
The Logic of Intelligence

Pei Wang

Department of Computer and Information Sciences, Temple University
Philadelphia, PA 19122 USA
pei.wang@temple.edu - http://www.cis.temple.edu/~pwang/

Abstract

Is there an “essence of intelligence” that distinguishes intelligent systems
from non-intelligent systems? If there is, then what is it? This chapter
suggests an answer to these questions by introducing the ideas behind the
NARS (Non-Axiomatic Reasoning System) project. NARS is based on the
opinion that the essence of intelligence is the ability to adapt with insuf-
ficient knowledge and resources. According to this belief, the author has
designed a novel formal logic, and implemented it in a computer system.
Such a“logic of intelligence” provides a unified explanation for many cog-
nitive functions of the human mind, and is also concrete enough to guide
the actual building of a general purpose “thinking machine”.

1 Intelligence and Logic

1.1 To define intelligence

The debate on the essence of intelligence has been going on for decades, and
there is still little sign of consensus (this book itself is a piece of evidence).

In the “mainstream AI”, the followings are some representative opinions:

“AI is concerned with methods of achieving goals in situations in
which the information available has a certain complex character. The
methods that have to be used are related to the problem presented by
the situation and are similar whether the problem solver is human, a
Martian, or a computer program.” [McCarthy, 1988]

Intelligence usually means “the ability to solve hard problems”.
[Minsky, 1985]

“By ‘general intelligent action’ we wish to indicate the same scope
of intelligence as we see in human action: that in any real situation

32 Pei Wang

behavior appropriate to the ends of the system and adaptive to the
demands of the environment can occur, within some limits of speed
and complexity.” [Newell and Simon, 1976]

Maybe it is too early to define intelligence. It is obvious that, after the
decades of study, we still do not know very much about it. There are more
questions than answers. Any definition based on the current knowledge is
doomed to be revised by future works. We all know that a well-founded
definition is usually the result, rather than the starting point, of scientific
research. However, there are still reasons for us to be concerned about the
definition of intelligence at the current time. Though clarifying the meaning
of a concept always helps communication, this problem is especially impor-
tant for AI. As a community, AI researchers need to justify their field as a
scientific discipline. Without a (relatively) clear definition of intelligence, it
is hard to say why AI is different from, for instance, computer science or psy-
chology. Is there really something novel and special, or just fancy labels on
old stuff? More vitally, every researcher in the field needs to justify his/her
research paradigm according to such a definition. Anyone who wants to work
on artificial intelligence is facing a two-phase task: to choose a working defi-
nition of intelligence, then to produce it in a computer.

A working definition is a definition that is concrete enough that you can
directly work with it. By accepting a working definition of intelligence, it
does not mean that you really believe that it fully captures the concept
“intelligence”, but that you will take it as a goal for your current research
project.

Therefore, the lack of a consensus on what intelligence is does not prevent
each researcher from picking up (consciously or not) a working definition of
intelligence. Actually, unless you keep one (or more than one) definition, you
cannot claim that you are working on artificial intelligence.

By accepting a working definition of intelligence, the most important com-
mitments a researcher makes are on the acceptable assumptions and desired
results, which bind all the concrete works that follow. The defects in the def-
inition can hardly be compensated by the research, and improper definitions
will make the research more difficult than necessary, or lead the study away
from the original goal.

Before studying concrete working definitions of intelligence, we need to
set up a general standard for what makes a definition better than others.

Carnap met the same problem when he tried to clarify the concept “prob-
ability”. The task “consists in transforming a given more or less inexact con-
cept into an exact one or, rather, in replacing the first by the second”, where
the first may belong to everyday language or to a previous stage in the sci-
entific language, and the second must be given by explicit rules for its use
[Carnap, 1950].

According to Carnap, the second concept, or the working definition as it
is called in this paper, must fulfill the following requirements [Carnap, 1950]:

The Logic of Intelligence 33

1. It is similar to the concept to be defined, as the latter’s vagueness permits.
2. It is defined in an exact form.
3. It is fruitful in the study.
4. It is simple, as the other requirements permit.

It seems that these requirements are also reasonable and suitable for our
current purpose. Now let us see what they mean concretely to the working
definition of intelligence:

Similarity (to standard usage). Though “intelligence” has no exact
meaning in everyday language, it does have some common usages with
which the working definition should agree. For instance, normal human
beings are intelligent, but most animals and machines (including ordinary
computer systems) are either not intelligent at all or much less intelligent
than human beings.

Exactness (or well-definedness). Given the working definition, whether
(or how much) a system is intelligent should be clearly decidable. For
this reason, intelligence cannot be defined in terms of other ill-defined
concepts, such as mind, thinking, cognition, intentionality, rationality,
wisdom, consciousness, and so on, though these concepts do have close
relationships with intelligence.

Fruitfulness (and instructiveness). The working definition should pro-
vide concrete guidelines for the research based on it – for instance, what
assumptions can be accepted, what phenomena can be ignored, what
properties are desired, and so on. Most importantly, the working def-
inition of intelligence should contribute to the solving of fundamental
problems in AI.

Simplicity. Although intelligence is surely a complex mechanism, the work-
ing definition should be simple. From a theoretical point of view, a simple
definition makes it possible to explore a paradigm in detail; from a prac-
tical point of view, a simple definition is easy to use.

For our current purpose, there is no “right” or “wrong” working defini-
tion for intelligence, but there are “better” and “not-so-good” ones. When
comparing proposed definitions, the four requirements may conflict with each
other. For example, one definition is more fruitful, while another is simpler.
In such a situation, some weighting and trade-off become necessary. How-
ever, there is no evidence showing that in general the requirements cannot
be satisfied at the same time.

1.2 A working definition of intelligence

Following the preparation of the previous section, we propose here a working
definition of intelligence:

Intelligence is the capacity of a system to adapt to its environment
while operating with insufficient knowledge and resources.

34 Pei Wang

The environment of a system may be the physical world, or other infor-
mation-processing systems (human or computer). In either case, the interac-
tions can be described by the experiences (or stimuli) and responses of the
system, which are streams of input and output information stream, respec-
tively. For the system, perceivable patterns of input and producible patterns
of output constitute its interface language.

To adapt means that the system learns from its experiences. It adjusts its
internal structure to approach its goals, as if future situations will be similar
to past situations. Not all systems adapt to their environment. For instance,
a traditional computing system gets all of its knowledge during its design
phase. After that, its experience does not contribute to the its behaviors. To
acquire new knowledge, such a system would have to be redesigned.

Insufficient knowledge and resources means that the system works under
the following restrictions:

Finite: The system has a constant information-processing capacity.
Real-time: All tasks have time requirements attached.
Open: No constraints are put on the knowledge and tasks that the system

can accept, as long as they are representable in the interface language.

The two main components in the working definition, adaptation and insuf-
ficient knowledge and resources, are related to each other. An adaptive system
must have some insufficiency in its knowledge and resources, for otherwise it
would never need to change at all. On the other hand, without adaptation, a
system may have insufficient knowledge and resources, but make no attempt
to improve its capacities.

Not all systems take their own insufficiency of knowledge and resources
into full consideration. Non-adaptive systems, for instance, simply ignore new
knowledge in their interactions with their environment. As for artificial adap-
tive systems, most of them are not finite, real-time, and open, in the following
senses:

1. Though all actual systems are finite, many theoretical models (for exam-
ple, Turing Machine) neglect the fact that the requirements for processor
time and/or memory space may go beyond the supply capacity of the
system.

2. Most current AI systems do not consider time constraints at run time.
Most real-time systems can handle time constraints only if they are es-
sentially deadlines [Strosnider and Paul, 1994].

3. Various constraints are imposed on what a system can experience. For
example, only questions that can be answered by retrieval and deduction
from current knowledge are acceptable, new knowledge cannot conflict
with previous knowledge, and so on.

Many computer systems are designed under the assumption that their
knowledge and resources, though limited or bounded, are still sufficient to ful-
fill the tasks that they will be called upon to handle. When facing a situation

The Logic of Intelligence 35

where this assumption fails, such a system simply panics or crashes, and asks
for external intervention by a human user.

For a system to work under the assumption of insufficient knowledge
and resources, it should have mechanisms to handle the following types of
situation, among others:

• A new processor is required when all existent processors are occupied;

• Extra memory is required when all available memory is already full;

• A task comes up when the system is busy with something else;

• A task comes up with a time requirement, so exhaustive search is not an
option;

• New knowledge conflicts with previous knowledge;

• A question is presented for which no sure answer can be deduced from
available knowledge;

For traditional computing systems, these types of situations usually re-
quire human intervention or else simply cause the system to refuse to accept
the task or knowledge involved. However, for a system designed under the
assumption of insufficient knowledge and resources, these are normal situ-
ations, and should be managed smoothly by the system itself. According
to the above definition, intelligence is a “highly developed form of mental
adaptation” [Piaget, 1960].

When defining intelligence, many authors ignore the complementary ques-
tion: what is unintelligent? If everything is intelligent, then this concept is
empty. Even if we agree that intelligence, like almost all properties, is a matter
of degree, we still need criteria to indicate what makes a system more intel-
ligent than another. Furthermore, for AI to be a (independent) discipline,
we require the concept “intelligence” to be different from other established
concepts, otherwise, we are only talking about some well-known stuff with
a new name, which is not enough to establish a new branch of science. For
example, if every computer system is intelligent, it is better to stay within
the theory of computation. Intuitively, “intelligent system” does not mean
a faster and bigger computer. On the other hand, an unintelligent system is
not necessarily incapable or gives only wrong results. Actually, most ordinary
computer systems and many animals can do something that human beings
cannot. However, these abilities do not earn the title “intelligent” for them.
What is missing in these capable-but-unintelligent systems? According to
the working definition of intelligence introduced previously, an unintelligent
system is one that does not adapt to its environment. Especially, in artificial
systems, an unintelligent system is one that is designed under the assumption
that it only works on problems for which the system has sufficient knowledge
and resources. An intelligent system is not always “better” than an unin-
telligent system for practical purposes. Actually, it is the contrary: when a
problem can be solved by both of them, the unintelligent system is usually
better, because it guarantees a correct solution. As Hofstadter said, for tasks

36 Pei Wang

like adding two numbers, a “reliable but mindless” system is better than an
“intelligent but fallible” system [Hofstadter, 1979].

1.3 Comparison with other definitions

Since it is impossible to compare the above definition to each of the existing
working definitions of intelligence one by one, we will group them into several
categories.

Generally speaking, research in artificial intelligence has two major mo-
tivations. As a field of science, we want to learn how the human mind, and
“mind” in general, works; and as a branch of technology, we want to apply
computers to domains where only the human mind works well currently. In-
tuitively, both goals can be achieved if we can build computer systems that
are “similar to the human mind”. But in what sense they are “similar”? To
different people, the desired similarity may involve structure, performance,
capacity, function, or principle. In the following, we discuss typical opinions
in each of the fivecategories, to see where these working definitions of intel-
ligence will lead AI.

To simulate human brain Intelligence is produced by the human brain, so
maybe AI should attempt to simulate a brain in a computer system as faith-
ful as possible. Such an opinion is put in its extreme form by neuroscientists
Reeke and Edelman, who argue that “the ultimate goals of AI and neuro-
science are quite similar” [Reeke and Edelman, 1988].

Though it sounds reasonable to identify AI with brain model, few AI
researchers take such an approach in a very strict sense. Even the “neural
network” movement is “not focused on neural modeling (i.e., the modeling of
neurons), but rather . . . focused on neurally inspired modeling of cognitive
processes” [Rumelhart and McClelland, 1986]. Why? One obvious reason is
the daunting complexity of this approach. Current technology is still not
powerful enough to simulate a huge neural network, not to mention the fact
that there are still many mysteries about the brain. Moreover, even if we
were able to build a brain model at the neuron level to any desired accuracy,
it could not be called a success for AI, though it would be a success for
neuroscience.

AI is more closely related to the concept “model of mind” – that is, a high-
level description of brain activity in which biological concepts do not appear
[Searle, 1980]. A high-level description is preferred, not because a low-level
description is impossible, but because it is usually simpler and more general.
A distinctive characteristic of AI is the attempt to “get a mind without a
brain” – that is, to describe mind in a medium-independent way. This is
true for all models: in building a model, we concentrate on certain properties
of an object or process and ignore irrelevant aspects; in so doing, we gain
insights that are hard to discern in the object or process itself. For this reason,
an accurate duplication is not a model, and a model including unnecessary

The Logic of Intelligence 37

details is not a good model. If we agree that “brain” and “mind” are different
concepts, then a good model of brain is not a good model of mind, though the
former is useful for its own sake, and helpful for the building of the latter.

To duplicate human behaviors Given that we always judge the intelligence of
other people by their behavior, it is natural to use “reproducing the behavior
produced by the human mind as accurately as possible” as the aim of AI. Such
a working definition of intelligence asks researchers to use the Turing Test
[Turing, 1950] as a sufficient and necessary condition for having intelligence,
and to take psychological evidence seriously.

Due to the nature of the Turing Test and the resource limitations of a
concrete computer system, it is out of question for the system to have pre-
stored in its memory all possible questions and proper answers in advance,
and then to give a convincing imitation of a human being by searching such
a list. The only realistic way to imitate human performance in a conversation
is to produce the answers in real time. To do this, it not only needs cognitive
faculties, but also much prior “human experience” [French, 1990]. Therefore,
it must have a body that feels human, it must have all human motivations
(including biological ones), and it must be treated by people as a human
being – so it must simply be an “artificial human”, rather than a computer
system with artificial intelligence.

As French points out, by using behavior as evidence, the Turing Test
is a criterion solely for human intelligence, not for intelligence in general
[French, 1990]. Such an approach can lead to good psychological models,
which are valuable for many reasons, but it suffers from “human chauvinism”
[Hofstadter, 1979] – we would have to say, according to the definition, that
the science-fiction alien creature E. T. was not intelligent, because it would
definitely fail the Turing Test.

Though “reproducing human (verbal) behavior” may still be a sufficient
condition for being intelligent (as suggested by Turing), such a goal is difficult,
if not impossible, to achieve. More importantly, it is not a necessary condition
for being intelligent, if we want “intelligence” to be a more general concept
than “human intelligence”.

To solve hard problems In everyday language, “intelligent” is usually applied
to people who can solve hard problems. According to this type of definition,
intelligence is the capacity to solve hard problems, and how the problems are
solved is not very important.

What problems are “hard”? In the early days of AI, many researchers
worked on intellectual activities like game-playing and theorem-proving. Nowa-
days, expert-system builders aim at “real-world problems” that crop up in
various domains. The presumption behind this approach is: “Obviously, ex-
perts are intelligent, so if a computer system can solve problems that only
experts can solve, the computer system must be intelligent, too”. This is why

38 Pei Wang

many people take the success of the chess-playing computer Deep Blue as a
success of AI.

This movement has drawn in many researchers, produced many practi-
cally useful systems, attracted significant funding, and thus has made im-
portant contributions to the development of the AI enterprise. Usually, the
systems are developed by analyzing domain knowledge and expert strategy,
then building them into a computer system. However, though often prof-
itable, these systems do not provide much insight into how the mind works.
No wonder people ask, after learning how such a system works, “Where’s the
AI?” [Schank, 1991] – these systems look just like ordinary computer appli-
cation systems, and still suffer from great rigidity and brittleness (something
AI wants to avoid).

If intelligence is defined as “the capacity to solve hard problems”, then
the next question is: “Hard for whom?” If we say “hard for human beings”,
then most existing computer software is already intelligent – no human can
manage a database as well as a database management system, or substitute
a word in a file as fast as an editing program. If we say “hard for computers,”
then AI becomes “whatever hasn’t been done yet,” which has been dubbed
“Tesler’s Theorem” [Hofstadter, 1979]. The view that AI is a “perpetually
extending frontier” makes it attractive and exciting, which it deserves, but
tells us little about how it differs from other research areas in computer
science – is it fair to say that the problems there are easy? If AI researchers
cannot identify other commonalities of the problems they attack besides mere
hardness, they will be unlikely to make any progress in understanding and
replicating intelligence.

To carry out cognitive functions According to this view, intelligence is charac-
terized by a set of cognitive functions, such as reasoning, perception, memory,
problem solving, language use, and so on. Researchers who subscribe to this
view usually concentrate on just one of these functions, relying on the idea
that research on all the functions will eventually be able to be combined, in
the future, to yield a complete picture of intelligence. A “cognitive function”
is often defined in a general and abstract manner. This approach has pro-
duced, and will continue to produce, tools in the form of software packages
and even specialized hardware, each of which can carry out a function that is
similar to certain mental skills of human beings, and therefore can be used in
various domains for practical purposes. However, this kind of success does not
justify claiming that it is the proper way to study AI. To define intelligence
as a “toolbox of functions” has serious weaknesses.

When specified in isolation, an implemented function is often quite differ-
ent from its “natural form” in the human mind. For example, to study analogy
without perception leads to distorted cognitive models [Chalmers et al., 1992].
Even if we can produce the desired tools, this does not mean that we can eas-
ily combine them, because different tools may be developed under different
assumptions, which prevents the tools from being combined.

The Logic of Intelligence 39

The basic problem with the “toolbox” approach is: without a “big pic-
ture” in mind, the study of a cognitive function in an isolated, abstracted,
and often distorted form simply does not contribute to our understanding of
intelligence.

A common counterargument runs something like this: “Intelligence is
very complex, so we have to start from a single function to make the study
tractable.” For many systems with weak internal connections, this is often
a good choice, but for a system like the mind, whose complexity comes di-
rectly from its tangled internal interactions, the situation may be just the
opposite. When the so-called “functions” are actually phenomena produced
by a complex-but-unified mechanism, reproducing all of them together (by
duplicating the mechanism) is simpler than reproducing only one of them.

To develop new principles According to this type of opinions, what distin-
guishes intelligent systems and unintelligent systems are their postulations,
applicable environments, and basic principles of information processing.

The working definition of intelligence introduced earlier belongs to this
category. As a system adapting to its environment with insufficient knowledge
and resources, an intelligent system should have many cognitive functions,
but they are better thought of as emergent phenomena than as well-defined
tools used by the system. By learning from its experience, the system po-
tentially can acquire the capacity to solve hard problems – actually, hard
problems are those for which a solver (human or computer) has insufficient
knowledge and resources – but it has no such built-in capacity, and thus, with-
out proper training, no capacity is guaranteed, and acquired capacities can
even be lost. Because the human mind also follows the above principles, we
would hope that such a system would behave similarly to human beings, but
the similarity would exist at a more abstract level than that of concrete behav-
iors. Due to the fundamental difference between human experience/hardware
and computer experience/hardware, the system is not expected to accurately
reproduce masses of psychological data or to pass a Turing Test. Finally, al-
though the internal structure of the system has some properties in common
with a description of the human mind at the subsymbolic level, it is not an
attempt to simulate a biological neural network.

In summary, the structure approach contributes to neuroscience by build-
ing brain models, the behavior approach contributes to psychology by pro-
viding explanations of human behavior, the capacity approach contributes to
application domains by solving practical problems, and the function approach
contributes to computer science by producing new software and hardware for
various computing tasks. Though all of these are valuable for various reasons,
and helpful in the quest after AI, these approaches do not, in my opinion,
concentrate on the essence of intelligence.

To be sure, what has been proposed in my definition of intelligence is
not entirely new to the AI community. Few would dispute the proposition
that adaptation, or learning, is essential for intelligence. Moreover, “insuf-

40 Pei Wang

ficient knowledge and resources” is the focus of many subfields of AI, such
as heuristic search, reasoning under uncertainty, real-time planning, and ma-
chine learning. Given this situation, what is new in this approach? It is the
following set of principles:

1. An explicit and unambiguous definition of intelligence as “adaptation
under insufficient knowledge and resources”.

2. A further definition of the phrase “with insufficient knowledge and re-
sources” as finite, real-time, and open.

3. The design of all formal and computational aspects of the project keeping
the two previous definitions foremost in mind.

1.4 Logic and reasoning system

To make our discussion more concrete and fruitful, let us apply the above
working definition of intelligence to a special type of information processing
system – reasoning system.

A reasoning system usually has the following components:

1. a formal language for knowledge representation, as well as communication
between the system and its environment;

2. a semantics that determines the meanings of the words and the truth
values of the sentences in the language;

3. a set of inference rules that match questions with knowledge, infer con-
clusions from promises, and so on;

4. a memory that systematically stores both questions and knowledge, and
provides a working place for inferences;

5. a control mechanism that is responsible for choosing premises and infer-
ence rules for each step of inference.

The first three components are usually referred to as a logic, or the logical
part of the reasoning system, and the last two as the control part of the
system.

According to the previous definition, being a reasoning system is neither
necessary nor sufficient for being intelligent. However, an intelligent reasoning
system does provide a suitable framework for the study of intelligence, for the
following reasons:

• It is a general-purpose system. Working in such a framework keeps us
from being bothered by domain-specific properties, and also prevents us
from cheating by using domain-specific tricks.

• Compared with cognitive activities like low-level perception and motor
control, reasoning is at a more abstract level, and is one of the cognitive
skills that collectively make human beings so qualitatively different from
other animals.

The Logic of Intelligence 41

• The framework of reasoning system is highly flexible and extendable. We
will see that we can carry out many other cognitive activities in it when
the concept of “reasoning” is properly extended.

• Most research on reasoning systems is carried out within a paradigm
based on assumptions directly opposed to the one presented above. By
“fighting in the backyard of the rival”, we can see more clearly what kinds
of effects the new ideas have.

Before showing how an intelligent reasoning system is designed, let us first
see its opposite – that is, a reasoning system designed under the assumption
that its knowledge and resources are sufficient to answer the questions asked
by its environment (so no adaptation is needed). By definition, such a system
has the following properties:

1. No new knowledge is necessary. All the system needs to know to answer
the questions is already there at the very beginning, expressed by a set
of axioms.

2. The axioms are true, and will remain true, in the sense that they corre-
spond to the actual situation of the environment.

3. The system answers questions by applying a set of formal rules to the
axioms. The rules are sound and complete (with respect to the valid
questions), therefore they guarantee correct answers for all questions.

4. The memory of the system is so big that all axioms and intermediate
results can always be contained within it.

5. There is an algorithm that can carry out any required inference in finite
time, and it runs so fast that it can satisfy all time requirements that
may be attached to the questions.

This is the type of system dreamed of by Leibniz, Boole, Hilbert, and
many others. It is usually referred to as a “decidable axiomatic system” or a
“formal system”. The attempt to build such systems has dominated the study
of logic for a century, and has strongly influenced the research of artificial
intelligence. Many researchers believe that such a system can serve as a model
of human thinking.

However, if intelligence is defined as “to adapt under insufficient knowl-
edge and resources”, what we want is the contrary, in some sense, to an
axiomatic system, though it is still formalized or symbolized in a technical
sense. That is why Non-Axiomatic Reasoning System, NARS for short, is
chosen as the name for the intelligent reasoning system to be introduced in
the following sections.

Between “pure-axiomatic” systems and “non-axiomatic” ones, there are
also “semi-axiomatic” systems. They are designed under the assumption that
knowledge and resources are insufficient in some, but not all, aspects. Con-
sequently, adaptation is necessary. Most current AI approaches fall into this
category. According to our working definition of intelligence, pure-axiomatic

42 Pei Wang

systems are not intelligent at all, non-axiomatic systems are intelligent, and
semi-axiomatic systems are intelligent in certain aspects.

Pure-axiomatic systems are very useful in mathematics, where the aim
is to idealize knowledge and questions to such an extent that the revision of
knowledge and the deadlines of questions can be ignored. In such situations,
questions can be answered in a way that is so accurate and reliable that the
procedure can be reproduced by a Turing Machine. We need intelligence only
when no such pure-axiomatic method can be used, due to the insufficiency
of knowledge and resources. For the same reason, the performance of a non-
axiomatic system is not necessarily better than that of a semi-axiomatic
system, but it can work in environments where the latter cannot be used.

Under the above definitions, intelligence is still (as we hope) a matter of
degree. Not all systems in the “non-axiomatic” and “semi-axiomatic” cat-
egories are equally intelligent. Some systems may be more intelligent than
some other systems by having a higher resources efficiency, using knowledge
in more ways, communicating with the environment in a richer language,
adapting more rapidly and thoroughly, and so on.

“Non-axiomatic” does not mean “everything changes”. In NARS, nothing
is fixed as far as the content of knowledge is concerned, but as we will see
in the following sections, how the changes happen is fixed, according to the
inference rules and control strategy of the system, which remain constant
when the system is running. This fact does not make NARS “semi-axiomatic”,
because the fixed part is not in the “object language” level, but in the “meta-
language” level. In a sense, we can say that the “meta-level” of NARS is not
non-axiomatic, but pure-axiomatic. For a reasoning system, a fixed inference
rule is not the same as an axiom.

Obviously, we can allow the “meta-level” of NARS to be non-axiomatic,
too, and therefore give the system more flexibility in its adaptation. However,
that approach is not adopted in NARS at the current stage, for the following
reasons:

• “Complete self-modifying” is an illusion. As Hofstadter put it, “below
every tangled hierarchy lies an inviolate level” [Hofstadter, 1979]. If we
allow NARS to modify its meta-level knowledge, i.e., its inference rules
and control strategy, we need to give it (fixed) meta-meta-level knowledge
to specify how the modification happens. As flexible as the human mind
is, it cannot modify its own “low of thought”.

• Though high-level self-modifying will give the system more flexibility, it
does not necessarily make the system more intelligent. Self-modifying at
the meta-level is often dangerous, and it should be used only when the
same effect cannot be produced in the object-level. To assume “the more
radical the changes can be, the more intelligent the system will be” is
unfounded. It is easy to allow a system to modify its own source code,
but hard to do it right.

The Logic of Intelligence 43

• In the future, we will explore the possibility of meta-level learning in
NARS, but will not attempt to do so until the object-level learning is
mature. To try everything at the same time is just not a good engineering
approach, and this does not make NARS less non-axiomatic, according
to the above definition.

Many arguments proposed previously against logical AI [Birnbaum, 1991,
McDermott, 1987], symbolic AI [Dreyfus, 1992], or AI as a whole [Searle, 1980,
Penrose, 1994], are actually against a more specific target: pure-axiomatic
systems. These arguments are powerful in revealing that many aspects of
intelligence cannot be produced by a pure-axiomatic system (though these
authors do not use this term), but some of them are misleading by using
such a system as the prototype of AI research. By working on a reasoning
system, with its formal language and inference rules, we do not necessarily
bind ourselves with the commitments accepted by the traditional logistic AI
paradigms. As we will see in the following, NARS shares more philosophical
opinions with the subsymbolic, or connectionist movement [Hofstadter, 1985,
Holland, 1986, Holland et al., 1986, Rumelhart and McClelland, 1986, Smolensky, 1988].

What is the relationship of artificial intelligence and computer science?
What is the position of AI in the whole science enterprise? Traditionally,
AI is referred to as a branch of computer science. According to our previ-
ous definitions, AI can be implemented with the tools provided by computer
science, but from a theoretical point of view, they make opposite assump-
tions: computer science focuses on pure-axiomatic systems, while AI focuses
on non-axiomatic systems. The fundamental assumptions of computer science
can be found in mathematical logic (especially, first-order predicate logic) and
computability theory (especially, Turing Machine). These theories take the
sufficiency of knowledge and resources as implicit postulates, therefore adap-
tation, plausible inference, and tentative solutions of problems are neither
necessary nor possible.

Similar assumptions are often accepted by AI researchers with the follow-
ing justification: “We know that the human mind usually works with insuf-
ficient knowledge and resources, but if you want to set up a formal model
and then a computer system, you must somehow idealize the situation.” It is
true that every formal model is an idealization, and so is NARS. The prob-
lem is what to omit and what to preserve in the idealization. In the current
implementation of NARS, many factors that should influence reasoning are
ignored, but the insufficiency of knowledge and resources is strictly assumed
throughout. Why? Because it is a definitive feature of intelligence, so if it were
lost through the “idealization”, the resulting study would be about something
else.

44 Pei Wang

2 The Components of NARS

Non-Axiomatic Reasoning System (NARS) is designed to be an intelligent
reasoning system, according to the working definition of intelligence intro-
duced previously.

In the following, let us see how the major components of NARS (its formal
language, semantics, inference rules, memory, and control mechanism) are
determined, or strongly suggested, by the definition, and how they differ from
the components of an axiomatic system. Because this chapter is concentrated
in the philosophical and methodological foundation of the NARS project,
formal descriptions and detailed discussions for the components are left to
other papers [Wang, 1994b, Wang, 1995b, Wang, 2001a].

2.1 Experience-grounded semantics

Axiomatic reasoning systems (and most semi-axiomatic systems) use “model-
theoretic semantics”. Informally speaking, a model is a description of a do-
main, with relations among objects specified. For a reasoning system working
on the domain, an “interpretation” maps the terms in the system to the ob-
jects in the model, and the predicates in the systems to the relations in the
model. For a given term, its meaning is its image in the model under the
interpretation. For a given proposition, its truth value depends on whether
it corresponds to a fact in the model. With such a semantics, the reasoning
system gets a constant “reference”, the model, according to which truth and
meaning within the system is determined. Though model-theoretic seman-
tics comes in different forms, and has variations, this “big picture” remains
unchanged.

This kindof semantics is not suitable for NARS. As an adaptive sys-
tem with insufficient knowledge and resources, the system cannot judge the
truthfulness of its knowledge against a static, consistent, complete model.
Instead, truth and meaning have to be grounded on the system’s experience
[Wang, 1995a, Wang, 1995b]. Though a section of experience is also a descrip-
tion of the system’s environment, it is fundamentally different from a model,
since experience changes over time, is never complete, and often inconsistent.
Furthermore, experience is directly accessible to the system, while model is
often “in the eye of an observer”.

According to an experience-grounded semantics, truth value becomes a
function of the amount of available evidence, therefore inevitably becomes
dynamic and subjective, though not arbitrary. In such a system, no knowl-
edge is “true” in the sense that it is guaranteed to be confirmed by future
experience. Instead, the truth value of a statement indicates the degree to
which the statement is confirmed by past experience. The system will use
such knowledge to predict the future, because it is exactly what “adaptive”,
and therefore “intelligent”, means. In this way, “truth” means quite differ-

The Logic of Intelligence 45

ent (though closely related) things in non-axiomatic systems and axiomatic
systems.

Similarly, the meaning of a term, that is, what makes the term different
from other terms to the system, is determined by its relationships to other
terms, according to the experience, rather than by an interpretation that
maps it into an object in a model.

With insufficient resources, the truth-value of each statement and the
meaning of each term in NARS is usually grounded on part of the experience.
As a result, even without new experience, the inference activity of the system
will change the truth-values and meanings, by taking previously available-
but-ignored experience into consideration. In contrary, according to model-
theoretic semantics, the internal activities of a system have no effects on truth
value and meaning of the language it uses.

“Without an interpretation, a system has no access to the semantics of a
formal language it uses” is the central argument in Searle’s “Chinese room”
thought experiment against strong AI [Searle, 1980]. His argument is valid
for model-theoretic semantics, but not for experience-grounded semantics.
For an intelligent reasoning system, the latter is more appropriate.

2.2 Inheritance statement

As discussed above, “adaptation with insufficient knowledge and resources”
demands an experience-grounded semantics, which in turn requires a formal
knowledge representation language in which evidence can be naturally defined
and measured.

For a non-axiomatic reasoning system, it is obvious that binary truth
value is not enough. With past experience as the only guidance, the system
not only needs to know whether there is counter example (negative evidence),
but also needs to know its amount, with respect to the amount of positive evi-
dence. To have a general, domain-independent method to compare competing
answers, a numerical truth value, or a measurement of uncertainty, becomes
necessary for NARS, which quantitatively records the relationship between
a statement and available evidence. Furthermore, “positive evidence” and
“irrelevant stuff” need to be distinguished from each other, too.

Intuitively speaking, the simplest case to define evidence is for a gen-
eral statement about many cases, while some of them are confirmed by past
experience (positive evidence), and some others are disconfirmed by past ex-
perience (negative evidence). Unfortunately, the most popular formal lan-
guage for knowledge representation, first-order predicate calculus, cannot
be easily used in this way. In this language, a “general statement”, such
as “Ravens are black”, is represented as a “universal proposition”, such as
(∀x)(Raven(x) → Black(x)). In the original form of first-order predicate
calculus, there is no such a notion as “evidence”, and the proposition is ei-
ther true or false, depending on whether there is such an object x in the

46 Pei Wang

domain that makes Raven(x) true and Black(x) false. It is natural to de-
fine constants that make the proposition true as its positive evidence, and
the constants that make it false its negative evidence. However, such a naive
solution has serious problems [Wang, 1999, Wang, 2001c]:

• Only the existence of negative evidence contribute to the truth value of
the universal proposition, while whether there is “positive evidence” does
not matter. This is where Popper’s refutation theory [Popper, 1959] came
from.

• Every constant is either a piece of positive evidence or a piece of negative
evidence, and nothing is irrelevant. This is where Hempel’s conformation
paradox [Hempel, 1943] came from.

Though evidence is hard to define in (first-order) predicate calculus, it
is easy to do in a properly designed categorical logic. Categorical logic, or
“term-oriented” logic, is another family of formal logic, exemplified by Aris-
totle’s Syllogism [Aristotle, 1989]. The major formal features that distinguish
it from predicate logic is the use of subject-predicate statements and syllo-
gistic inference rules. Let us start with the first feature.

NARS uses a categorical language that is based on an inheritance rela-
tion, “→”. The relation, in its ideal form, is a reflexive and transitive binary
relation defined on terms, where a term can be thought as the name of a con-
cept. For example, “raven → bird” is an inheritance statement with “raven”
as subject term and “bird” as predicate term. Intuitively, it says that the sub-
ject is a specialization of the predicate, and the predicate is a generalization
of the subject. The statement roughly corresponds to the English sentence
“Raven is a kind of bird”. Based on the inheritance relation, the extension
and intension of a term are defined as the set of its specializations and gen-
eralizations, respectively. That is, for a given term T , its extension T E is the
set {x | x → T}, and its intension T I is the set {x | T → x}. Given the
reflexivity and transitivity of the inheritance relation, it can be proven that
for any terms S and P , S → P is true if and only if SE is included in P E ,
and P I is included in SI . In other words, “There is an inheritance relation
from S to P” is equivalent to “P inherits the extension of S, and S inherits
the intension of P”.

When considering “imperfect” inheritance statements, the above theorem
naturally gives us the definition of (positive and negative) evidence. For a
given statement “S → P”, if a term M in both SE and P E , or in both P I

and SI , then it is a piece of positive evidence for the statement, because as
far as M is concerned, the proposed inheritance is true; if M in SE but not
in P E , or in P I but not in SI , then it is a piece of negative evidence for
the statement, because as far as M is concerned, the proposed inheritance is
false; if M is neither in SE nor in P I , it is not evidence for the statement,
and whether it is also in P E or SI does not matter. Let us use w+, w−, and
w for the amount of positive, negative, and total evidence, respectively, then
we have w+ = |SE ∩ P E | + |P I ∩ SI |, w− = |SE − P E | + |P I − SI |, w =

The Logic of Intelligence 47

w++w− = |SE |+ |P I |. Finally, we define the truth value of a statement to be
a pair of numbers <f, c>. Here f is called the frequency of the statement, and
f = w+/w. The second component c is called the confidence of the statement,
and c = w/(w+k), where k is a system parameter with 1 as the default value.
For a more detailed discussion, see [Wang, 2001b].

Now we have got the technical basic of the experience-grounded seman-
tics: If the experience of the system is a set of inheritance statements defined
above, then for any term T , we can determine its meaning, which is its ex-
tension and intension (according to the experience), and for any inheritance
statement S → P , we can determine its positive evidence and negative evi-
dence (by comparing the meaning of the two terms), then calculate its truth
value according to the above definition.

Of course, the actual experience of NARS is not a set of binary inheritance
statements, nor does the system determine the truth value of a statement in
the above way. The actual experience of NARS is a stream of statements,
with their truth values, represented by the <f, c> pair. Within the system,
new statements are derived by the inference rules, with truth-value functions
calculating the truth values of the conclusions from those of the premises. The
purpose of the above definitions is to define the truth value in an idealized
situation, and to provide a foundation for the truth value functions (to be
discussed in the following).

2.3 Categorical language

Based on the inheritance relation introduced above, NARS uses a powerful
“categorical language”, obtained by extending the above core language in
various directions:

Derived inheritance relations: Beside the inheritance relation defined pre-
viously, NARS also includes several of its variations. For example,
• the similarity relation ↔ is symmetric inheritance;
• the instance relation ◦→ is an inheritance relation where the subject

term is treated as an atomic instance of the predicate term;
• the property relation →◦ is an inheritance relation where the predicate

term is treated as a primitive property of the subject term.
Compound terms: In inheritance statements, the (subject and predicate)

terms not only can be simple names (as in the above examples), but also
can be compound terms formed by other terms with logical operator. For
example, if A and B are terms, we have
• their union (A ∪ B) is a compound term, initially defined by (A ∪

B)E = (AE ∪ BE) and (A ∪ B)I = (AI ∩ BI);
• their conjunction (A ∩ B) is a compound term, initially defined by

(A ∩ B)E = (AE ∩ BE) and (A ∩ B)I = (AI ∪ BI).
With compound terms, the expressive power of the language is greatly
extended.

48 Pei Wang

Ordinary relation: In NARS, only the inheritance relation and its varia-
tions are defined as logic constants that are directly recognized by the
inference rules. All other relations are converted into inheritance relations
with compound terms. For example, an arbitrary relation R among three
terms A, B, and C is usually written as R(A, B, C), which can be equiva-
lently rewritten as one of the following inheritance statements (i.e., they
have the same meaning and truth value):
• (A, B, C)◦→ R, where the subject term is a compound (A, B, C), an

ordered tuple. This statement says “The relation among A, B, C (in
that order) is an instance of the relation R.”

• A◦→ R(∗, B, C), where the predicate term is a compound R(∗, B, C)
with a “wildcard”, ∗. This statement says “A is such an x that satisfies
R(x, B, C).”

• B◦→ R(A, ∗, C). Similarly, “B is such an x that satisfies R(A, x, C).”
• C◦→ R(A, B, ∗). Again, “C is such an x that satisfies R(A, B, x).”

Higher-order term: In NARS, a statement can be used as a term, which
is called a “higher-order” term. For example, “Bird is a kind of animal”
is represented by statement bird → animal, and “Tom knows that bird
is a kind of animal” is represented by statement (bird → animal)◦→
know(Tom, ∗), where the subject term is a statement. Compound higher-
order terms are also defined: if A and B are higher-order terms, so do their
negations (¬A and ¬B), disjunction (A ∨ B), and conjunction (A ∧ B).

Higher-order relation: Higher-order relations are the ones whose subject
term and predicate term are both higher-order terms. In NARS, there
are two of them defined as logic constants:
• implication, ⇒, which is intuitively correspond to “if-then”, and is

defined as isomorphic to inheritance, →;
• equivalence, ⇔, which is intuitively correspond to “if-and-only-if”,

and is defined as isomorphic to similarity, ↔.
Non-declarative sentences: Beside the various types statements intro-

duced above, which represent the system’s declarative knowledge, the for-
mal language of NARS uses similar formats to represent non-declarative
sentences:
• a question is either a statement whose truth value needs to be evalu-

ated (“yes/no” questions), or a statement containing variables to be
instantiated (“what” questions);

• a goal is a statement whose truthfulness needs to be established by
the system through the execution of relevant operations.

For each type of statements, its truth value is defined similarly to how we
define truth value for inheritance statement.

With the above structures, the expressive power of the language is roughly
the same as a typical natural language (such as English or Chinese). There is
no one-to-one mapping between sentences in this language and those in first-
order predicate calculus, though approximate mapping is possible for many

The Logic of Intelligence 49

sentences. While first-order predicate calculus may still be better to repre-
sent mathematical knowledge, this new language will be better to represent
empirical knowledge.

2.4 Syllogistic inference rules

Due to insufficient knowledge, the system needs to do non-deductive infer-
ence, such as induction, abduction, and analogy, to extend past experience to
novel situations. In this context, deductions become fallible, too, in the sense
that the conclusions may be revised by new knowledge, even if the premises
remain unchallenged. According to the experience-grounded semantics, the
definition of validity of inference rules is changed. Instead of generating infal-
lible conclusions, a valid rule should generate conclusions whose truth value is
evaluated against (and only against) the evidence provided by the premises.

As mentioned previously, a main feature that distinguish categorical log-
ics from predicate/propositional logics is the use of syllogistic inference rules,
each of which takes a pair of premises that share a common term. For infer-
ence among inheritance statements, there are three possible combinations if
the two premises share exactly one term:

deduction induction abduction
M → P <f1, c1> M → P <f1, c1> P → M <f1, c1>
S → M <f2, c2> M → S <f2, c2> S → M <f2, c2>
———————– ———————– ———————–

S → P <f, c> S → P <f, c> S → P <f, c>

Each inference rule has its own truth-value function to calculate the truth
value of the conclusion according to those of the premises. In NARS, these
functions are designed in the following way:

1. Treat all relevant variables as binary variables taking 0 or 1 values, and
determine what values the conclusion should have for each combination
of premises, according to the semantics.

2. Represent the truth values of conclusion obtained above as Boolean func-
tions of those of the premises.

3. Extend the Boolean operators into real number functions defined on [0,
1] in the following way:

NOT (x) = 1 − x

AND(x1, ..., xn) = x1 ∗ ... ∗ xn

OR(x1, ..., xn) = 1 − (1 − x1) ∗ ... ∗ (1 − xn)

4. Use the extended operators, plus the relationship between truth value
and amount of evidence, to rewrite the above functions.

50 Pei Wang

The result is the following:

deduction induction abduction
f = f1f2/(f1 + f2 − f1f2) f = f1 f = f2

c = c1c2(f1 + f2 − f1f2) c = f2c1c2/(f2c1c2 + 1) c = f1c1c2/(f1c1c2 + 1)

When the two premises have the same statement, but comes from different
sections of the experience, the revision rule is applied to merge the two into
a summarized conclusion:

revision

S → P <f1, c1>
S → P <f2, c2>

———————–
S → P <f, c>

Since in revision the evidence for the conclusion is the sum of the evidence
in the premises, the truth value function is

f =

f1c1/(1−c1)+f2c2/(1−c2)
c1/(1−c1)+c2/(1−c2)

c =

c1/(1−c1)+c2/(1−c2)
c1/(1−c1)+c2/(1−c2)+1

Beside the above four basic inference rules, in NARS there are inference
rules for the variations of inheritance, as well as for the formation and trans-
formation of the various compound terms. The truth-value functions for those
rules are similarly determined.

Beside the above forward inference rules by which new knowledge is de-
rived existing knowledge, NARS also has backward inference rules, by which
a piece of knowledge is applied to a question or a goal. If the knowledge
happens to provide an answer for the question or an operation to realize the
goal, it is accepted as a tentative solution, otherwise a derived question or
goal may be generated, whose solution, combined with the knowledge, will
provide a solution to the original question or goal. Defined in this way, for
each forward rule, there is a matching backward rule. Or, conceptually, we
can see them as two ways to use the same rule.

2.5 Controlled concurrency in dynamic memory

As an open system working in real-time, NARS accepts new tasks all the
time. A new task may be a piece of knowledge to be digested, a question to
be answered, or a goal to be achieved. A new task may come from a human
user or from another computer system.

The Logic of Intelligence 51

Since in NARS no knowledge is absolutely true, the system will try to use
as much knowledge as possible to process a task, so as to provide a better
(more confident) solution. On the other hand, due to insufficient resources,
the system cannot use all relevant knowledge for each task. Since new tasks
come from time to time, and the system generates derived tasks constantly,
at any moment the system typically has a large amount of tasks to pro-
cess. For this situation, to set up a static standard for a satisfying solution
[Strosnider and Paul, 1994] is too rigid a solution, because no matter how
careful the standard is determined, sometimes it will be too high, and some-
times too low, given the ever changing resources demand of the existing tasks.
What NARS does is to try to find the best solution given the current knowl-
edge and resources restriction [Wang, 1995b] – similar to what an “anytime
algorithm” does [Dean and Boddy, 1988].

“Bag” is a data structure specially designed in NARS for resource alloca-
tion. A bag can contain certain type of items with a constant capacity, and
maintains a priority distribution among the items. There are three major
operations defined on bag:

• Put an item into the bag, and if the bag is already full, remove an item
with the lowest priority.

• Take an item out of the bag by key.
• Take an item out of the bag by priority, that is, the probability for an

item to be selected is proportional to its priority value.

Each of the operations takes about constant time to finish, independent to
the number of items in the bag.

NARS organizes knowledge and tasks into concepts. In the system, each
term T has a corresponding concept CT , which contains all the knowledge
and tasks in which T is the subject term or predicate term. For example,
knowledge bird → animal < 1, 0.9> is stored within concept bird and con-
cept animal. In this way, the memory of NARS can be seen roughly as a bag
of concepts, and each concept is named by a (simple or compound) term, and
contains a bag of knowledge and a bag of tasks, all of them are directly about
the term.

NARS runs by repeatedly carrying out the following working cycle:

1. Take a concept from the memory by priority.
2. Take a task from the task bag of the concept by priority.
3. Take a piece of knowledge from the knowledge bag of the concept by

priority.
4. According to the combination of the task and the knowledge, call the

applicable inference rules on them to derive new tasks and new knowledge
– in categorical logic, every inference step happens within a concept.

5. Adjust the priority of the involved task, knowledge, and concept, accord-
ing to how they behave in this inference step, then put them back into
the corresponding bags.

52 Pei Wang

6. Put the new (input or derived) tasks and knowledge into the correspond-
ing bags. If certain new knowledge provides the best solution so far for a
user-assigned task, report a solution.

The priority value of each item reflects the amount of resources the system
plans to spend on it in the near future. It has two factors:

long-term factor: The system gives higher priority to more important items,
evaluated according to past experience. Initially, the user can assign pri-
ority values to the input tasks to indicate their relative importance, which
will in turn determine the priority value of the concepts and knowledge
generated from it. After each inference step, the involved items have their
priority values adjusted. For example, if a piece of knowledge provides a
best-so-far solution for a task, then the priority value of the knowledge
is increased (so that it will be used more often in the future), and the
priority value of the task is decreased (so that less time will be used on
it in the future).

short-term factor: The system gives higher priority to more relevant items,
evaluated according to current context. When a new task is added into
the system, the directly related concepts are activated, i.e., their priority
values are increased. On the other hand, the priority values decay over
time, so that if a concept has not be relevant for a while, it becomes less
active.

In this way, NARS process many tasks in parallel, but with different
speed. This “controlled concurrency” control mechanism is similar to Hofs-
tadter’s “parallel terraced scan” strategy [Hofstadter, 1984]. Also, how a task
is processed depends on the available knowledge and the priority distribution
among concepts, tasks, and knowledge. Since these factors change constantly,
the solution a task gets is context-dependent.

3 The Properties of NARS

As a project aimed at general-purpose artificial intelligence, NARS addresses
many issues in AI and cognitive science. Though it is similar to many other
approaches here or there, the project as a whole is unique in its theoretical
foundation and major technical components. Designed as above, NARS shows
many properties that make it more similar to human reasoning than to other
AI systems.

3.1 Reasonable solutions

With insufficient knowledge and resources, NARS cannot guarantee that all
the solutions it generates for tasks are correct in the sense that they will
not be challenged by the system’s future experience. Nor can it guarantee

The Logic of Intelligence 53

that the solutions are optimum given all the knowledge the system has at the
moment. However, the solutions are reasonable in the sense that they are the
best summaries of the past experience, given the current resources supply.
This is similar to Good’s “Type II rationality” [Good, 1983].

NARS often makes “reasonable mistakes” that are caused by the insuffi-
ciency of knowledge and resources. They are reasonable and inevitable given
the working condition of the system, and they are not caused by the errors
in the designing or functioning of the system.

A conventional algorithm provides a single solution to each problem, then
stops working on the problem. In contrary, NARS may provide no, one, or
more than one solution to a task – it reports every solution that is the best it
finds, then looks for a better one (if resources are still available). Of course,
eventually the system will end its processing of the task, but the reason
is neither that a satisfying solution has been found, nor that a deadline is
reached, but that the task has lost in the resources competition.

Like trial-and-error procedures [Kugel, 1986], NARS can “change its mind”.
Because truth values are determined according to experience, a later solution
is judged as “better” than a previous one, because it is based on more evi-
dence, though it is not necessarily “closer to the objective fact”.

When a solution is found, usually there is no way to decide whether it is
the last the system can get. In NARS, there is no “final solution” that cannot
be updated by new knowledge and/or further consideration, because all solu-
tions are based on partial experience of the system. This self-revisable feature
makes NARS a more general model than the various non-monotonic logics, in
which only binary statements are processed, and only the conclusions derived
from default rules can be updated, but the default rules themselves are not
effected by the experience of the system [Reiter, 1987].

3.2 Unified uncertainty processing

As described previously, in NARS there are various types of uncertainty, in
concepts, statements, inference rules, and inference processes. NARS has a
unified uncertainty measurement and calculation sub-system.

What makes this approach different from other proposed theories on un-
certainty is the experience-grounded semantics. According to it, all uncer-
tainty comes from the insufficiency of knowledge and resources. As a result,
the evaluation of uncertainty is changeable and context-dependent.

From our previous definition of truth value, it is easy to recognize its
relationship with probability theory. Under a certain interpretation, the fre-
quency measurement is similar to probability, and the confidence measure-
ment is related to the size of sample space. If this is the case, why not directly
use probability theory to handle uncertainty?

Let us see a concrete case. The deduction rule takes M → P < f1, c1 >
and S → M <f2, c2 > as premises, and derives S → P <f, c> as conclusion.
A direct way to apply probability theory would be treating each term as a

54 Pei Wang

set, then turning the rule into one that calculates conditional probability
Pr(P |S) from Pr(P |M) and Pr(M |S) plus additional assumptions about
the probabilistic distribution function Pr(). Similarly, the sample size of the
conclusion would be estimated, which gives the confidence value.

Such an approach cannot be applied in NARS for several reasons:

• For an inheritance relation, evidence is defined both extensionally and
intensionally, so the frequency of S → P cannot be treated as Pr(P |S),
since the latter is pure extensional.

• Each statement has its own evidence space, defined by the extension of
its subject and the intension of its predicate.

• Since pieces of knowledge in input may come from different sources, they
may contain inconsistency.

• When new knowledge comes, usually the system cannot afford the time
to update all of the previous beliefs accordingly.

Therefore, though each statement can be treated as a probabilistic judgment,
different statements correspond to different evidence space, and their truth
values are evaluated against different bodies of evidence. As a result, they
correspond to different probability distributions. For example, if we treat
frequency as probability, the deduction rule should calculate Pr3(S → P)
from Pr1(M → P) and Pr2(S → M). In standard probability theory, there
is few result that can be applied to this kind of cross-distribution calculation.

NARS solves this problem by going beyond probability theory, though
still sharing certain intuition and result with it [Wang, 2001b].

In NARS, the amount of evidence is defined in such a way that it can
be used to indicate randomness (see [Wang, 1993] for a comparison with
Bayesian network [Pearl, 1988]), fuzziness (see [Wang, 1996] for a comparison
with fuzzy logic [Zadeh, 1965]), and ignorance (see [Wang, 1994a] for a com-
parison with Dempster-Shafer theory [Shafer, 1976]). Though different types
of uncertainty have different origins, they usually co-exist, and are tangled
with one another in practical situations. Since NARS makes no restrictions
on what can happen in its experience, and needs to make justifiable decisions
when the available knowledge is insufficient, such a unified measurement of
uncertainty is necessary.

There may be belief conflicts in NARS, in the sense that the same state-
ment is assigned different truth values when derived from different parts of
the experience. With insufficient resources, NARS cannot find and eliminate
all implicit conflicts within its knowledge base. What it can do is, when a
conflict is found, to generate a summarized conclusion whose truth value
reflects the combined evidence. These conflicts are normal, rather than ex-
ceptional. Actually, their existence is a major driving force of learning, and
only by their solutions some types of inference, like induction and abduction,
can have their results accumulated [Wang, 1994b]. In first-order predicate
logic, a pair of conflicting propositions implies all propositions. This does
not happen in a categorical logic like NARS, because in categorical logics

The Logic of Intelligence 55

the conclusions and premises must have shared terms, and statements with
the same truth value cannot substitute one another in a derivation (as does
in predicate logic). As a result, NARS tolerates implicitly conflicting beliefs,
and resolves explicit conflicts by evidence combination.

The concepts in NARS is uncertain because the meaning of a concept is
not determined by an interpretation that links it to an external object, but by
its relations with other concepts. The relations are in turn determined by the
system’s experience and its processing on the experience. When a concept
is involved in the processing of a task, usually only part of the knowledge
associated with the concept is used. Consequently, concepts become “fluid”
[Hofstadter and Mitchell, 1994]:

1. No concept has a clear-cut boundary. Whether a concept is an instance
of another concept is a matter of degree. Therefore, all the concepts in
NARS are “fuzzy”.

2. The membership evaluations are revisable. The priority distribution among
the relations from a concept to other concepts also changes from time to
time. Therefore, what a concept actually means to the system is variable.

3. However, the meaning of a concept is not arbitrary or random, but rela-
tively stable, bounded by the system’s experience.

3.3 NARS as a parallel and distributed network

Though all the previous descriptions present NARS as a reasoning system
with formal language and rules, in fact the system can also be described as
a network. We can see each term as a node, and each statement as a link
between two nodes, and the corresponding truth value as the strength of the
link. Priorities are defined among nodes and links. In each inference step, two
adjacent links generate new links, and different types of inference correspond
to different combinations of the links [Minsky, 1985, Wang, 1994b]. To answer
a question means to determine the strength of a link, given its beginning and
ending node, or to locate a node with the strongest link from or to a given
node. Because by applying rules, the topological structure of the network,
the strength of the links, and the priority distribution are all changed, what
the system does is much more than searching a static network for the desired
link or node.

Under such an interpretation, NARS shows some similarity to the other
network-based AI approaches, such as the connectionist models.

Many processes coexist at the same time in NARS. The system not only
processes input tasks in parallel, but also does so for the derived subtasks.
The fact that the system can be implemented in a single-processor machine
does not change the situation, because what matters here is not that the
processes run exactly at the same time on several pieces of hardware (though
it is possible for NARS to be implemented in a multiple-processor system),
but that they are not run in an one-by-one way, that is, one process begins
after another ends.

56 Pei Wang

Such a parallel processing model is adopted by NARS, because given the
insufficiency of knowledge and resources, as well as the dynamic nature of the
memory structure and resources competition, it is impossible for the system
to process tasks one after another.

Knowledge in NARS is represented distributedly in the sense that there
is no one-to-one correspondence between the input/output in the experi-
ence/response and the knowledge in the memory [Hinton et al., 1986]. When
a piece of new knowledge is provided to the system, it is not simply inserted
into the memory. Spontaneous inferences will happen, which generate derived
conclusions. Moreover, the new knowledge may be revised when it is in con-
flict with previous knowledge. As a result, the coming of new knowledge may
cause non-local effects in memory.

On the other hand, the answer of a question can be generated by non-
local knowledge. For example, in answering the question “Is dove a kind of
bird?”, a piece of knowledge “dove → bird” (with its truth value) stored in
concepts dove and bird provides a ready-made answer, but the work does
not stop. Subtasks are generated (with lower priority) and sent to related
concepts. Because there may be implicit conflicts within the knowledge base,
the previous “local” answer may be revised by knowledge stored somewhere
else.

Therefore, the digestion of new knowledge and the generation of answers
are both non-local events in memory, though the concepts corresponding
to terms that appear directly in the input knowledge/question usually have
larger contributions. How “global” such an event can be is determined both
by the available knowledge and the resources allocated to the task.

In NARS, information is not only stored distributedly and with duplica-
tions, but also processed through multiple pathways. With insufficient knowl-
edge and resources, when a question is asked or a piece of knowledge is told,
it is usually impossible to decide whether it will cause redundancy or what
is the best method to process it, so multiple copies and pathways become in-
evitable. Redundancy can help the system recover from partial damage, and
also make the system’s behaviors depend on statistical events. For example,
if the same question is repeatedly asked, it will get more processor time.

Unlike many symbolic AI systems, NARS is not “brittle” [Holland, 1986]
– that is, being easily “killed” by improper inputs. NARS is open and domain-
independent, so any knowledge and question, as long as they can be expressed
in the system’s interface language, can be accepted by the system. The conflict
between new knowledge and previous knowledge will not cause the “implica-
tion paradox” (i.e., from an inconsistence, any propositions can be derived).
All mistakes in input knowledge can be revised by future experience to various
extents. The questions beyond the system’s current capacity will no longer
cause a “combinatorial explosion”, but will be abandoned gradually by the
system, after some futile efforts. In this way, the system may fail to answer
a certain question, but such a failure will not cause a paralysis.

The Logic of Intelligence 57

According to the working manner of NARS, each concept as a processing
unit only takes care of its own business, that is, only does inferences where
the concept is directly involved. As a result, the answering of a question
is usually the cooperation of several concepts. Like in connectionist models
[Rumelhart and McClelland, 1986], there is no “global plan” or “central pro-
cess” that is responsible for each question. The cooperation is carried out
by message-passing among concepts. The generating of a specific solution is
the emergent result of lots of local events, not only caused by the events in
its derivation path, but also by the activity of other tasks that adjust the
memory structure and compete for the resources. For this reason, each event
in NARS is influenced by all the events that happen before it.

What directly follows from the above properties is that the solution to a
specific task is context-sensitive. It not only depends on the task itself and
the knowledge the system has, but also depends on how the knowledge is
organized and how the resources are allocated at the moment. The context
under which the system is given a task, that is, what happens before and af-
ter the task in the system’s experience, strongly influences what solution the
task receives. Therefore, if the system is given the same task twice, the solu-
tions may be (though not necessarily) different, even though there is no new
knowledge provided to the system in the interval. Here “context” means the
current working environment in which a task is processed. Such contexts are
dynamic and continuous, and they are not predetermined situations indexed
by labels like “bank” and “hotel”.

3.4 Resources competition

The system does not treat all processes as equal. It distributes its resources
among the processes, and only allows each of them to progress at certain
speed and to certain “depth” in the knowledge base, according to how much
resources it has. Also due to insufficient knowledge, the resource distribution
is maintained dynamically (adjusted while the processes are running), rather
than statically (scheduled before the processes begin to run), because the
distribution depends on how they work.

As a result, the processes compete with one another for resources. To
speed up one process means to slow down the others. The priority value of
a task reflects its (relative) priority in the competition, but does not deter-
mine its (absolute) actual resources consumption, which also depends on the
priority values of the other coexisting tasks.

With insufficient processing time, it is inefficient for all the knowledge
and questions to be equally treated. In NARS, some of them (with higher
priority values) get more attention, that is, are more active or accessible, while
some others are temporarily forgotten. With insufficient memory space, some
knowledge and questions will be permanently forgotten – eliminated from the
memory. Like in human memory [Medin and Ross, 1992], in NARS forgetting
is not a deliberate action, but a side-effect caused by resource competition.

58 Pei Wang

In traditional computing systems, how much time is spent on a task is
determined by the system designer, and the user provides tasks at run time
without time requirements. On the other hand, many real-time systems allow
users to attach a deadline to a task, and the time spent on the task is de-
termined by the deadline [Strosnider and Paul, 1994]. A variation of this ap-
proach is that the task is provided with no deadline, but the user can interrupt
the process at any time to get a best-so-far answer [Boddy and Dean, 1994].

NARS uses a more flexible method to decide how much time is spent on
a task, and both the system and the user influence the decision. The user
can attaches an initial priority value to a task, but the actual allocation also
depends on the current situation of the system, as well as on how well the
task processing goes. As a result, the same task, with the same initial priority,
will get more processing when the system is “idle” than when the system is
“busy”.

3.5 Flexible behaviors

How an answer is generated is heavily dependent on what knowledge is avail-
able and how it is organized. Facing a task, the system does not choose a
method first, then collect knowledge accordingly, but lets it interact with
available knowledge. In each inference step, what method is used to process
a task is determined by the type of knowledge that happens to be picked up
at that point.

As a result, the processing path for a task is determined dynamically
at run time, by the current memory structure and resource distribution of
the system, not by a predetermined problem-oriented algorithm. In principle,
the behavior of NARS is unpredictable from an input task along, though still
predictable from the system’s initial state and complete experience.

For practical purposes, the behavior of NARS is not accurately predictable
to a human observer. To exactly predict the system’s solution to a specific
task, the observer must know all the details of the system’s initial state, and
closely follow the system’s experience until the solution is actually produced.
When the system is complex enough (compared with the information pro-
cessing capacity of the predictor), nobody can actually do these. However, it
does not mean that the system works in a random manner. Its behaviors are
still determined by its initial state and experience, so approximate predictions
are possible.

If NARS is implemented in a von Neumann computer, can it go beyond
the scope of computer science? Yes, it is possible because a computer system
is a hierarchy with many levels [Hofstadter, 1979]. Some critics implicitly
assume that because a certain level of a computer system can be captured by
first-order predicate logic and Turing machine, these theories also bind all the
performances the system can have [Dreyfus, 1992, Penrose, 1994]. This is not
the case. When a system A is implemented by a system B, the former does not
necessarily inherit all properties of the latter. For example, we cannot say that

The Logic of Intelligence 59

a computer cannot process decimal numbers (because they are implemented
by binary numbers), cannot process symbols (because they are coded by
digits), or cannot use functional or logical programming language (because
they are eventually translated into procedural machine language).

Obviously, with its fluid concepts, revisable knowledge, and fallible in-
ference rules, NARS breaks the regulations of classic logics. However, as a
virtual machine, NARS can be based on another virtual machine which is
a pure-axiomatic system, as shown by its implementation practice, and this
fact does not make the system “axiomatic”. If we take the system’s complete
experience and response as input and output, then NARS is still a Turing Ma-
chine that definitely maps inputs to outputs in finite steps. What happens
here has been pointed out by Hofstadter as “something can be computational
at one level, but not at another level” [Hofstadter, 1985], and by Kugel as
“cognitive processes that, although they involve more than computing, can
still be modelled on the machines we call ‘computers’ ” [Kugel, 1986]. On the
contrary, traditional computer systems are Turing Machines either globally
(from experience to response) or locally (from question to answer).

3.6 Autonomy and creativity

The global behavior NARS is determined by the “resultant of forces” of its
internal tasks. Initially, the system is driven only by input tasks. The system
then derives subtasks recursively by applying inference rules to the tasks and
available knowledge.

However, it is not guaranteed that the achievement of the derived tasks
will turn out to be really helpful or even related to the original tasks, be-
cause the knowledge, on which the derivation is based, is revisable. On the
other hand, it is impossible for the system to always determine correctly
which tasks are more closely related to the original tasks. As a result, the
system’s behavior will to a certain extent depend on “its own tasks”, which
are actually more or less independent of the original processes, even though
historically derived from them. This is the functional autonomy phenomena
[Minsky, 1985]. In the extreme form, the derived tasks may become so strong
that they even prevent the input tasks from being fulfilled. In this way, the
derived tasks are alienated.

The alienation and unpredictability sometimes result in the system to
be “out of control”, but at the same time, they lead to creative and original
behaviors, because the system is pursuing goals that are not directly assigned
by its environment or its innateness, with methods that are not directly
deduced from given knowledge.

By creativity, it does not mean that all the results of such behaviors are of
benefit to the system, or excellent according to some outside standards. Nor
does it mean that these behaviors come from nowhere, or from a “free will”
of some sort. In contrary, it means that the behaviors are novel to the system,
and cannot be attributed either to the designer (who determines the system’s

60 Pei Wang

initial state and skills) or to a tutor (who determines part of the system’s
experience) alone. Designers and tutors only make the creative behaviors
possible. What turns the possibility into reality is the system’s experience,
and for a system that lives in a complex environment, its experience is not
completely determined by any other systems (human or computer). For this
reason, these behaviors, with their results, are better to be attributed to the
system itself, than to anyone else [Hofstadter, 1979].

Traditional computer systems always repeat the following “life cycle”:

• waiting for tasks
• accepting a task
• working on the task according to an algorithm
• reporting a solution for the task
• waiting for tasks
• · · ·

In contrary, NARS has a “life-time of its own” [Elgot-Drapkin et al., 1991].
When the system is experienced enough, there will be lots of tasks for the
system to process. On the other hand, new input can come at any time.
Consequently, the system’s history is no longer like the previous loop. The
system usually works on its “own” tasks, but at the same time, it is always
ready to respond to new tasks provided by the environment. Each piece of
input usually attracts the system’s attention for a while, and also causes
some long-term effects. The system never reaches a “final state” and stops
there, though it can be reset by a human user to its initial state. In this way,
each task-processing activity is part of the system’s life-time experience, and
is influenced by the other activities. In comparison with NARS, traditional
computer systems take each problem-solving activity as a separate life cycle
with a predetermined end.

4 Conclusions

The key difference between NARS and the mainstream AI projects is not in
the technical details, but in the philosophical and methodological position.
The NARS project does not aim at a certain practical problem or cognitive
function, but attempts to build a general-purpose intelligent system by identi-
fying the “essence of intelligence”, i.e., the underlying information processing
principle, then designing the components of the system accordingly.

As described above, in the NARS project, it is assumed that “intelli-
gence” means “adaptation with insufficient knowledge and resources”, then
reasoning system is chosen as the framework to apply this assumption. When
designing the system, we found that all relevant traditional theories (includ-
ing first-order predicate logic, model theory, probability theory, computabil-
ity theory, computational complexity theory, ...) are inconsistent with the
above assumption, so all major components need to be redesigned. These

The Logic of Intelligence 61

components, though technically simple, are fundamentally different from the
traditional components in nature.

Built in this way, NARS provides a unified model for many phenomena
observed in human cognition. It achieves this not by explicitly fitting psycho-
logical data, but by reproducing them from a simple and unified foundation.
In this way, we see that these phenomena share a common functional ex-
planation, and all intelligent systems, either natural or artificial, will show
these phenomena as long as it is an adaptive system working with insufficient
knowledge and resources.

The NARS project started in 1983 at Peking University. Until now, several
working prototypes have been built, in an incremental manner (that is, each
with more inference rules and more complicated control mechanism). Cur-
rently first-order inference has been finished, and higher-order inference is un-
der developing. Though the whole project is still far from completion, the past
experience has shown the feasibility of this approach. For the up-to-date in-
formation about the project and latest publication and demonstration, please
visit http://www.cogsci.indiana.edu/farg/peiwang/papers.html.

References

[Aristotle, 1989] Aristotle (1989). Prior Analytics. Hackett Publishing Company,
Indianapolis, Indiana. Translated by R. Smith.

[Birnbaum, 1991] Birnbaum, L. (1991). Rigor mortis: a response to Nilsson’s “Logic
and artificial intelligence”. Artificial Intelligence, 47:57–77.

[Boddy and Dean, 1994] Boddy, M. and Dean, T. (1994). Deliberation schedul-
ing for problem solving in time-constrained environments. Artificial Intelligence,
67:245–285.

[Carnap, 1950] Carnap, R. (1950). Logical Foundations of Probability. The Uni-
versity of Chicago Press, Chicago.

[Chalmers et al., 1992] Chalmers, D., French, R., and Hofstadter, D. (1992). High-
level perception, representation, and analogy: a critique of artificial intelligence
methodology. Journal of Experimental and Theoretical Artificial Intelligence,
4:185–211.

[Dean and Boddy, 1988] Dean, T. and Boddy, M. (1988). An analysis of time-
dependent planning. In Proceedings of AAAI-88, pages 49–54.

[Dreyfus, 1992] Dreyfus, H. (1992). What Computers Still Can’t Do. The MIT
Press, Cambridge, Massachusetts.

[Elgot-Drapkin et al., 1991] Elgot-Drapkin, J., Miller, M., and Perlis, D. (1991).
Memory, reason, and time: the step-logic approach. In Cummins, R. and Pol-
lock, J., editors, Philosophy and AI, chapter 4, pages 79–103. The MIT Press,
Cambridge, Massachusetts.

[French, 1990] French, R. (1990). Subcognition and the limits of the Turing test.
Mind, 99:53–65.

[Good, 1983] Good, I. (1983). Good Thinking: The Foundations of Probability and
Its Applications. University of Minnesota Press, Minneapolis.

[Hempel, 1943] Hempel, C. (1943). A purely syntactical definition of confirmation.
Journal of Symbolic Logic, 8:122–143.

62 Pei Wang

[Hinton et al., 1986] Hinton, G., McClelland, J., and Rumelhart, D. (1986). Dis-
tributed representation. In Rumelhart, D. and McClelland, J., editors, Parallel
Distributed Processing: Exploration in the Microstructure of cognition, Vol. 1,
Foundations, pages 77–109. The MIT Press, Cambridge, Massachusetts.

[Hofstadter, 1979] Hofstadter, D. (1979). Gödel, Escher, Bach: an Eternal Golden
Braid. Basic Books, New York.

[Hofstadter, 1984] Hofstadter, D. (1984). The copycat project: An experiment in
nondeterminism and creative analogies. AI memo, MIT Artificial Intelligence
Laboratory.

[Hofstadter, 1985] Hofstadter, D. (1985). Waking up from the Boolean dream, or,
subcognition as computation. In Metamagical Themas: Questing for the Essence
of Mind and Pattern, chapter 26. Basic Books, New York.

[Hofstadter and Mitchell, 1994] Hofstadter, D. and Mitchell, M. (1994). The Copy-
cat project: a model of mental fluidity and analogy-making. In Holyoak, K. and
Barnden, J., editors, Advances in Connectionist and Neural Computation Theory,
Volume 2: Analogical Connections, pages 31–112. Ablex Publishing Corporation,
Norwood, New Jersey.

[Holland, 1986] Holland, J. (1986). Escaping brittleness: the possibilities of general
purpose learning algorithms applied to parallel rule-based systems. In Michalski,
R., Carbonell, J., and Mitchell, T., editors, Machine Learning: an artificial intel-
ligence approach, volume II, chapter 20, pages 593–624. Morgan Kaufmann, Los
Altos, California.

[Holland et al., 1986] Holland, J., Holyoak, K., Nisbett, R., and Thagard, P. (1986).
Induction. The MIT Press.

[Kugel, 1986] Kugel, P. (1986). Thinking may be more than computing. Cognition,
22:137–198.

[McCarthy, 1988] McCarthy, J. (1988). Mathematical logic in artificial intelligence.
Dædalus, 117(1):297–311.

[McDermott, 1987] McDermott, D. (1987). A critique of pure reason. Computa-
tional Intelligence, 3:151–160.

[Medin and Ross, 1992] Medin, D. and Ross, B. (1992). Cognitive Psychology. Har-
court Brace Jovanovich, Fort Worth.

[Minsky, 1985] Minsky, M. (1985). The Society of Mind. Simon and Schuster, New
York.

[Newell and Simon, 1976] Newell, A. and Simon, H. (1976). Computer science as
empirical inquiry: symbols and search. The Tenth Turing Lecture. First published
in Communications of the Association for Computing Machinery 19.

[Pearl, 1988] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Mor-
gan Kaufmann Publishers, San Mateo, California.

[Penrose, 1994] Penrose, R. (1994). Shadows of the Mind. Oxford University Press.

[Piaget, 1960] Piaget, J. (1960). The Psychology of Intelligence. Littlefield, Adams
& Co., Paterson, New Jersey.

[Popper, 1959] Popper, K. (1959). The Logic of Scientific Discovery. Basic Books,
New York.

[Reeke and Edelman, 1988] Reeke, G. and Edelman, G. (1988). Real brains and
artificial intelligence. Dædalus, 117(1):143–173.

[Reiter, 1987] Reiter, R. (1987). Nonmonotonic reasoning. Annual Review of Com-
puter Science, 2:147–186.

The Logic of Intelligence 63

[Rumelhart and McClelland, 1986] Rumelhart, D. and McClelland, J. (1986). PDP
models and general issues in cognitive science. In Rumelhart, D. and McClelland,
J., editors, Parallel Distributed Processing: Explorations in the Microstructure
of Cognition, Vol. 1, Foundations, pages 110–146. The MIT Press, Cambridge,
Massachusetts.

[Schank, 1991] Schank, R. (1991). Where is the AI. AI Magazine, 12(4):38–49.
[Searle, 1980] Searle, J. (1980). Minds, brains, and programs. The Behavioral and

Brain Sciences, 3:417–424.
[Shafer, 1976] Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton

University Press, Princeton, New Jersey.
[Smolensky, 1988] Smolensky, P. (1988). On the proper treatment of connectionism.

Behavioral and Brain Sciences, 11:1–74.
[Strosnider and Paul, 1994] Strosnider, J. and Paul, C. (1994). A structured view

of real-time problem solving. AI Magazine, 15(2):45–66.
[Turing, 1950] Turing, A. (1950). Computing machinery and intelligence. Mind,

LIX:433–460.
[Wang, 1993] Wang, P. (1993). Belief revision in probability theory. In Proceedings

of the Ninth Conference on Uncertainty in Artificial Intelligence, pages 519–526.
Morgan Kaufmann Publishers, San Mateo, California.

[Wang, 1994a] Wang, P. (1994a). A defect in Dempster-Shafer theory. In Pro-
ceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, pages
560–566. Morgan Kaufmann Publishers, San Mateo, California.

[Wang, 1994b] Wang, P. (1994b). From inheritance relation to nonaxiomatic logic.
International Journal of Approximate Reasoning, 11(4):281–319.

[Wang, 1995a] Wang, P. (1995a). Grounded on experience: Semantics for in-
telligence. Technical Report 96, Center for Research on Concepts and Cog-
nition, Indiana University, Bloomington, Indiana. Available via WWW at
http://www.cogsci.indiana.edu/farg/peiwang/papers.html.

[Wang, 1995b] Wang, P. (1995b). Non-Axiomatic Reasoning System: Exploring the
Essence of Intelligence. PhD thesis, Indiana University.

[Wang, 1996] Wang, P. (1996). The interpretation of fuzziness. IEEE Transactions
on Systems, Man, and Cybernetics, 26(4):321–326.

[Wang, 1999] Wang, P. (1999). A new approach for induction: From a non-
axiomatic logical point of view. In Shier, J., Qingyin, L., and Biao, L., editors,
Philosophy, Logic, and Artificial Intelligence, pages 53–85. Zhongshan University
Press.

[Wang, 2001a] Wang, P. (2001a). Abduction in non-axiomatic logic. In Work-
ing Notes of the IJCAI workshop on Abductive Reasoning, pages 56–63, Seattle,
Washington.

[Wang, 2001b] Wang, P. (2001b). Confidence as higher-order uncertainty. In Pro-
ceedings of the Second International Symposium on Imprecise Probabilities and
Their Applications, pages 352–361, Ithaca, New York.

[Wang, 2001c] Wang, P. (2001c). Wason’s cards: what is wrong? In Proceedings of
the Third International Conference on Cognitive Science, pages 371–375, Beijing.

[Zadeh, 1965] Zadeh, L. (1965). Fuzzy sets. Information and Control, 8:338–353.

