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Abstract

This paper is about the philosophical and methodological foundation of arti�cial
intelligence (AI). After discussing what is a good \working de�nition", \intelligence" is
de�ned as \the ability for an information processing system to adapt to its environment
with insu�cient knowledge and resources". Applying the de�nition to a reasoning
system, we get the major components of Non-Axiomatic Reasoning System (NARS),
which is a symbolic logic implemented in a computer system, and has many interesting
properties that are closely related to intelligence. The de�nition also clari�es the
di�erence and relationship between AI and other disciplines, such as computer science.
Finally, the de�nition is compared with other popular de�nitions of intelligence, and
its advantages are argued.

1 To De�ne Intelligence

1.1 Retrospect

The attempts of clarifying the concept \intelligence" and discussing the possibility and paths
to produce it in computing machinery can be backtracked to Turing's famous article in 1950,
in which he suggested an imitation test as a su�cient condition of being intelligent [38].

The debate on this issue has been going on for decades, and there is still little sign of
consensus [15]. As a matter of fact, almost every one in the �eld has his/her own ideas about
how the word \intelligence" should be used, and these ideas in turn in
uence the choice of
research goals and methods, as well as serve as standards to judge other researchers' works.

Following are some representative opinions:

\Intelligence is the power to rapidly �nd an adequate solution in what appears a
priori (to observers) to be an immense search space." (Lenat and Feigenbaum,
[17])
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\Arti�cial intelligence is the study of complex information-processing problems
that often have their roots in some aspect of biological information-processing.
The goal of the subject is to identify interesting and solvable information-processing
problems, and solve them." (Marr, [18])

\AI is concerned with methods of achieving goals in situations in which the in-
formation available has a certain complex character. The methods that have
to be used are related to the problem presented by the situation and are simi-
lar whether the problem solver is human, a Martian, or a computer program."
(McCarthy, [19])

Intelligence usually means \the ability to solve hard problems". (Minsky, [22])

\By `general intelligent action' we wish to indicate the same scope of intelligence
as we see in human action: that in any real situation behavior appropriate to the
ends of the system and adaptive to the demands of the environment can occur,
within some limits of speed and complexity." (Newell and Simon, [24])

\Intelligence means getting better over time." (Schank, [32])

Here we do perceive something in common among the statements, however, their di�erence
is equally obvious.

1.2 Do we need a de�nition?

Maybe it is too early to de�ne intelligence. It is obvious that, after the decades of study,
we still do not know very much about it. There are more questions than answers. Any
de�nition based on the current knowledge is doomed to be revised by future works. We all
know that a well-founded de�nition is usually the result, rather than the starting point, of
scienti�c research.

However, there are still reasons for us to be concerned about the de�nition of intelligence
at this time. Though clarifying the meaning of a concept always helps communication, this
problem is especially important for AI.

As a community, AI researchers need to justify their �eld as a scienti�c discipline. With-
out a (relatively) clear de�nition of intelligence, it is hard to say why AI is di�erent from,
for instance, computer science or psychology. Is there really something novel and special, or
just fancy labels on old stu�?

More vitally, every researcher in the �eld needs to justify his/her research paradigm
according to such a de�nition. For a concept as complex as \intelligence", no direct study
is possible, especially when an accurate and rigid tool, namely the computer, is used as the
research medium. We have to specify our aim clearly, then try to solve it. Therefore, anyone
who wants to work on arti�cial intelligence is facing a two-phase task: choosing a working
de�nition of intelligence, and producing it on the computer.

A working de�nition is a de�nition that is concrete enough that you can directly work
with it. By accepting a working de�nition of intelligence, it does not mean that you really
believe it fully captures the concept \intelligence", but that you will take it as a goal for
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your current research project. Such a de�nition is not for an AI journal editor who needs a
de�nition to decide what papers are within the �eld, or a speaker of the AI community who
needs a de�nition to explain to the public what is going on within the domain.

Therefore, the lack of a consensus on what intelligence is does not prevent each researcher
from picking up (consciously or not) a working de�nition of intelligence. Actually, unless you
keep one (or more than one) de�nition, you cannot claim that you are working on arti�cial
intelligence. It is your working de�nition of intelligence that relates your current research,
no matter how domain-speci�c, to the AI enterprise.

The paper is about such a working de�nition of intelligence (for an individual researcher),
rather than other types of de�nition (for a teacher, a reviewer, or a grant agency).

1.3 Are there better de�nitions?

A group of people wants to climb a mountain. They do not have a map, and the peak is
often covered by clouds. At the foot of the mountain, there are several paths leading into
di�erent directions. When you join the group, some of the paths have been explored for a
while, but no one has reached the top.

If you want to get to the peak as soon as possible, what should you do? You cannot sit
at the foot of the mountain until you are absolutely sure which path is the shortest | you
have to explore. On the other hand, taking an arbitrary path is also a bad idea. Though it is
possible that you make the right choice from the beginning, it de�nitely would be advisable
to use your knowledge about mountains, and also to study other people's reports about their
explorations, so as to avoid a bad choice in advance.

There are three kinds of \wrong paths": those which lead nowhere, those which lead
to interesting places (even to unexpected treasures) but not to the peak, and those which
eventually lead to the peak but are much longer than some other paths. If the only goal
is to climb the peak as early as possible, a climber should use all available knowledge to
choose a better path to explore. Although switching to another path is always possible, it
is time-consuming.

We are facing a similar situation in choosing a working de�nition for intelligence. There
are already many such de�nitions, which are quite di�erent, though still related to each other
(so hopefully we are climbing the same mountain). As a scienti�c community, it is important
that competing paradigms are followed at the same time, but it does not mean that all of
them are equally justi�ed, or will be equally fruitful.

By accepting a working de�nition of intelligence, the most important commitments a
researcher makes are on the acceptable assumptions and desired results, which bind all the
concrete works that follow. The defects in the de�nition can hardly be compensated by the
research, and improper de�nitions will make the research more di�cult than necessary, or
lead the study away from the original goal.
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1.4 What are the criteria of a good de�nition?

Before studying concrete working de�nitions of intelligence, we need to set up a general
standard for what makes a de�nition better than others.

Carnap met the same problem when he tried to clarify the concept \probability". The
task \consists in transforming a given more or less inexact concept into an exact one or,
rather, in replacing the �rst by the second", where the �rst may belong to everyday language
or to a previous stage in the scienti�c language, and the second must be given by explicit
rules for its use [3].

According to Carnap [3], the second concept, or the working de�nition as it is called in
this paper, must ful�ll the following requirements:

1. It is similar to the concept to be de�ned, as the latter's vagueness permits.

2. It is de�ned in an exact form.

3. It is fruitful in the study.

4. It is simple, as the other requirements permit.

If we agree that these requirements are reasonable and suitable for our purpose, let us
see what they mean concretely to the working de�nition of intelligence:

Similarity. Though intelligence has no exact meaning in everyday language, it does have
some common usages which the working de�nition should follow. For instance, nor-
mal human beings are intelligent, but most animals and machines (including ordinary
computer systems) are either not intelligent at all or much less intelligent than human
beings.

Exactness. According to the working de�nition, whether (or how much) a system is intel-
ligent should be clearly decidable. For this reason, intelligence cannot be de�ned in
terms of other ill-de�ned concepts, such as mind, thinking, cognition, intentionality,
rationality, wisdom, consciousness, though these concepts do have close relationships
with intelligence.

Fruitfulness. The working de�nition should provide concrete instructions for the research
based on it, for instances, on what assumptions can be accepted, what phenomena can
be ignored, what properties are desired, and so on. Especially, the working de�nition
of intelligence should contribute to the solving of the fundamental problems in AI.

Simplicity. Although intelligence is surely a complex phenomena, the working de�nition
should be simple. For a theoretical reason, a simple de�nition makes it possible to
explore a paradigm in detail; for a practical reason, a simple de�nition is easy to use.

For our current purpose, there is no \right" or \wrong" de�nition for intelligence, but
there are \better" and \not-so-good" ones. When comparing proposed de�nitions, the four
requirements may con
ict with each other. For example, one de�nition is more fruitful, while
another is simpler. In such a situation, some weighting and trade-o� is needed. However,
there is no evidence that shows the requirements cannot be satis�ed at the same time.
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2 A Working De�nition of Intelligence

2.1 The de�nition

Following the preparation in the previous section, we propose here a working de�nition of
intelligence:

Intelligence is the ability for an information processing system to adapt to its
environment with insu�cient knowledge and resources.

An information processing system is a system whose internal activities and interactions
with its environment can be studied abstractly, that is, without mentioning the physical
events that carry out the activities and interactions. Usually, such a system has certain
tasks (assigned by the environment, or generated by the system itself) to ful�ll. To do
that, the system takes some actions, guided by its knowledge about how the actions and
tasks are related. All the internal activities cost the system some resources. The interaction
between the system and its environment can be described by its experience and response,
which are streams of input and output, respectively. An input may be a task or a piece
of new knowledge, and an output is usually a result of a task. The valid patterns of input
and output consist of the interface language of the system. According to this description,
all human beings and computer systems, as well as many animals and automatic control
systems, can be referred to as information processing systems.

To adapt means the system learns from its experiences. It ful�lls tasks and adjusts
its internal structure to improve its resource e�ciency under the assumption that future
situations will be similar to past situations. Not all information processing systems adapt to
its environment. For instance, a traditional computing system gets all of its knowledge during
its designing phase (or before its \birth"). After that, its experience contains tasks only, and
the results do not depend on the experience of the system. To acquire new knowledge, the
system needs to be redesigned which is not done by communicating in its interface language.
On the other hand, not all experience-related changes can be called \adaption". Brie
y, the
change should make the system work better, if the environment is relatively stable.

Insu�cient knowledge and resourcesmeans the system works with respect to the following
restrictions:

Finite. The system has a constant information processing capacity,

Real-time. All tasks have time requirements attached, and

Open. No constraints are put on the knowledge and tasks that the system can accept, as
long as representable in the interface language.

There are two components in the working de�nition: adaption and insu�cient knowledge
and resources. They are related. An adaptive system must admit some insu�ciency in its
knowledge and resources, otherwise it need not change. On the other hand, without adaption,
a system may admit that its knowledge and resources are insu�cient, but make no attempt
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to improve the situation. Actually, such an admission makes no practical di�erence from a
claim that the knowledge and resources are already su�cient.

Not all information processing systems completely take the insu�ciency of knowledge and
resources into consideration. Non-adaptive systems simply inhibit or ignore new knowledge
in its interaction with its environment, and most arti�cial adaptive systems are not �nite,
real-time, and open:

1. Though all implemented systems are �nite, many theoretical models neglect the pos-
sibility that the requirements for processors and memory space may go beyond the
supply capacity of the system.

2. Most current AI systems do not consider time constraints at run-time. Most \real-
time" systems only process time constraints in the form of deadline [37].

3. Various constraints are imposed on what the system can experience. For example, only
questions that can be answered by retrieval and deduction from current knowledge are
acceptable, new knowledge cannot con
ict with previous knowledge, and so on.

Many computer systems are designed under the assumption that their knowledge and
resources, though limited or bounded, are still su�cient to ful�ll the tasks that they need to
handle. When facing a situation where this assumption fails, such a system simply panics,
and asks for external interfere.

To design a system under the Assumption of Insu�cient Knowledge and Resources (here-
forth AIKR), it does not mean that the knowledge and resources of the system are always
insu�cient for all tasks, but that the knowledge and resources are not always su�cient for
all tasks. To work with respect to the assumption, a system should have mechanisms to
handle the following situations:

A new processor is required when all of them are occupied;
A piece of memory is required when the working space is already full;
A task comes up when the system is busy with something else;
A task comes up with a time requirement, so an exhaustive search is not a�ord-
able;
New knowledge con
icts with previous knowledge;
A question is presented for which no sure answer can be deduced from available
knowledge;
� � � � � �.

For traditional computing systems, these situations usually cause external interferes and
rejections of the task or knowledge involved. However, for a system designed under AIKR,
these are normal situations, and should be managed smoothly.

According to above de�nition, intelligence is a strong form of adaption. This assertion is
consistent with the usages of the two words in natural language: we are willing to call many
animals, computer systems, and automatic control systems \adaptive" but not \intelligent".
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2.2 An intelligent reasoning system

To make our discussion more concrete and fruitful, let us apply the above working de�nition
of intelligence to a special type of information processing system | reasoning system.

A reasoning system, in a broad sense, is an information processing system that has the
following components:

1. a formal language, de�ned by a grammar, for the communication between the system
and its environment and the internal representation of the system;

2. a semantics of the formal language that explains the meaning of the words and the
truth value of the sentences in the language;

3. a set of inference rules that is de�ned formally, and can be used to match questions with
knowledge, to infer conclusions from promises, to derive subquestions from questions,
and so on;

4. a memory that systematically stores the questions and knowledge, and to provide a
work place for inferences.

5. a control mechanism that is responsible for resources management, such as to choose
premises and inference rules for each step of inference, and to process space require-
ments.

The �rst three components are usually referred to as a logic.

Being reasoning system is neither necessary nor su�cient for being intelligent, but we can
see that an intelligent reasoning system provides a suitable object for the study of intelligence.

Before seeing how such an intelligent reasoning system can be designed, let us �rst see
its opposite: a reasoning system designed under the assumption that its knowledge and
resources are su�cient to answer the questions asked by its environment (so no adaption is
needed). By de�nition such a system has the following properties:

1. No new knowledge is necessary. All the system needs to know to answer the questions
is already there at the very beginning, represented by a set of axioms and postulates.

2. The axioms and postulates are true, and will remain true, in the sense that they
correspond to the actual situation of the environment.

3. The system answers questions by applying a set of formal rules on the axioms and
postulates. The rules are sound and complete (with respect to the valid questions), so
they guarantee correct answers for all questions.

4. The memory of the system is so big that all axioms, postulates, and intermediate
results can be put into it.

5. There is an algorithm that can carry out any required inference in �nite time, and
it runs so fast that it can satisfy all time requirements that may be attached to the
questions.
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This is a system dreamed by Leibniz, Boole, Hilbert, and many others. It is usually
referred to as \decidable axiomatic system" or \formal system". The attempt to build such
systems has dominated the study of logic for a century and strongly in
uenced the research
of arti�cial intelligence. Many researchers believe that such a system can serve as a model
of human thinking.

However, if intelligence is de�ned as \to adapt under AIKR", what we want is the con-
trary, in some sense, to an axiomatic system, though it is still formalized or symbolized in a
technical sense. That is why Non-Axiomatic Reasoning System, NARS for short, is chosen
to name an intelligent reasoning system to be introduced in the following section.

3 The Components of NARS

Non-Axiomatic Reasoning System, or NARS, is designed to be an intelligent reasoning sys-
tem, according to the working de�nition of intelligence described previously.

In the following, let us see how the major components of NARS (formal language, seman-
tics, inference rules, memory, and control mechanism) are determined, or strongly suggested,
by the de�nition, and how they di�er from the components of an axiomatic system. Because
this paper is concentrated in the philosophical and methodological foundation of the NARS
project, formal descriptions and detailed discussions for the components are left to other
papers (such as [40, 42]).

3.1 Experience-grounded semantics

The traditional model-theoretic semantics is no longer applicable to NARS. Due to AIKR,
no knowledge in NARS is \true" in the sense that it corresponds to \state of a�airs" in the
real world. Knowledge comes, directly or indirectly, from the experience of the system, and
it is always revisable by future experience. Therefore, the relationship of the expressions in
the language and the environment (that is what semantics is about) is revealed by how the
expressions ground on the experience. A model and an interpretation is no longer needed.

In NARS, the truthfulness of a statement is judged according to its relationship with the
experience, rather than according to its relationship with a model. Similarly, themeaning of a
term, that is, what makes the term di�erent from other terms to the system, is determined by
its relationships to other terms, according to the experience, rather than by an interpretation
that mapping it into an object in a model. The new semantics is discussed in more detail,
and applied to a formal language, in [40].

The basic di�erences between experience-grounded semantics and model-theoretic se-
mantics are:

1. As descriptions of an environment, the former is partial, developing in time, and not
con
ict-free, whereas the latter is complete, static, and consistent.

2. The former is accessible to the system itself, whereas the latter is supplied by an
observer, so usually unknown to the system.
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3. With insu�cient resources, the truth-value of each statement and the meaning of each
term in NARS is usually grounded on part of the experience. As a result, even without
new experience, the inference activity of the system will change the truth-values and
meanings, by taking previously available-but-ignored experience into consideration. In
contrary, according to model-theoretic semantics, the internal activities of a system
have no e�ects on truth value and meaning of the language it uses.

\Without an interpretation, a system has no access to the semantics of a formal language
it uses" is the central argument in Searle's \Chinese room" thought experiment against strong
AI [33]. His argument is valid for model-theoretic semantics, but not for experience-grounded
semantics. For an intelligent reasoning system, the latter is more appropriate.1

3.2 Uncertainty measurement

As mentioned above, in NARS the truth value of a statement indicates its relationship with
the experience of the system, so always revisable in light of new knowledge. When answering
a given question, there is no \correct" result in the absolute sense, but there are \better"
results in a relative sense.

To have a general, domain-independent method to compare competing answers, a nu-
merical truth value, or a measurement of uncertainty, becomes necessary for NARS, which
quantitatively records the relationship between a statement and available experience.

In its simplest form, the relationship can be measured by the weight of positive and
negative evidence of a statement (according to available experience). This measurement of
uncertainty and its variations are discussed in detail in [40].

What makes this measurement di�erent from other proposed measurements of uncer-
tainty is that it compares a statement with the experience of the system rather than with a
model. As a result, the evaluation is changeable and system-dependent.

The weight of evidence is de�ned in such a way that it can be used to indicate randomness
(see [39] for a comparison with Bayesian network [26]), fuzziness (see [41] for a comparison
with fuzzy logic [44]), and ignorance (see [43] for a comparison with Dempster-Shafer theory
[34]). Though di�erent types of uncertainty have di�erent origins, they usually co-exist, and
are tangled with one another in practical situations. Since NARS makes no restrictions on
what can happen in its experience, and needs to make justi�able decisions when the available
knowledge is insu�cient, such a uni�ed measurement is necessary.

3.3 Term-oriented language

To support the above weight of evidence, we need (1) to determine what is positive and
negative evidence for a given statement, and (2) to �nd a natural unit for the measurement.

This problem is hard in �rst order language, the dominating formal language in AI.
Used in �rst order predicate logic, this language is designed for the study of \foundations of

1A more complete discussion on this issue is left for a future paper.
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mathematics", and thus intrinsically related to binary deductive inference. We all know what
a proof or a disproof of a statement is in �rst order predicate logic, however, as revealed by
Hempel's famous \con�rmation paradox" [9], to introduce the concepts of \positive evidence"
and \negative evidence" into �rst order language is hard, if not impossible.

Fortunately, we have an alternative language family: the formal language used by term
logics. Let us call it term-oriented languages.

Term-oriented language, as used in Aristotle's logic, is characterized by the use of subject-
predicate sentences. Though widely believed to be \too restricted" and outstripped as a
language for mathematical logic, term-oriented language is more suitable for an intelligent
reasoning system, as shown by the practice of NARS.

NARS uses a formally de�ned language (see [40] for a simple version), in which each
sentence has the form \S � P", where S is the subject term of the sentence, and P is the
predicate term of the sentence. The copula \�" is the extension of a re
exive and transitive
(binary) relation \<" between two terms, and can be intuitively understood as \are".

As a multi-valued extension of \<", \�" is transitive to a certain degree, which is mea-
sured by the truth value. For a term T , ideally there are three possibilities (a more general
and formal description is in [40]):

1. If either both \T < S" and \T < P" are true, or both \P < T" and \S < T" are
true (according to the experience of the system), T is counted as a piece of positive
evidence for \S � P", because T con�rms the transitive relation.

2. If either \T < S" is true but \T < P" is false, or \P < T" is true but \S < T" is
false (according to the experience of the system), T is counted as a piece of negative
evidence for \S � P", because T discon�rms the transitive relation.

3. If neither \T < S" nor \P < T" is true, T provides no evidence for \S � P", because
it cannot be used to test the transitive relation.

Another important property of term-oriented language is: it is possible for a term to
be subject in one sentence, and predicate in another. The distinction between \predicates"
(indicating abstract properties or relations) and \arguments" (denoting concrete objects)
in predicate logic no longer exists. A term may serve as an instance for another term,
and represent a property for a third term, at the same time. In this way, inferences about
intensions (properties) and inference about extensions (instances) are processed similarly
(see [40] for detail).

3.4 Plausible inferences

Due to insu�cient knowledge, the system needs to do \ampliative inferences", such as in-
duction, abduction, and analogy. Even deductions are no longer \truth-preserving", in the
sense that a conclusion may be revised by new knowledge, even if the premises remain
unchallenged.
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A major advantage of term logics over predicate/propositional logics is: multiple types
of inference can be naturally put into the format of syllogism [27, 40]. For example,

deduction induction abduction

GIV EN : dove � bird dove � bird bird � flyer

GIV EN : bird � flyer dove � flyer dove � flyer

CONCLUSION : dove � flyer bird � flyer dove � bird

Because all knowledge is certain to some extent, the inference rules need to include func-
tions calculating the truth values of the conclusions from those of the premises. Di�erent
types of inference have di�erent truth value functions. Generally speaking, abductive and in-
ductive conclusions are supported by less evidence than deductive conclusions. The functions
are determined according to the semantics of the language [40].

In axiomatic logics, an inference rule is valid if it is truth-preserving. In NARS, an
inference rule is valid if its conclusion summarizes correctly (according to the semantics) the
experience carried by the premises. Due to insu�cient resources, all the rules are local in
the sense that each of them only takes a constant amount of knowledge into consideration,
and all the conclusions are partial in the sense that each of them are based on part of the
system's experience.

3.5 Bi-directional reasoning

Beside the forward reasoning by which conclusions are derived from two pieces of knowl-
edge, NARS also reasons backward, that is, to use a question and a piece of knowledge as
premises. If the knowledge happens to provide an answer for the question, the answer is ac-
cepted as a tentative result, otherwise a derived question may be generated, whose solution,
combined with the knowledge, will provide a solution to the original question. In this way,
the reasonings are goal-directed, and the system's resources e�ciency can be improved.

Due to insu�cient resources, the system cannot consult all relevant knowledge for each
question. On the other hand, to set up a static standard for a satis�cing answer [37] is
too rigid a solution, because the resources may still be variable for a better answer. What
NARS does is: to report a best-so-far answer [40], and to continue looking for better answers,
permitted by the system's current resources situation [42].

3.6 Controlled concurrency

To support di�erent types of time requirements, in NARS the \time pressure" on each
inference task (forward or backward) is not represented by an absolute deadline, but by a
relatively de�ned urgency, which indicates the time quota the task can get by comparing it
with other tasks, and a decay, which indicates how fast the urgency decreases in time.

Because new tasks can appear at any time, and the question-answering activities are
usually open-ended (as described above), NARS cannot answer questions one by one, but
have to work on many of them in a time-sharing manner.
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NARS use a control mechanism named controlled concurrency [42], which is similar to
the parallel terraced scan strategy [13]. In NARS, the processor time is allocated according
to the urgency distribution of the tasks, so di�erent tasks are processed at di�erent speeds.

The urgency of a task is adjusted dynamically, according to the decay rate and whether
a good answer is already found. When the urgency is decreased to a certain threshold, the
task will be removed from the system, no matter how good an answer has been found for it.

3.7 Chunk-based memory

Because only part of the system's knowledge is used in answering each question and because
it is possible for a question-answering activity to stop after any number of inference steps
(like anytime algorithms [2]), it is important for the system to organize its knowledge in such
a way that the more relevant and important knowledge is made more accessible.

By using a term logic, it is very natural for NARS to divide its memory into \chunks",
each of which corresponds to a term that appeared in the system's past experience. Knowl-
edge and questions are put into the two chunks that are labeled by their subject and pred-
icate. For example, the knowledge \dove � bird" (with its truth value) is put into chunk
dove and chunk bird. Because in term logics, all forward and backward inferences require
the premises share at least one common term, they must happen within a chunk. As a result,
chunk becomes a natural unit for time and space scheduling [42].

Within a chunk, knowledge is also organized according to a relative importance evaluation.
Knowledge with a higher importance value is more \accessible" for the system, that is, has
a higher probability to be used to process the current tasks. When the storage space is in
short supply, some knowledge with low importance is removed.

Importance values of knowledge decay, too. They are also adjusted according to how
useful they are in processing tasks. As a result, the more \useful" a pieces of knowledge is,
the more \important" it is to the chunk.

3.8 Concepts generating and removing

In NARS, each \concept" has a term as its name, and a chunk as its body. All terms
that appear in the system's experience have a corresponding concept within the system. In
addition, the system generates compound concepts by using a set of pre-determined operators
on given concepts, to summarize its experience more e�ciently.

As mentioned in the discussion of semantics, such concepts not necessarily correspond to
external objects, but they must be coined and maintained in response to the patterns that
repeatedly appear in the system's experience.

For example, when the system notices that a swan is both a flyer and a swimmer, it
concludes that \a swan is a flyer\ swimmer", where the predicate, \flyer\ swimmer", is
a compound concept. If the concept is already known to the system, this conclusion is put
into its body; otherwise a new concept is generated.

12



Most concepts generated in this way are short-lived. Due to insu�cient resources, the
system is constantly removing the chunks that are not very useful. Only the compound
concepts that correspond to repeatedly appearing patterns in the experience can survive the
competition for resources, and develop into stable, full-
edged concepts.

3.9 Working routine

In summary, NARS works by repeatedly carrying out inference steps, each of which consist
of the following operations [42]:

1. Check for input tasks (new knowledge or question provided by environment). If there
are input tasks, put them into corresponding chunks, increase the priority of the in-
volved chunks, and generate new chunks (if necessary).

2. Pick up a chunk according to their priority distribution. A chunk with a higher priority
has a higher probability to be chosen.

3. Pick up a task (knowledge or question) and a piece of knowledge from the chunk,
according to the priority distributions among tasks and knowledge.

4. Do di�erent types of inferences (revision, deduction, induction, abduction, backward
reasoning, and so on), according to the combination of the task and the knowledge.

5. Adjust the priority for the involved task, knowledge, and chunk, according to how they
behave in this inference step.

6. Process the inference results by sending derived tasks and knowledge to correspond
chunks, and generating new chunks (if necessary). If the task is an input question, and
the knowledge happens to provide a best-so-far answer for it, the answer is reported
to the environment.

4 The Properties of NARS

The following is a list of properties shown by NARS, produced by the components described
above. Again, formalization and implementation details are omitted.

4.1 Internal con
icts

There maybe con
icts in NARS, in the sense that the same sentence is attached to di�erent
truth values when derived from di�erent parts of the experience. Under AIKR, NARS cannot
�nd and eliminate all potential con
icts within its knowledge pool. What it can do is: when a
con
ict is found, to generate a summarized sentence whose truth value re
ects the combined
evidence. These con
icts are normal, rather than exceptional. Actually, their existence is
a major driving force of learning, and only by their solutions some types of inference, like
induction and abduction, can get their results accumulated [40]. In �rst order predicate
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logic, a pair of con
icting propositions imply all propositions. This does not happen in a
term logic, such as NARS.

4.2 Multiple results

Conventional algorithms provide a single answer to each question, then stop working on it.
In contrary, NARS reports each answer that is the best one found, then looks for a better
one (usually with a lower urgency). Of course, eventually the system will end its working
for the question, but the reason is neither that a satis�cing answer has been found, nor
that a deadline is reached, but that the question-answering task has lost in the resources
competition.

As a result, like trial and error procedures [16], NARS may provide no, one, or more than
one answer(s) to a question. In the last case, a later answer is \better" than a previous one,
because it is based on more knowledge, but not necessarily \closer to the objective fact".

When an answer is found, usually there is no way to decide whether it is the last the
system can get. In NARS, there is no \�nal conclusion" that cannot be updated by new
knowledge and further consideration, because all conclusions are based on partial experience
of the system. This self-revisable feature makes NARS a more general model than the
various non-monotonic logics, in which only binary statements are processed, and only the
conclusions derived from default rules can be updated, but the default rules themselves are
not e�ected by experience of the system.

4.3 Reasonable answers

With insu�cient knowledge and resources, NARS cannot guarantee that all the answers
are correct, in the sense that they will not be challenged by the system's future experience.
However, the answers are reasonable in the sense that they are the best summaries of the
past experience, given the current resources supply.

NARS often makes \reasonable mistakes" that are caused by the insu�ciency of knowl-
edge and resources, rather than by the errors in the designing or functioning of the system.

4.4 Massive parallelism

Many processes coexist at the same time in NARS. The system not only processes input
tasks in parallel, but also does so for the derived subtasks. The fact that the system can
be implemented in a single-processor machine does not change the situation, because what
matters here is not that the processes run exactly at the same time on several pieces of
hardware (though it is possible for NARS to use multiple processors), but that they are not
run in an one-by-one way, that is, one process begins after another ends.
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4.5 Internal competition

The system does not treat all processes as equal. It distributes its resources among the
processes, and only allows each of them progress at certain speed and to certain \depth"
in the knowledge pool, according to how much resources it has. Also due to insu�cient
knowledge, the resource distribution is maintained dynamically (adjusted while the processes
are running), rather than statically (determined before the processes begin to run), because
the distribution depends on how they work.

As a result, the processes compete with one another for resources. To speed up one
process usually means to slow down the others. The urgency value of a task re
ects its
priority in the competition, but does not determine its actual resources consumption, which
is also in
uenced by the urgency of other tasks.

4.6 Attention and forgetting

With insu�cient time, it is impossible for all the knowledge and questions to be treated
equal. Some of them (the higher urgency or importance values) get more attention, that is,
are more active or accessible, while some others are relatively forgotten. With insu�cient
space, some knowledge and questions will be absolutely forgotten | eliminated from the
memory.

Like in human memory [21], in NARS forgetting is not a deliberate action, but a side-
e�ect caused by resource competition.

4.7 Flexible time-consuming

In traditional computing systems, how much time is spent on a task is determined by the
system designer, and the user provides tasks without time requirements. On the other hand,
many real-time systems allow users to attach a deadline to a task, and the time spent on
the task is determined by the deadline [37]. A variation of this approach is that the task
is provided with no deadline, but the user can interrupt the process at any time to get a
best-so-far answer [2].

NARS uses a more 
exible manner to decide how much time is spent on a task, and both
the system and the user (environment) in
uence the result. The user attaches a (relative)
urgency to the task, which determines its priority in the resource competition, but the actual
allocation also depend on the current situation of the system. As a result, the same task,
with the same initial urgency, will get more processing when the system is \idle" than when
the system is \busy".

4.8 Distributed representation

Knowledge in NARS is represented distributedly in the sense that there is no one-to-one
correspondence between the input/output in the experience/response and the knowledge in
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the memory [10].

When a piece of new knowledge is provided to the system, it is not simply inserted
into the memory. Spontaneous inferences will happen, which generate derived conclusions.
Moreover, the new knowledge may be revised when it is in con
ict with previous knowledge.
As a result, the coming of new knowledge may cause non-local e�ects in memory.

On the other hand, the answer of a question can be generated by non-local knowledge.
For example, in answering the question \Is dove an instance of bird ?", a piece of knowledge
\dove � bird" (with its truth value) stored in chunks dove and bird provides a ready-made
answer, but the work does not stop. Subtasks are generated (with lower urgencies) and sent
to related chunks. Because there may be internal con
icts within the knowledge base, the
previous \local" answer may be revised by knowledge stored somewhere else.

Therefore, the digestion of new knowledge and the generation of answers are both non-
local events in memory, though chunks corresponding to terms that appear directly in the
input knowledge/question usually have larger contributions. How \global" such an event can
be is determined both by the available knowledge and the resources allocated to the task.

4.9 Redundancy

In NARS, information is not only stored distributedly and with duplications, but also pro-
cessed through multiple pathways. Under AIKR, when a question is asked or a piece of
knowledge is told, it is usually impossible to decide whether it will cause redundancy, so
multiple copies and pathways become inevitable. Redundancy can help the system recover
from partial damage, and also make the system's behaviors depend on statistical facts. For
example, if the same question is repeatedly asked from di�erent sources, it will have multiple
active copies in the resources competition, and, as a result, get more processor time.

4.10 Robustness

Unlike many symbolic AI systems, NARS will not be easily \killed" by improper inputs.
NARS is open and domain-independent, so any knowledge and question, as long as they
can be represented in the system's interface language, can be provided to the system. The
con
ict between new knowledge and previous knowledge will not cause the \implication
paradox" (that is, from an inconsistence, any propositions can be derived). Any mistakes
in input knowledge can be revised by future experience. The questions beyond the system's
current capacity will no longer cause a \combinatorial explosion", but will be abandoned
gradually by the system, after some futile e�orts. In this way, the system may fail to answer
a certain question, but such a failure will not cause a paralysis.

4.11 Knowledge driven

How an answer is generated is heavily dependent on what knowledge is available and how
it is organized. Facing a question, the system does not choose a method �rst, then collect
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knowledge accordingly, but lets it interact with available knowledge. In each inference step,
what method is used to process a task is determined by the type of knowledge that happens
to be picked up at that point.

As a result, the question-answering method for a task is determined dynamically at run-
time, by the current memory structure and resource distribution of the system, not by a
predetermined problem-oriented algorithm.

4.12 Decentralization

According to the working manner of NARS, each chunk as a processing unit only takes care
of its own business, that is, only does inferences where the concept is directly involved. As
a result, the answering of a question is usually the cooperation of several concepts.

However, like in connectionist models [30], there is no \global plan" or \central process"
that is responsible for each question. The cooperation is carried out by message-passing
among chunks. The generating of a speci�c answer is the emergent result of lots of local
events, not only caused by the events in its derivation path, but also by the activity of other
tasks that adjust the memory structure and compete for the resources. For this reason, each
event in NARS is in
uenced by all the events that happen before it.

4.13 Context sensitivity

In the way that NARS processes questions, it is not surprising that the answer to a speci�c
question is context-sensitive, that is, it not only depends on the question itself and the
knowledge the system has, but it also depends on how the knowledge is organized and how
the resources are allocated at that time. The context under which the system is asked a
question, that is, what happens before and after the question in the system's experience,
strongly in
uences what answer the question receives.

Therefore, if the system is asked the same question twice, the answers may be (though
not necessarily) di�erent, even though there is no new knowledge provided to the system in
the interval.

4.14 Unpredictable behaviors

In principle, the behavior of NARS is unpredictable from an input task along, though still
predictable from is initial state and complete experience.

For practical purposes, the behavior of NARS is not accurately predictable to a human
observer. To exactly predict the system's answer to a speci�c question, the observer must
know all the details of the system's initial state, and closely follow the system's experience
until the answer is actually produced. When the system is complex enough (compared
with the information processing capacity of the predictor), nobody can actually do these.
However, it does not mean that the system works in a random manner. Its behaviors are still
determined by its initial state and experience, so approximate predictions are still possible.

17



4.15 Spontaneous concepts forming

There are two types of concepts in NARS: those which appear in the system's experience and
those generated by the system from available concepts. The need for compound concepts
directly comes from AIKR: with insu�cient knowledge, the system must consider similar
things as equivalent for certain purposes, so to extend past experience into current situation;
with insu�cient resources, the system must summarize speci�c experience into general rules,
so to save time and space. As a result, the generated concepts not necessarily correspond to
external \objects", but to the perceived patterns in the system's experience.

What concept to generate is also a knowledge-driven decision. NARS does not search
interesting concepts in a predetermined \concept space" and check each one out by certain
standards. Instead, generating a concept is triggered by a pattern noticed by the system in
its experience, and how long a generated concept can survive is determined by its relationship
with the future experience of the system.

4.16 Fluid concepts

To the system itself, the meaning of a concept is not determined by an interpretation that
links it to an external object, but by its relations with other concepts. The relations are in
turn determined by the system's experience and its processing on the experience. When a
concept is involved in the processing of a task, usually only part of the knowledge associated
with the concept is used. Consequently, concepts become \
uid" [13]:

1. No concept has a clear-cut boundary. Whether a concept is an instance of another
concept is a matter of degree.2

2. The membership evaluations are revisable. Therefore, what a concept actually means
to the system is also variable.

3. However, the meaning of a concept is not arbitrary or random, but relatively stable,
given the system's experience.

4.17 Autonomy and alienation

The global behavior NARS is determined by the \resultant of forces" of its internal processes.
Initially, the system is driven only by input tasks (knowledge and question). The system
then derives subtasks recursively according to available knowledge.

However, it is not guaranteed that the achievement of the derived processes will turn
out to be really helpful or even related to the original processes, because the knowledge,
on which the derivation is based, is defeasible. On the other hand, it is impossible for the
system to always determine correctly which processes are more closely related to the original
processes. As a result, the system's behavior will to a certain extent depend on \its own

2Therefore, all the concepts in NARS are \fuzzy" [44], however, NARS is not a \fuzzy logic", according
to the current usage of the term. See [41] for more discussions.

18



tasks", which are actually more or less independent of the original processes, even though
historically derived from them. This is the functional autonomy phenomena [22].

In the extreme form, the derived tasks may become so strong that they even prevent the
input tasks from being ful�lled. In this way, the derived tasks are alienated.

4.18 Creativity

The alienation and unpredictability sometimes result in the system to be \out of control",
but at the same time, they lead to creative and original behaviors, because the system is
pursuing goals that are not directly assigned by its environment or its innateness, with
methods that are not directly deduced from given knowledge.

By creativity, it does not mean that all the results of such behaviors are of bene�t to
the system, or excellent according to some outside standards. It does not mean that these
behaviors come from nowhere, or a \free will" of some sort, neither. In contrary, it means
that the behaviors are novel to the system, and cannot be attributed either to the designer
(who determined the system's initial state and skills) or to a teacher (who determined part
of the system's experience) alone. Designers and teachers only make the creative behaviors
possible. What turns the possibility into reality is the system's experience, and for a system
that lives in a complex environment, its experience is not completely determined by any
other systems (human or computer). For this reason, these behaviors, with their results, are
better to be attributed to the system itself, than to anyone else [11].

4.19 Own life

Traditional computer systems always repeat the following \life cycle": waiting for problems
! accepting a problem! working on it! getting a solution for it! waiting for problems
� � �.

In contrary, NARS has a \life-time of its own" [7]. When the system is experienced
enough, there will be lots of tasks for the system to process. On the other hand, new input
can come at any time. Consequently, the system's history is no longer like the previous loop.
The system usually working on its \own" tasks, but at the same time, it is always ready
to respond to new tasks. Each piece of input usually attracts the system's attention for a
while, and also cause some long-term e�ects. The system never reaches a \�nal state" and
stops there, though it can be reseted by a human user to its initial state.

4.20 Summary

In this paper, it is impossible to discuss each of the properties in detail for its own interest.
What we are doing here is to show that all of them are closely related to the working
de�nition introduced previously. The following is a list of what is shared by the properties:

1. Few of the properties are proposed by axiomatic logical systems and ordinary comput-
ing systems.
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2. They appear in human thinking, and are often recognized as related to intelligence.

3. Most of them have been discussed and produced by di�erent AI theories and systems,
but separately.

4. They are often judged as impossible by the critics of AI (for examples, see [6, 33]).

The interesting point is: now all of them can be derived (to a certain extent) from the
previous working de�nition of intelligence, and many of them have been shown, to a di�erent
extent, by an implementation of NARS [42]. In NARS, these properties, no matter whether
they are referred to as advantage or disadvantage, become inevitable \epiphenomena" [11]
of a uni�ed architecture, which is based on several simple principles.

5 What Is Unintelligent?

5.1 The need to exclude something

When de�ning intelligence, many authors ignore the complementary question: what is un-
intelligent? For AI to be a branch of science, this question must be clearly answered, as
pointed out by Searle [33].

As any concept, if everything is intelligent, then this concept is empty. We need to rule
out something to study the remaining objects. Even if we agree that intelligence, like almost
all properties, is a matter of degree, we still need criteria to indicate what makes a system
more intelligent than another.

Further more, for AI to be a (independent) discipline, we require the concept \intelli-
gence" to be di�erent from other established concepts, otherwise, we are only talking about
some well-known stu� with a new name, which is not enough to set up a new branch of
science. For example, if every computer system is intelligent, it is better to stay within the
theory of computation. \Intelligent system" does not mean a faster and bigger computer. It
should be di�erent from some better understood concepts like \non-numerical computing",
\parallel inference", or \complex system", otherwise we would use those concepts instead,
to avoid confusion.

The distinction should also be consistent with the way the word \intelligence" is used
in everyday language, otherwise we would better use another word. Intuitively, normal
humans are intelligent, but traditional computing systems and most animals are not, or
much less intelligent. As Searle said [33], a de�nition of intelligence can rule out candidates
like stomach, adding machine, or telephone.

Though under the 
ag of AI, di�erent people are actually doing quite di�erent things,
we can still feel something in common in the �eld, at least shared by the problems, if
not by the suggested solutions. For one thing, hard AI problems are usually easy for human
beings, which makeAI di�erent from other sub-domains of computer science, where computer
systems do better than people.

Therefore, an unintelligent system is not necessarily incapable or gives only wrong results.
Actually, most ordinary computer systems and many animals can do something that human
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beings cannot. However, their ability usually cannot earn the title \intelligent" for them.
What is missing in these capable-but-unintelligent systems?

5.2 Pure-axiomatic, semi-axiomatic, and non-axiomatic

According to the working de�nition of intelligence introduced previously, an unintelligent
system is one that does not adapt to its environment. Especially, in arti�cial systems, a
unintelligent system is one that is designed under the assumption that it only works on
problems for which the system has su�cient knowledge and resources.

Let us concentrate on reasoning systems for more details. Generally, we can distinguish
three types of reasoning systems:

Pure-axiomatic systems. They are designed under the assumption that both knowledge
and resources are su�cient (with respect to the questions), so adaption is not necessary.
A typical example is a \formal system" suggested by Hilbert (and many others): all
answers are deduced from a set of axioms by a determined algorithm, when applied to
a practical domain through a model-theoretical semantics. Such a system is based on
su�cient knowledge and resources, because all relevant knowledge is already embedded
in the axioms, and questions have no time constraints, as long as they are answered in
�nite time. If a question goes beyond the scope of the axioms, it is not the system's
fault, but the user's, so no attempt is made for the system to improve its capacity and
to adapt to its environment.

Semi-axiomatic systems. They are designed under the assumption that knowledge and
resources are insu�cient in some, but not all, aspects. Consequently, adaption is
necessary. Most current AI approaches fall into this category. For example, non-
monotonic logics consider the revision of defeasible conclusions (such as \Tweety can

y") caused by new evidence (such as \Tweety is a penguin"), but usually make default
rules (such as \Birds normally can 
y") unchangeable, and do not take time pressure
into account [29]. Many learning systems attempt to improve the behaviors of a system,
but still work with binary logic, and look for best solutions of problems. Various
heuristic searching systems give up optimum results by assuming the existence of time
limit, but they usually do not attempt to learn from experience, and the change of
time pressure is beyond consideration.

Non-axiomatic systems. Such a system has been brie
y introduced in the previous sec-
tions. It is not to say that its knowledge and resources are always insu�cient, but it
is the normal situation, so the system needs to be designed under such an assumption
and works in such a way, though for a speci�c question, its knowledge and resources
may happen to be su�cient to answer it.

By our working de�nition, we say that pure-axiomatic systems are not intelligent at all,
non-axiomatic systems are intelligent, and semi-axiomatic systems are intelligent in certain
aspects.
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An intelligent system is not always \better" than an unintelligent system for practical
purposes. Actually, it is the contrary: when a problem can be solved by both of them, the
unintelligent system is usually better, because it guarantees a correct solution. As Hofstadter
said, for tasks like adding two numbers, a \reliable but mindless" system is better than an
\intelligent but fallible" system [11].

Pure-axiomatic systems are very useful in mathematics, where the aim is to idealize
knowledge and questions to such an extent that the revision of knowledge and the deadline
of questions can be ignored. In such situations, questions can be answered in a way that is
so accurate and reliable that the procedure can be reproduced by a Turing machine.

We need intelligence only when no such pure-axiomatic method can be used, due to the
insu�ciency of knowledge and resources. For the same reason, the performance of a non-
axiomatic system is not necessarily better than that of a semi-axiomatic system, but it can
work in environments where the latter cannot be used.

Under the above de�nitions, intelligence is still (as we hope) a matter of degree. Not
all systems in the \non-axiomatic" and \semi-axiomatic" categories are equally intelligent.
Some systems may be more intelligent than some other systems for having a higher resources
e�ciency, using its knowledge in more ways, communicating with its environment in a richer
language, adapting more rapidly and thoroughly, and so on. For instance, there are many
ways that NARS can be extended from its current design [42], though it is already a non-
axiomatic system.

5.3 Intelligence and computation

What is the relationship of arti�cial intelligence (AI) and computer science (CS)? What is
the position of AI in the whole science enterprise?

Traditionally, AI is referred to as a branch of CS. According to our previous de�nitions,
AI can be implemented with the tools provided by CS, but from a theoretical point of view,
they make opposite assumptions: CS focuses on pure-axiomatic systems, but AI focuses on
non-axiomatic systems.

The fundamental assumptions of computer science can be found in mathematical logic
(especially, �rst order predicate logic) and computability theory (especially, Turing machine).
These theories take the su�ciency of knowledge and resources as implicit postulates, so
adaption, plausible inference, and tentative solutions of problems are neither necessary nor
possible.

Similar assumptions are often accepted by AI researchers with the following justi�cation:
\We know that the human mind usually works with insu�cient knowledge and resources,
but if you want to set up a formal model and then a computer system, you must somehow
idealize the situation."

It is true that any formal model is an idealization, and so is NARS. The problem is what
to omit and what to preserve in the idealization. In the current implementation of NARS,
many factors that should in
uence reasoning are ignored, but AIKR is strictly assumed
throughout. Why? Because AIKR is a de�nitive feature of intelligence, so if it were lost
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through the \idealization" the resulting study would be about something else.

If NARS is implemented in a von Neumann computer, can it go beyond the scope of CS?
Yes, it is possible because a computer system is a hierarchy with many levels [11]. Some
critics implicitly assume that because a certain level of a computer system can be captured by
�rst order predicate logic and Turing machine, these theories also bind all the performances
the system can have. This is not the case. When a system A is implemented by a system
B, the former does not necessarily inherit all properties of the latter. For example, we
cannot say that a computer cannot process decimal numbers (because they are implemented
by binary numbers), cannot process symbols (because they are coded by digits), or cannot
use functional or logical programming language (because they are eventually translated into
procedural machine language).

As a virtual machine, NARS can be based on another virtual machine, which is a pure-
axiomatic system [42], and this fact does not make the system less \non-axiomatic". Obvi-
ously, with its 
uid concepts, revisable knowledge, and fallible inference rules, NARS breaks
the regulations of classic logics. Being context-dependent and open-ended, the question-
answering activities are also no longer computations. On the other hand, if we take the
system's complete experience and response as input and output, then NARS is still a Turing
machine that de�nitely maps inputs to outputs in �nite steps. What happens here has been
pointed out by Hofstadter: \Something can be computational at one level, but not at an-
other level." [12]. On the contrary, traditional computer systems are Turing machines either
globally (from experience to response) or locally (from question to answer).

Many arguments proposed against logical AI (for example, [1, 20]), symbolic AI (for
example, [6]), or AI as a whole (for example, [33]), are actually against a more speci�c target:
pure-axiomatic systems. Designed as a reasoning system, but not a \logicist" one [25], NARS
actually shares more philosophical opinions with the sub-symbolic, or connectionist movement
[12, 14, 30, 36], but chooses to formalize and implement these opinions in a framework that
looks more close to the traditional symbolic AI tradition. The practice of NARS shows that
such a framework has its advantages, such as more general and abstract, more closely related
to the old problems in the domain, and more suitable for the studies of high-level phenomena
that are related to intelligence.3

6 Compared with Other De�nitions

There are just too many di�erent opinions about what intelligence is and what the best
methodology for AI is, that it is impossible to compare our ideas to each of them. Instead,
in the following these opinions are classi�ed into several categories, and their relationship
with the working de�nition of intelligence introduced previously are discussed.

Generally speaking, the research of arti�cial intelligence has two major motivations. As a
�eld of science, we want to learn how human mind, or \mind" in general, works; as a branch

3In addition, NARS can also be interpreted as a network by taking terms as nodes, and judgments as
links [40]. The possibility of interpreting NARS both as a symbolic reasoning system and an associative
network ease the comparisons between NARS and other systems.
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of technology, we want to apply computers to domains where only the human mind works
well currently. Intuitively, both goals can be achieved if we can build computer systems that
are \similar to the human mind".

But in what sense are they \similar"? To di�erent people, the similarity may be in the
structure, performance, capacity, function, or principle. In the following, we discuss typical
opinions in each of the �ve categories, to see where these de�nitions of intelligence will lead
AI to.

6.1 To simulate human brain

Intelligence is produced by brain, so maybe AI should attempt to simulate a brain in a
computer model as faithful as possible. Such an opinion is put in its extreme form by neu-
roscientists Reeke and Edelman, who argue that \the ultimate goals of AI and neuroscience
are quite similar" [28].

Though it sounds reasonable to identify AI with brain model, few AI researchers exactly
take such an approach. Even the \neural network" movement is \not focused on neural
modeling (i.e., the modeling of neurons), but rather : : : focused on neurally inspiredmodeling
of cognitive process" [30].

Why? One obvious reason is the complexity of this approach. The current technology is
still not powerful enough to simulate a huge neural network, not to mention that there are
still many mysteries in brain.

Moreover, even if we were able to build a brain model at the neuron level to the desired
accuracy, it could not be called the success of AI, though it would be the success of neuro-
science. AI is more closely related to \model of mind", that is, a high-level description of
brain activity in which biological concepts do not appear.

A high-level description is preferred, not because a low level description is impossible, but
because it is usually more simple and general. A distinctive character of AI is the attempt to
\get a mind without a brain", that is, to describe mind in a medium-independent way. This
is true for all \models": by the building of a model, we concentrate on certain properties of
an object or process, and ignore irrelevant aspects, so, as a result, we can get insights that
are hard to see in the object or process itself. For this reason, an accurate duplication is not
a model, and a model including unnecessary details is not a good model.

If we agree that \brain" and \mind" are di�erent concepts, then a good model of brain is
not a good model of mind, though the former is useful for its own sake, and helpful for the
building of the latter.

6.2 To duplicate human behaviors

Because we always judge the intelligence of other people by their behaviors, it is natural to
use \reproducing behaviors of human brain as accurate as possible" as the aim of AI. In this
way, we can draw \a fairly sharp line between the physical and the intellectual capacities of
a man" (Turing in [38]).
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Such a working de�nition of intelligence asks researchers to use passing the Turing test
as a su�cient and necessary condition for having intelligence, and to take psychological
evidence seriously, as Soar does [23].

Such a working de�nition can be criticized from di�erent directions:

Is it su�cient? Searle argues that even if a computer system can pass the Turing test, it
still cannot think, because it lacks the causal capacity of brain to produce intentionality,
which is a biological phenomenon [33]. However, he does not demonstrate convincingly
why thinking, intentionality, and intelligence cannot have a high-level (higher than
biological level) description. His \Chinese room" thought experiment is based on the
assumption that a formal system can only get meaning according to model-theoretic
semantics, but it is not the case, as discussed previously.

Is it possible? Due to the nature of the Turing test and the resources limitation of a con-
crete computer system, it is impossible for the system to remember all possible ques-
tions and proper answers in advance, then pretend to be a human being by searching
such a list. To imitate human performance in a conversation, it has to produce the
answers in a \human-way". To do this, it not only needs some cognitive facilities, but
also a \human experience" [8]. Therefore, it must have a body that feels like human,
it must have all human motivations (including the biological ones), and it must be
treated by people as a human being | so it must simply be an \arti�cial human",
rather than a computer system with arti�cial intelligence.

Is it necessary? As French points out, by using behaviors as evidence, the Turing test
is for human intelligence, not for intelligence in general [8]. As a working de�nition
for intelligence, such an approach can lead to good psychological models, which are
valuable for many reasons, but su�er from a \human chauvinism" [11] | we have to
say, according to the de�nition, that E. T. is not intelligent, because it will de�nitely
fail a Turing test. Furthermore, we have to say that no other animal except a human
has vision, if we de�ne \vision" as \indistinguishable to human in response to light
stimulus to eye" or something like that. It is a very unusual and unfruitful way to use
concepts.

6.3 To solve hard problems

In everyday language, \intelligent" is usually applied to people who can solve hard problems.
Many de�nitions of intelligence come from this usage. According to this type of de�nition,
intelligence is the capacity of solving hard problems, and how the problems are solved is not
very important.

What problems are \hard"? In the early days of AI, many researchers worked on typical
intellectual activities, such as game-playing and theorem-proving. Nowadays, many people
turn to \real problems" appearing in various domains to build \expert systems". Obviously,
experts are usually intelligent, so if a computer system can solve problems that only experts
can solve, the computer system must be intelligent, too.
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This movement has produced many practically useful systems, and attracted �nancial
and manpower investments, and thus made important contributions to the development of
AI enterprise. Usually, the systems are developed by analyzing domain knowledge and expert
strategy, then building them into a computer system.

Though often pro�table, these systems do not provide much insight about how the mind
works. No wonder people ask, after knowing how such a system works, \Where's the AI?"
[32] | these systems look just like ordinary computer application systems, and su�er from
rigidity and brittleness (something AI wants to avoid).

Sometimes computer systems are referred to as \intelligent" by some people, because the
use of techniques that developed or widely used by AI workers, for example, to represent
knowledge in frames or sematic networks, to program in Lisp or Prolog, or to organize the
system as an inference engine or production system. However, the use of these techniques
does not cause a fundamental di�erence | usually the same capacity can be got, though not
as conveniently, by using traditional data structures, system organizations and programming
languages in computer science.

If intelligence is de�ned as the \capacity of solving hard problems", then the next question
is: \Hard to whom?" If we say \hard to human beings", then most existing computer
softwares are already intelligent | no human can manage a database as good as a database
management system, or substitute a word in a �le as fast as an editing program. If we
say \hard to computers", then AI becomes \whatever hasn't been done yet", which is called
\Tesler's Theorem" by Hofstadter [11] and \gee whiz view" by Schank [32]. Such a de�nition
cannot lead to a proper distinction between intelligent and unintelligent systems. It is not
a good approach, if the aim of study is intelligence in general, rather than concrete domain
problems.

6.4 To carry out cognitive functions

According to this type of opinion, intelligence is characterized by a set of cognitive func-
tions, such as reasoning, perception, memory, problem solving, language use, and so on.
Researchers with this idea usually concentrate on one of the functions, with the believe that
the works on di�erent functions can be combined together in the future to get a whole picture
of intelligence.

A \cognitive function" is often de�ned in a general and abstract manner, independent to
the brain mechanisms that carry it out, the speci�c performances that it can produce, and
the practical domains that it can be applied to. The direct aim of the study is to build a
computer system with the desired function(s).

This approach has produced, and will produce more, information processing tools in the
form of software packages and even specialized hardware, each of which can carry out a
function that is similar to certain mental skills of human beings, and therefore can be used
in various domains for practical usage.

However, this kind of success is not enough for claiming that it is the proper way for AI
study. To de�ne intelligence as a \toolbox" of functions has the following weaknesses:
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1. Even if we can get the desired tools, it does not mean that we can easily combine them,
because the tools are usually based on di�erent postulations.

2. When speci�ed in isolation, an implemented function is often quite di�erent from its
\natural form" that happens in the human mind. For example, to study analogy
without perception leads to distorted cognitive models [4].

3. Having a certain cognitive function is not enough to make a system intelligent. For
example, problem-solving by exhaustive searching is usually not considered intelligence,
and many unintelligent animals have perception.

The basic problem of the \toolbox" approach is: without a \big picture" in mind, the
study of a cognitive function in an isolated, abstracted, and often distorted form does not
necessarily contribute to our understanding of intelligence.

A common defense goes like this: \Intelligence is very complex, so we have to start from a
single function to make the study simple." For many systems with weak internal connections,
this is often a good choice, but for a system, like a mind, whose complexity comes directly
from its tangled internal interactions, the situation may be just the opposite. When the so
called \functions" are actually phenomena produced by a complex-but-uni�ed mechanism,
to reproduce all of them together (by duplicating the mechanism) is even simpler than to
reproduce only one of them. We have evidence to believe that intelligence is such a problem.

6.5 To develop new principles

According to this type of opinions, what distinguishes intelligent systems and unintelligent
systems are their postulations, applicable environments, and basic principles of information
processing.

The working de�nition of intelligence introduced in this paper belongs to this category.
As a reasoning system adapting to its environment with insu�cient knowledge and resources,
NARS has many cognitive functions, but they are better referred to as closely related external
phenomena, rather than as well-de�ned tools used by the system. By leaning from its
experience, NARS has a potential capacity to solve hard problems4, but it has no built-in
capacity, so, without proper training, no capacity is guaranteed, and even acquired capacities
can be lost. With similar principles, we expect NARS behave similarly to human beings,
but the similarity exists at a more abstracted level than concrete performance. Due to
the fundamental di�erence in experience, NARS is not expected to accurately reproduce
psychological data or to pass a Turing test. Finally, the internal structure of NARS has
some properties in common with a description of the human mind at the sub-symbolic level,
but it is not an attempt to build an arti�cial neural network.

In summary, the structure approach contributes to neuroscience, the performance ap-
proach contributes to psychology, the capacity approach contributes to various application

4Actually, hard problems are exactly those for them a solver (human or computer) has insu�cient knowl-
edge and resources. Once the answer is known in advance, or all possible answers are known and there is
enough time to check them one by one, no problem is hard any more.
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domains, and the function approach contributes to computer science. These approaches are
not as good as the principle approach, when intelligence is the peak to climb, though they
are still valuable for other purposes, and helpful for the study of AI.

As a matter of fact, what has been proposed in our de�nition is not entirely new to
the AI community. It seems that no one will argue against the opinion that \adaption",
or \learning", is essential for intelligence, and \insu�cient knowledge and resources" is the
focus of many sub�elds of AI, such as heuristic search, reasoning under uncertainty, real-time
planning, and machine learning.

We can also �nd similar attempts to base intelligence on certain basic principles (as some
kind of rationality) in the following ideas:

Simon's bounded rationality: \Within the behavioral model of bounded ratio-
nality, one doesn't have to make choices that are in�nitely deep in time, that
encompass the whole range of human values, and in which each problem is inter-
connected with all the other problems in the world." [35]

Cherniak's minimal rationality: \We are in the �nitary predicament of having
�xed limits on our cognitive resources, in particular, on memory capacity and
computing time." [5]

Russell and Wefald's limited rationality: \Intelligence was intimately linked to
the ability to succeed as far as possible given one's limited computational and
informational resources." [31]

Medin and Ross even have made it so clearly: \Much of intelligent behavior can be under-
stood in terms of strategies for coping with too little information and too many possibilities."
[21]

With all of the above already said, what is new in NARS? We claim that the following
makes NARS di�erent from other AI projects, philosophically and methodologically:

1. To explicitly and unambiguously de�ne intelligence as \adaption with insu�cient
knowledge and resources".

2. To further specify \with insu�cient knowledge and resources" as being �nite, real-time,
and open.

3. To choose a reasoning system as the framework for applying the de�nition completely
in an all-encompassing manner.

4. To invent proper techniques, such as term-oriented language, experience-ground se-
mantics, extended syllogism, chunk-based memory structure, controlled concurrency,
to formalize the de�nition in a symbolic logic, then to implement the logic into a
computer reasoning system.
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7 A Primary Evaluation

After all the descriptions and discussions, let us compare our working de�nition of intelligence
with the requirements set up at the beginning of the paper:

Similarity. Obviously, natural information processing systems, i.e., humans and animals,
are adaptive, and often have to work with insu�cient knowledge and resources. Being
more adaptive, human beings are much more intelligent than other animals. On the
other hand, though traditional computing systems also have limited knowledge and
resources, they usually limit the problems to be processed, so to make the knowledge
and resources su�cient for those problems. Therefore, our de�nition draws a line
between intelligent and unintelligent systems in such a way that is similar to the
common usage of the word \intelligence".

Exactness. Our de�nition is exact, because whether a system is adaptive can be determined
by testing whether its behaviors depend on its experience. For a computer system,
whether it is designed under AIKR can be determined by testing the three properties:
�nite (Can the system forget?), real-time (Can the system respond to di�erent time
requirements?), and open (Does the system restrict what it can be told or asked?).
Like Turing's idea, we also decide whether a system is intelligent by \talking" with it,
but the standards are di�erent | we do not require that the system talk like a human.

Fruitfulness. As described previously, the de�nition is instructive in determining the major
components of NARS, which produce many desired properties. Based on the de�nition,
NARS addresses many problems in AI in a consistent manner, and also provides a
foundation for AI that clearly distinguishes it from other related disciplines, such as
computer science, psychology, and neuroscience.

Simplicity. Our de�nition is quite simple, so it is easy to be discussed and applied to
research. Its direct result, NARS, is also not very complex in its structure (compared
with other AI systems), though the system's behavior can be very complex due to its
interaction with its environment.

With the above properties, we believe that the working de�nition of intelligence intro-
duced in this paper is better than many others accepted by AI researchers. However, we do
not claim that the de�nition is the correct one. Obviously, there are many intelligence-related
phenomena that have not been explained by the de�nition. These phenomena suggest further
extensions of NARS, which may cause future revisions to the de�nition, but cannot be used
as evidence at this time against the de�nition. Since (as discussed at the beginning of the
paper) working de�nitions correspond to the choice of a paradigm before, not after, carrying
out research in the paradigm, a working de�nition can only be rejected by providing a better
one, rather than by �nding a weakness in it. We hope in the near future our de�nition can be
replaced by a better one, according to the requirements of similarity, exactness, fruitfulness,
and simplicity.
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