from time to time,
but to take it as a “random number” that follows a (unknown) distribution is
not a self-evident postulate. If in a world all the events are indeed governed by
(known or unknown) probability distributions, that world must be very boring,
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since its future is the same as its past, stochastically speaking. I do not see any
valid reason to assume such a world for us, or for AGI.

Another issue of this interpretation is that the sample space and the events
are not always clearly defined. Whether a television set is a piece of furniture
does not have a clear “yes/no” answer, and the uncertainty in the statement
cannot be naturally taken as the frequency for a television set to be furniture
in a sequence of experiments. A related issue is the probability of a unique
and unrepeatable accident, such as the “chance” for a specific patient to have
a specific disease. The common practice is to take the patient as an instance
of a reference class containing similar cases, but in that way a single case can
often be taken as an instance of multiple reference classes, leading to inconsistent
probability assignments [15, 16]. Similarly, it is unclear how to assign probability,
under a frequentist interpretation, to abstract statements like “The world is a
Turing machine”, since it is unclear that what experiment should be taken, and
how to interpret the outcomes.

In summary, the frequentist interpretation can only be used in limited prob-
lems, so cannot serve a central role in an AGI system.

3 The Subjective Interpretation

Partly as an attempt to go beyond the restriction of frequentist interpretation,
the “subjective interpretation” (also called “subjectivistic interpretation”) of
probability is more “liberal” on how probability can be decided. In its original
form, this interpretation takes the probability of a statement as the degree of
belief of a system on the statement. It is “subjective” since different systems
can legally assign different probability values to the same statement, and there
is no objective standard to judge which one is the “true probability” of the
statement. Under this interpretation, a system can assign a probability value to
any statement.

Here “subjective” does not mean “arbitrary”. This interpretation does not
specify where these degrees of belief come from, but demand them to form a
consistent probability distribution, as well as to be manipulated according to
probability theory. In particular, when new information become available, the
degrees of belief should be updated according to Bayes’ Theorem, so this ap-
proach is often referred to as “Bayesianism”. A well-known justification of this
approach is provided by [17], where the probability axioms are derived from a
set of intuitively reasonable assumptions, so it suggests that a rational agent
should manage its beliefs according to probability theory.

Compared to the other interpretations, the subjective approach demands the
least — it allows a system to believe in anything to any degree, as far as the
beliefs are consistent (also called coherent), in the sense specified in probability
theory. Remarkably, from the viewpoint of AGI, this position can be attacked
from the opposite directions: the demand can be criticized as either “too weak”
or “too strong”, for different reasons.
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Since an AGI system must be implemented in a computer, the design specifi-
cation cannot say “the system can hold any beliefs as far as they are consistent”,
but has to provide a concrete way to assign probability to statements. Especially,
the Bayesian updating process must start from a prior distribution, which the
subjective interpretation does not provide. Several solutions have been proposed.
One is to start with a “non-informative prior” as a place-holder, then let the sys-
tem “learn” from incoming “evidence” by revising its beliefs accordingly. This
approach will be analyzed in the following section, because it effectively treats
probability as degree of evidential support.

Another approach that is especially influential in the AGI community is
to use the “universal prior” proposed by Solomonoff [18] that assigns a prior
probability to a statement according to its “algorithmic complexity”. This idea
is often justified as a form of “Occam’s Razor” — though a Solomonoff prior does
not “choose” a single hypothesis, it does give it the highest probability, among
the hypotheses consistent with the observations. One problem of this approach is
that intuitively “probability” is not a measurement of “preference” or “priority”
in general, but “likelihood” or “plausibility” in particular. When choosing among
competing hypotheses, we do prefer one that is both plausible and simple, but
it does not mean that these two dimensions are correlated or exchangeable.
Occam’s Razor should be taken as “Simple hypotheses are preferred”, but not
“Simple hypotheses are preferred because they are more likely to be confirmed”.
It is fine for an AGI system to be based on the latter assumption, but it is not
a self-evident postulate, but an assumption that may be rejected. An arguable
analogy is that we prefer products that are both cheap and with high quality,
but it does not mean we believe in general cheaper products will have higher
quality — actually, if we have to use price to predict quality, many people may
assume the opposite, that is, cheaper ones usually have lower quality.

Since the subjective interpretation only demands the consistency of the de-
grees of belief, to say it is “too strong” means to doubt the necessity of the
consistency requirement among beliefs. Traditionally, this requirement is justi-
fied by the “Dutch Book” argument, which says that inconsistent beliefs lead to
sure loss in certain betting situations [19]. However, this argument only suggests
that consistency is highly desired, but not that it is practically achievable. It can
be argued that for a system with finite information-processing capacity while
still opening to novel situations and making real-time responses, it is impossible
for the system to achieve and maintain the consistency of its beliefs as demanded
by probability theory [9]. This issue will be further explored in the following.

4 The Logical Interpretation

The logical interpretation of probability is sometimes confused with the sub-
jective interpretation, since according to both of them, different systems may
legally have different opinions on the probability of the same statement. How-
ever, according to the subjective interpretation this difference does not need an
explanation, while according to the logical interpretation this difference must be



5

caused by the systems’ different evidence collections — if the systems all have
the same evidence for a given statement, they should assign the same probability
to the statement. According to the logical interpretation, the relation between
belief and evidence is a logical relation that does not depend on any system’s
opinion, so there is no “subjectivity” beyond different evidential basis.

With this clarification, probability under logical interpretation seems to be
exactly what AGI needs: it is a degree of belief indicating the extend of evidential
support the statement has, or “Believing on the basis of the evidence” [20]. It has
neither the restrictive nature of the frequentist interpretation nor the arbitrary
nature of the subjective interpretation. Now the problem becomes: can such a
probability be defined and maintained among the beliefs of an AGI system?

Carnap proposed a logical foundation for probability, in which probability
value P (H|E) indicates the extent of “E → H” as the degree of “partial impli-
cation” [21]. Though mathematically elegant, this approach can only be applied
to certain highly idealized domains, so cannot be depended on by an AGI.

A more common attitude can be found in the “Neo-Bayesianism”, where
probability is simply referred to as degree of belief that is based on available
evidence and is revised by new evidence via Bayesian conditioning [22]. However,
it does not explicitly specify how the prior probability raises from evidence. To
use Solomonoff prior here is problemic, since, as argued previously, it is not based
on a logical relation between evidence and hypothesis.

As I have argued in detail in [7, 8], a common conceptual confusion of this ap-
proach is between the background knowledge K on which a probability function
PK(x) is established and the condition C of a conditional probability P (x|C).
The former is often written as P (x|K), which suggests that the background
knowledge can be treated as a condition, so can be learned through Bayesian
conditioning. This treatment is not always valid, because background knowledge
often cannot be explicitly represented as statements on which P (x) is defined.
In general, the background knowledge behind a probability distribution cannot
be learned or revised using Bayesian conditioning. For this reason, the Bayesian
approach cannot satisfy the learning requirements of AGI systems.

To fully discuss this issue is impossible within the length restriction of this
paper. Here I can only briefly mention a solution proposed in my NARS system.
In NARS, the truth-value of each belief is a pair of real numbers 〈f, c〉 ∈ [0, 1]×
(0, 1), and it indicates the evidential support of the statement [9, 10]. Based on
a definition of the evidence of a statement, the first component of the truth-
value, frequency, is defined as the proposition of positive evidence among all
evidence, and the second component, confidence, is defined as the proportion
of current evidence among all evidence at an evidential horizon. Based on this
“experience-grounded” definition of truth-value, the inference rules are defined,
with truth-value functions that decides the truth-value of a conclusion according
to the evidence provided by the premises.

Defined in this way, the frequency factor in the truth-value is intuitively
similar to probability under the frequentist interpretation, except in NARS the
frequency is completely about the past, and no assumption is made about the
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existence of a limit. Furthermore, in the system each belief has its own evidential
basis, so the truth-values do not form a consistent probability distribution. In-
stead, the system is designed under the assumption that inconsistencies among
beliefs are inevitable, though they are not desired. Whenever an inconsistency
is recognized, the system always tries to resolve it by pooling the evidence in a
summarizing conclusion, though it cannot guarantee the consistency of all the
beliefs, nor that the system will never make mistake for this reason.

Consequently, even though a truth-value in NARS has certain similarities
with a probability value, the truth-value functions are not derived from proba-
bility theory (though some of them agree with certain formulas in probability
theory), but are designed as extended Boolean operators [9]. It is the case be-
cause probability theory does not tell us how to handle the situation where
each belief has its own distribution function (not its own value within the same
distribution function). In other words, the logical interpretation of probability
assumes all the degree of beliefs are values of PK(x), while in NARS they are like
values of PKi

(x), where each evidential basis Ki defines a separate probability
distribution.

For this reason, the truth-value in NARS shares certain common proper-
ties with probability, though the system as a whole is not “based on proba-
bility theory”. There are AGI systems that mix probabilistic calculations with
“heuristics”, and are proposed and justified as extensions or approximations of
probability theory [6]. In general, I agree that an application of a formal model
is usually more or less an approximation, but for the application to be valid,
an approximation ratio must be provided. In the current case, I do not think a
system can be considered as “based on probability theory” if even the axioms
of the theory are not followed. Furthermore, if some axiom of a theory is not
applicable to a situation, then the theory should not even be taken as an ideal
model to be approximated.

5 Conclusions

After analyzing all the three common interpretations of probability, my conclu-
sion is that an AGI system cannot be mainly based on probability theory.

This conclusion does not mean there is anything wrong in probability theory
as a branch of mathematics, and nor does it exclude the possibility for probability
theory to be used in an AGI system for some tasks here or there (e.g., NARS uses
probability theory in resource allocation). However, it challenges the approaches
that treat the world as consisting of events following a probability distribution,
or the mind as consisting of beliefs following a probability distribution.

As I have argued in [9] and many other places, “intelligence” means to adapt
with insufficient knowledge and resources. Probability theory does not fully as-
sume this insufficiency. In probabilistic models, whether a future event will occur
is uncertain, but its “occurring probability” is certain. Furthermore, all the prob-
ability values must be consistent, and the system can always afford the expense
to carry out the calculation demanded by probability theory (though the resource
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issue is not discussed in this paper). In an AGI system, these assumptions can-
not be satisfied, since it usually has neither the knowledge nor the resources to
maintain a consistent probability distribution as a summary of evidence.
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