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ABSTRACT

Non-Axiomatic Reasoning System is an adaptive system that works with in-

su�cient knowledge and resources.

At the beginning of the paper, three binary term logics are de�ned. The �rst is

based only on an inheritance relation. The second and the third suggest a novel

way to process extension and intension, and they also have interesting relations

with Aristotle's syllogistic logic.

Based on the three simple systems, a Non-Axiomatic Logic is de�ned. It has a

term-oriented language and an experience-grounded semantics. It can uniformly

represents and processes randomness, fuzziness, and ignorance. It can also uni-

formly carries out deduction, abduction, induction, and revision.
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1. INTRODUCTION

Non-Axiomatic Reasoning System (NARS) is proposed as a formalmodel
of intelligent reasoning systems [40].
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A reasoning system, in its general form, has the following components
[5, 34]:

1. A domain-independent formal language by which the system can com-
municate with its environment, that is, to get knowledge and ques-
tions, and to provide answers according to its knowledge;

2. A semantics that shows (in principle) how to understand and deter-
mine the meaning of the terms and the truth value of the sentences
in the language;

3. A set of formal inference rules which generate valid (according to the
semantics) conclusions from given premises;

4. A memory, which serves as a storage of knowledge and questions, and
a working place as well;

5. A control mechanism which chooses premises and rule(s) in each in-
ference step to answer the questions.

The �rst three components can be called a \logic", in the broad sense of
this term [37].
As an intelligent system, NARS is designed to be an adaptive system un-

der the constraints that its knowledge and resources are usually insu�cient
to answer the questions proposed by the environment [40, 42]. Concretely,
it has the following features:

Finite: The system works with respect to its constant information pro-
cessing capacity;

Real-time: New knowledge and questions can arrive at any time, and
questions have time requirements attached;

Open: No constraint is put on the knowledge and questions that the sys-
tem can encounter, as long as they are expressible in the formal lan-
guage;

Adaptive: The system self-improves its behaviors under the assumption
that its future experience will be similar to its past experience, where
the \experience" of the system is indicated by its history of commu-
nication with its environment.

What follows from the above requirements is: the system need to rep-
resent and process various types of uncertainty, and to generate plausible
answers according to its experience. Therefore, the traditional logic sys-
tems, such as �rst-order predicate logic, cannot be applied. Though there
are already many approaches that are designed to deal with uncertain or in-
complete knowledge, none of them is completely based on the \insu�ciency
of knowledge and resources" assumption, de�ned by the above features.
This paper can be seen as the �rst step of the NARS project. In the fol-

lowing sections, we start by de�ning an inheritance relation, and then three
simple logics based on it. They provide a formal foundation on which the
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simplest Non-Axiomatic Logic, NAL1, can be de�ned. NAL1 handles mul-
tiple types of uncertainty (such as randomness, fuzziness, ignorance, and
so on), as well as multiple types of inferences (such as revision, deduction,
abduction, induction, and so on), in a uni�ed manner.

2. THREE SIMPLE SYSTEMS

2.1. Inheritance Logic

The four logics discussed in this paper are all term logics, which are
di�erent from predicate logics by having the following features: [4, 13]

1. Each proposition consists of a subject term and a predicate term, which
are related by a copula;

2. The copula is intuitively interpreted as \to be";
3. The basic inference rules take two propositions that share a common

term as premises, and get a conclusion from them, in which the other
two (unshared) terms are related by a copula.

In the simplest case, there is only one type of copula in the system, and
all the terms are \atomic", that is, has no internal structure. In this way,
we get an Inheritance Logic (IL).

Definition 2.1. A term is a string of letters in an alphabet.

Definition 2.2. The inheritance relation, \<", is a reexive and tran-

sitive relation between two terms.

Definition 2.3. A proposition consists of two terms related by the in-

heritance relation. In a proposition \S < P", S is the subject term, and

P is the predicate term, of the proposition.

The intuitive meaning of the inheritance relation is closely related to
many well-known relations, for instance, \ISA" (in semantic network), \be-
longs to" (in Aristotle's syllogism), \subset" (in set theory), \inheritance
assertion" (in inheritance network [35]), as well as many relations studied
in psychology and philosophy, such as \type-token", \category-instance",
\general-speci�c", and \superordinate-subordinate" [7]. What make it dif-
ferent from the others are: it is a relation between two terms, and the
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relation is completely de�ned by the two properties: reexivity and transi-

tivity. 1

This logic (as well as the following two) can be interpreted in the usual
model-theoretic way. Terms have no meaning until a model is set up, where
they are mapped into objects in a domain, and the inheritance relation is
also mapped into a (reexive and transitive) relation in the domain. Such
a mapping give the terms \meaning". A proposition is \true" if and only
if the two corresponding objects really have the relation in the domain.
Under such an interpretation, \valid inference rules" are the rules that

produce true conclusions from true premises. Obviously, there are exactly
two valid rules, corresponding to reexivity and transitivity, respectively.
With these two rules, from any non-empty and �nite set of propositions

K (as premises), the following algorithm can generate the set of all valid
conclusions K�:

1. Let K� = K;
2. For each term T appearing in K�, put \T < T" in K (if it is not

already there);
3. For each pair of propositions \S < M" and \M < P" in K�, put

\S < P" in K� (if it is not already there).

When IL is implemented in a reasoning system, two types of questions
can be answered according to a given K (as premises):

evaluation: \S <?P", that is, \Is there an inheritance relation from S to
P?";

selection: \? < P" (or \S < ?"), that is, \Which term has an inheritance
relation to P (or from S)?"

To answer the questions, the system can simply generate K�, then search
for a proposition with the form \S < P".
Obviously, both types of question are decidable. For the evaluation ques-

tion, the system will answer \Yes" when \S < P" is inK�, otherwise, \No"
(so the system works under the \closed-world assumption"); for the selec-
tion questions, the system will answer \X" when there is a X that has the
desired relation with S (or P ). X cannot be S (or P ) itself | that will be
trivial, and if there is more than one answers, any one of them is �ne. If
there is no such a term, the answer is \No".
The system can also be described in terms of a network. K can be

represented by a directed graph, where terms are nodes and inheritance
relations are directed links (say, from the subject to the predicate). The

1The membership relation \2" cannot be represented in IL, though it can be intro-

duced in the extensions of IL [40]. Therefore, the subject of a proposition cannot be
a \singular term", such as \Tweety" or \Socrates". On the other hand, as in Aristo-

tle's logic, \the same term may be used as a subject and as a predicate without any
restriction" [24].



5

questions are search problems either for the existence of a path from a given
node to another given node (evaluation) or for a node in a path from (or
to) a given node (selection).
Up to now, we have got a complete reasoning system. Although IL is

quite simple (even trivial) by itself, we will see that this logic provides a
solid ground for its successors.

2.2. Extension and Intension

In IL, the extension and intension of a term is de�ned, relative to a set
of propositions K, as the following:

Definition 2.4. The extension of a term T is a set of terms ET =
fx j (x < T ) 2 K�g. The intension of T is a set of terms IT = fx j (T <
x) 2 K�g. 2

This de�nition is of great importance. Traditionally, extension and in-

tension refer to two aspects in the meaning of a term: its instances and
its properties. Extension is usually de�ned as an object, or a set of ob-
jects, which is in a \physical world", and denoted by the term; intension
is usually de�ned as a concept, which is in a \Platonic world", and denot-
ing the term [4, 19]. In spite of the di�erences among the exact ways the
two words are used by di�erent authors, they indicate relations between a
term in a language and something outside the language. However, in the
current theory, they are de�ned as (the two sides of) a relation between
two terms, which is within the language, and the de�nition still keeps the
intuitive senses that extension refers to \instances", and intension refers
to \properties". We can see why such a de�nition is appropriate when the
major result of the paper, NAL1, is discussed.
Now let us simply accept the de�nition and its implications, which are:

1. Extension and intension are de�ned in such a symmetric way that for
any result about one of them, there is a dual result about the other.

2. Each proposition reveals part of the intension for the subject term
and part of the extension for the predicate term.

3. Since the inheritance relation is reexive, all terms have a non-empty
extension and a non-empty intension | at least they have the term
itself in it.

From the de�nition, it is not di�cult to get the following results (where
\()" means \if and only if"):

(S < P )() (ES � EP )() (IP � IS );

2The extension and intension of a term are ordinary sets, but a term itself is not a
set.
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(ES = EP )() (IS = IP ):

The �rst one means \There is an inheritance relation from S to P" is iden-
tical with \S inherits P 's intension" and \P inherits S's extension". This
is the reason that \<" is called \inheritance relation". 3 The second one
shows that the extension and intension of a term are mutually determined.
Therefore, given one of them, the other can be uniquely obtained.

2.3. Extensional Term Logic

In IL, we only distinguish two types of relation between the extensions
of two terms: whether one is completely included in the other. Now let's
consider other possible binary relations between the extensions of two terms
S and P .
As sets, if ES � EP (or EP � ES), then such a complete and a�rmative

inheritance of extension can be represented and processed by IL, de�ned
as above. How about partial or negative inheritance relations between the
extensions of two terms? A successor of IL, Extensional Term Logic (ETL),
is de�ned to capture these relations.
By introducing four types of copulas, the following de�nition naturally

extends the \<" relation de�ned in IL:

Definition 2.5.

S <a P if and only if ES � EP = ;

S <e P if and only if ES ^EP = ;

S <i P if and only if ES ^EP 6= ;

S <o P if and only if ES � EP 6= ;

They can be understood as \All S are P", \No S is P", \Some S are

P", and \Some S are not P", respectively.
Since (ES � EP = ;)() (ES � EP ), we have (S <a P )() (S < P ).
Though described di�erently, ETL turns out to be isomorphic with Aris-

totle's syllogistic logic. For each property of Aristotle's logic [1, 24, 28],
there is a corresponding one in ETL, and vice versa.

The square of opposition: The relations among the four types of ex-
tensional inheritance can be represented in Figure 1 [4], where there
are four types of relations:

3Here \inheritance" is used for a logical relation between two terms, rather than an

idea about the implementation of a knowledge base, by which storage space can be saved
[7, 35].
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1. If \S <a P" is true, then \S <i P" is true; if \S <e P" is true,
then \S <o P" is true.

2. \S <a P" and \S <o P" must be one true and one false; \S <e

P" and \S <i P" must be one true and one false.
3. \S <a P" and \S <e P" cannot both be true.
4. \S <i P" and \S <o P" cannot both be false.

Conversion: If \S <e P" is true, so is \P <e S"; if \S <i P" is true, so
is \P <i S".

Syllogisms: For each valid syllogism in Aristotle's logic, there is a corre-
sponding (valid) inference rule in ETL. All of the rules are listed in
Table 1.

All of these properties can be proven from the de�nitions by reasoning
according to set theory.
Although the four types of proposition are de�ned in terms of extensions,

which is de�ned by the inheritance relation \<", the above rules make
ETL directly applicable to a set of \extensional propositions" (of the four
types), and use \<" only for the purpose of interpretation. In this way,
IL is both a meta-system of ETL (because the former is used to de�ne the
basic components of the latter) and a sub-system of ETL (because the \<"
relation is identical to the \<a" relation).
When implemented in a reasoning system to solve domain problems, the

premises must be consistent. It is possible for the system itself to determine
whether a given �nite set of propositions is consistent by exhausting its
implications, then checking for the second and third type of relations in
the Square of Opposition.
Compared with IL, the questions that ETL can answer are more com-

plicated:

evaluation: \S <?P" now have �ve possible answers, corresponding to
the four relations and \I don't know" (undetermined), respectively.
If both \S <a P" and \S <i P" (or \S <e P" and \S <o P") are got,
the former is reported as the result; If both \S <i P" and \S <o P"
are got, they are reported together.

selection: The four di�erent relations correspond to four kinds of ques-
tions. When there are multiple answers, any one is equally good as
the result. When no such a term can be found, \No" is the reply.

The questions are still decidable, because an answer will be provided in
�nite time for every question.
The system can be described in terms of network, too. Now there are

four di�erent types of links in the network, corresponding to the four kinds
of inheritance relations.
If only the relations \S <a P" and \S <e P" are represented and pro-

cessed, ETL will degenerate into a special case, which is identical with the
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\Monotonic Inheritance Network" de�ned in [10].

2.4. Intensional Term Logic

Since extension and intension are de�ned as a \dual" in IL, we get an
Intensional Term Logic (ITL) \for free", which is isomorphic with ETL.

Definition 2.6.

S <a P if and only if IP � IS = ;

S <e P if and only if IP ^ IS = ;

S <i P if and only if IP ^ IS 6= ;

S <o P if and only if IP � IS 6= ;

These propositions can be interpreted intuitively as \S has all of the
properties of P", \S has none of the properties of P", \S has some of the
properties of P", and \S lacks some of the properties of P", respectively.
Here, the quanti�ers are applied to the properties (intension) of the pred-
icate, rather than to the instances (extension) of the subject (as Aristotle
did) or predicate (as Bentham and Hamilton did, see [4]).
The propositions represented in this way are closely related to \typi-

calness" [31], \representativeness" [36], \normality" [20], and \fuzziness"
[45]. All these concepts are proposed, from di�erent standing points, to
capture the phenomenon that an instance does (or doesn't) possess all (or
some) properties of a category. The related problems cannot be properly
represented and processed by any extensional logic.
ITL has isomorphic properties with ETL, such as (S <a P )() (S < P ),

the same Square of Oppositions, and identical conversion rules for the \<e"
and \<i" relations. As a result, we know that (S <a P )() (S <a P ), as
well as (S <o P ) () (S <o P ). However, \S <e P" and \S <e P" are
di�erent, so are \S <i P" and \S <i P".
The inference rule table of ITL, Table 2, is isomorphic to that of ETL

(they are symmetric to the main diagonal).
Though nothing new technically, ITL suggests a simple, and psycholog-

ically plausible way to process intensions. Also in this way, extension and
intension are naturally related.
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Figure 1. The square of opposition

J2 n J1 M <a P M <e P M <i P M <o P P <a M P <e M P <i M P <o M
S <a M S <a P S <e P S <e P
S <e M S <e P
S <i M S <i P S <o P S <o P
S <o M S <o P

M <a S S <i P S <o P S <i P S <o P S <i P S <o P S <i P
M <e S S <e P
M <i S S <i P S <o P S <o P
M <o S

Table 1. Inference rules of ETL

J2 n J1 M <
a P M <

e P M <
i P M <

o P P <a M P <e M P <i M P <o M

S <a M S <a P S <i P S <i P S <i P
S <e M S <e P S <o P S <o P S <o P
S <i M S <i P
S <o M S <o P

M <
a S S <e P S <o P S <i P S <e P

M <
e S S <e P S <o P S <o P S <o P

M <
i S S <i P

M <
o S

Table 2. Inference rules of ITL
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3. NON-AXIOMATIC LOGIC 1: SEMANTICS AND SYN-

TAX

3.1. Experience-grounded Semantics

Though IL, ETL, and ITL have interesting properties, they are still
\axiomatic logics" in the following senses:

1. They use a model-theoretic semantics, by which \true" is de�ned as
\isomorphic with the state of a�airs (in a model)";

2. A �nite set of premises, whose truthfulness is presupposed by the
system, is used as the start point of all inferences;

3. The inference rules are valid in the sense that they only derive true
conclusions from true premises;

4. The system answer questions by constructing a proof from the premises
to the desired proposition, and the choice of premises and rules in each
step is determined by an algorithm;

5. All the resources requirements of the algorithm can be satis�ed, and
the answer of a question is de�ned independent to its time-space
resources expense.

Axiomatic logics work well in many domains, especially in mathematics,
but they require su�cient knowledge and resources with respect to the
problems to be solved. Specially, the premises must imply the desired
answers, and the system must have enough time-space resources to actually
derive out those answers.
What should a system do if the above requirements cannot be satis�ed?

In the following, a \non-axiomatic logic", NAL1, is de�ned, which works
with insu�cient knowledge and resources. Of course, in such a situation
no correct answer can be guaranteed. However, if a system have to work in
such a situation, then some answers are still better than arbitrary guesses
or always saying \I don't know".
Since NARS is designed to be adaptive, it makes judgments based on its

experience, although such judgments may conict with the system's future
experience. 4

In the working environment of NARS, as de�ned in the introduction of
the paper, model-theoretic semantics cannot be applied. If \truth value"
is still used to indicate whether (or to what degree) a judgment is mapped
exactly into an \objective state of a�air", then no judgment can get such
a truth value. However, we have reason to argue (though I prefer not to
discuss the philosophical issues here) that in everyday life and empirical

4In the �rst three systems, the name \proposition" is used for a binary assertions. In

the last system, the name \judgment" is used for a multi-valued assertions. The former
can be seen as a special case of the later.
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science, where we do su�er from the insu�ciency of knowledge and re-
sources, whether (or to what degree) a judgment is \true" is determined
by comparing it with the experience of the system (a human being or a
scientists community) to see whether (or to what degree) the judgment is
supported by the experience.
If this is the case, can we simply give up the idea of truth value, and label

each judgments concretely with its positive (con�rmative) and negative
(refutive) evidence in the system's experience? This is impossible because
the system may not have the resources to do it, and more importantly,
the evidence need to be summarized for various operations. To summarize
information about evidence into truth values causes information loss, but
it is absolutely necessary for the system, because qualitatively di�erent
evidence need to be treated in a uni�ed manner [26].
This will lead to what I call \experience-grounded semantics", where the

truth value of a judgment indicates the degree to which the judgment is

supported by the system's experience. De�ned in this way, truth value is
system-dependent and time-dependent. Di�erent systems may have con-
icting opinions, due to their di�erent experiences. Even for the same
system, truth values of judgments are constantly re-evaluated according to
new experience.
Concretely, let us assume the experience of the system is represented

by a sequence of input judgments E =< J1; J2; : : : ; Jn >, where all the
judgments are sentences of the communication language L, and their truth
values are determined in the interaction of the system and the environment.
They are used as primary premises by the system. 5

Comparing E with the premises set K de�ned in the previous axiomatic
logics, we can see two fundamental di�erences:

1. K is constant, but E changes from time to time;
2. K must be consistent, but E is not necessarily, that is, there may be

a pair of judgments Ji and Jj , which assign di�erent truth values to
the same relation.

Someone may suggest to treat E as an ordinary \knowledge base". When
each piece of new knowledge arrives, the previous judgments that conict
with it are removed. Such a method assumes the system always have suf-
�cient resources to �nd all conicts among judgments, and new knowledge
is always superior to old knowledge. However, the �rst assumption can-
not be accepted by NARS, and so do the second one | \old" and \new"
knowledge may come from distinct sources, therefore we cannot treat all
conicts as \updating".

5Accurately speaking, the experience of a system also includes questions asked by the

environment. Though the questions inuence the resource distribution of the system,
they do not e�ect the evaluation of a truth value, therefore they are ignored here.
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What makes the things more complicated is the fact that, also because
of the insu�ciency of resources, it is impossible for the system to take the
complete E into account when evaluating the truth value of a judgment.
As a result, truth values are usually determined according to a section of
E. It is another source of conicts among the judgments. Because each
judgment is only supported by partial experience of the system, judgments
summarized from di�erent sections of the experience may conict with each
other.
It is possible, in theory, to use binary logic in this situation. For example,

we can distinguish four types of judgments, based on the given experience
E, by whether it has positive and negative evidence (as in ETL and ITL).
However, such a logic is too weak. For the system to be adaptive, the weight
(or amount) of evidence is important. A judgment that has be con�rmed
one thousand times should de�nitely win a competition with a judgment
that has been con�rmed only once. When a judgment has both positive
and negative evidence, a quantitative comparison is necessary. Otherwise,
the system will be unable to make a choice among competing answers for
a question | they may be all marked as \possible".
Now, since the truth value of a judgment is actually a measurement of

the positive and negative evidence, then what we need to do is:

1. to concretely de�ne the positive and negative evidence for a judgment,
and

2. to de�ne a measurement unit.

These problems are hard for predicate logics (as revealed by the famous
\Raven Paradox" of Hempel [8]), but in a term logic like NAL1, we can
�nd a natural solution of them.
In summary, the truth value of a judgment in NAL1 is a numerical

representation indicating the weights of positive and negative evidence,
according (part of) the experience of the system. However, experience is
nothing else but a string of judgments, with their truth values, too. So, we
seems de�ne a truth value circularly by other truth values.
This is why we �rst introduced a simple system IL in the previous section.

We will build NAL1 as an extension of IL, and use propositions in IL to
construct an \ideal experience" for each judgment in NAL1, so to break
the de�nition circle.
Alike in IL, ETL, and ITL, in NAL1 what is represented in each judgment

is still \to what extent one term can be used as another", or the inheritance
relation between the extensions and intensions of two terms. However, as
discussed before, the a; e; i; o relations in ETL and ITL need to be extended
to a numerical measurement. For this purpose, a new inheritance relation
\�" is introduced as a re�ned version of \<", and a judgment \S � P"
still indicates that \S inherits P 's intension, and P inherits S's extension".
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For such a judgment, what is its positive or negative evidence? Obvi-
ously, if (according to the experience of the system) there is a term T in
the extensions (or intensions) of both S and P , then it provides positive
evidence for the judgment; on the other hand, if there is a term T in the
extension of S, but not in the extension of P , or it is in the intension of
P , but not in the intension of S, then it provides negative evidence for the
judgment. According to the practice of statistics, the most natural way to
calculate the weight of evidence is to simply count such terms. In this way,
weight of evidence take its values in [0;1], and is additive when combining
two pieces of evidence from distinct sources [32, 41].
If the experience of the system is represented by a string of propositions in

IL, then, by using the string as premises set K, we can determine extension
and intension for each term. For each judgment \S � P" in NAL, its truth
value can be represented by two of the three weights of evidence: w+

(positive evidence), w� (negative evidence), and w (total evidence).

Definition 3.7.

w+ = jES \EP j+ jIP \ IS j;

w� = jES � EP j+ jIP � IS j;

w = w+ +w� = jES j+ jIP j:

Though any two of the three can do the job, we will use the fw+; wg
pair in the following as the truth value of a judgment.
It must be emphasized that what we provide here is not a method for

practically calculate the truth value for every judgment, but a way to ex-

plain that a truth value means. For a reasoning system, the truth values
of input judgments are usually determined by the environment (which may
be a human user, another computer system, or a sensory device), and the
truth values of derived judgments are recursively determined by inference
rules from the judgments used as premises. No matter how a truth value
is practically generated, we need a uni�ed interpretation for it, so to make
the numbers understandable, and the inference rules justi�able.
In NAL1, a judgment \S � P fw+; wg" can be generated by many

di�erent experience sections, but it is always explained as \The judgment is
as true as it has been checked w times (by testing terms in S's extension or
in P 's intension), and the inheritance relation holds in w+ of them." In this
way, we get a measurement that can be uniformly applied to extentional
evidence and intensional evidence. To consider more general cases, w and
w+ are not necessarily integers, but they must satisfy w � w+ � 0.
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Because the system is always open to new knowledge, w and w+ have
no upper bounds. When w+ = w and w ! 1, \S � P fw+; wg" will
in�nitely approach \S < P" | that is, there is no, and will no, negative
evidence for the inheritance relation. Therefore, \�" is a \weak version" of
\<", where the latter representing a highly idealized inheritance relation
between two terms in a closed world, while the former is based on limited
subjective experience of an open system.
Now it is the time to review what we have done: the simple system IL is

introduced to make NAL1 easily understandable. Propositions in IL are so
simple that they are \self-evident", then, a judgment in NAL1 is explained
as a summary of a section of \ideal experience", represented by a string of
IL propositions, though practically it is not generated in that way.

3.2. Measurements of Uncertainty

As truth value, weight of evidence is also a measurement of uncertainty.
Though in principle all the information that we want to put into a truth
value is representable in the fw+; wg pair, it is not always natural or conve-
nient for the purpose of NARS. Instead of using \absolute measurements",
we often prefer \relative measurements" of uncertainty, such as real num-
bers in [0; 1]. Fortunately, it is easy to de�ne them as functions of weight
of evidence.

Definition 3.8. The frequency of a judgment, f , is de�ned as w+

w
.

f indicates the \success frequency" of the inheritances (of extension and
intension) between the two terms, according to the experience of the sys-
tem. Obviously, this measurement is closely related to probability and
statistics, and often appears is our everyday life. However, it is still di�er-
ent from probability under the traditional interpretations (logical, frequen-
tist, and subjective, see [21]) because it is determined by �nite empirical
evidence.
Another basic di�erence between probability and frequency is: probabil-

ity is traditionally interpreted as about extensions of sets. For example,
if we say \the probability of `S � P ' is p", it is usually understood as
jS\P j
jSj

= p. However, as described earlier, frequency (in NAL1) is about

both extensional and intensional relations of the two terms. Therefore, it
can be used to process the phenomena like fuzziness, typicalness, and so on.
[39] is a detailed description about how to interpret fuzziness and represent
it in NARS.
To represent a truth value by a frequency value is not enough for NARS:

we still need the information about the absolute value of w to manage the
revision of the frequency [38].
Can we �nd a natural way to represent this information in the form of a
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\relative measurements", or specially, as a ratio?
An attractive idea is to de�ne it as the \second-order probability". The

frequency de�ned above can be referred to as an estimation of \the �rst-
order probability", and the second-order probability is used to represent
how good the estimation is. Actually, several approaches are working along
this line [14, 15, 27]. However, there are problems in how to interpret the
second value, and how it helps in the related operations [23, 29]. At least
under the assumption of insu�cient knowledge, it make little sense to talk
about the \probability" that \the frequency is an accurate estimation of an
`objective �rst-order probability' of the inheritance relation". With insu�-
cient knowledge, we not only cannot know whether an inheritance relation
will always be kept in the future, but also cannot know its \probability
of success", in the sense of \the limit of the experienced frequency". For
the same reason, we cannot know how close a given estimation is to the
\objective �rst-order probability", or even whether there is such an \ob-
jective probability" as the limit of the frequency. Generally speaking, since
the system is open, it is useless to compare the amount of relevant past
experience, measured by w, to the future experience, which is (potentially)
in�nite: the ratio is always 0.
However, it make perfect sense to talk about the \near future". What

the system need to know, by keeping the information about w, is how
sensitive a frequency will be to new evidence, then use the information to
make choice among competing judgments. If we limit our attention to a
\constant future", we can keep such information in a ratio form.
Let us introduce a positive constant k, and say it indicates that by \near

future", we mean \to test the inheritance relation for k more times", or
identically, \until the weight of the new evidence reaches k". Then we can
de�ne a new measurement | con�dence.

Definition 3.9. The con�dence of a judgment, c, is de�ned as w
w+k .

Intuitively, con�dence is the ratio that the weight of \current relevant
evidence" to the weight of \relevant evidence in the near future". It in-
dicates how much the system knows about the inheritance relation, so is
similar to Shafer's \reliability" [33] or Yager's \credibility" [44]. Since k
is a constant, the more the system knows about the inheritance relation
(represented by a bigger w), the more con�dent the system is about the
frequency, since the e�ect of evidence that comes in the near future will
be relatively smaller (we'll see how c actually works in the revision opera-
tion in the next section). For our current purpose, k can be any positive
number.
Though c is in [0; 1], can be explained as a ratio, and is at a higher

level than f in the sense that it indicates the stability of f , it cannot
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be interpreted as a second-order probability in the sense that it is the
probability of the judgment \the (real, or objective) probability of the
inheritance relation is f", and cannot be processed in that way according
to probability theory. The higher the con�dence, the harder the frequency
can be changed by new evidence, but this does not mean that the judgment
is \truer", or the more \accurate", as some psychologists means by the
concept \con�dence" [12].
It is easy to calculate w and w+ from f and c, therefore the truth value

of a judgment can also be represented as a pair of ratio <f; c> [38].
Amazingly, there is a third way to represent a truth value in NAL1: as

an interval [41]. Let us �rst de�ne two measurements.

Definition 3.10. The lower frequency of a judgment, l, is de�ned as
w+

w+k ; the upper frequency of a judgment, u, is de�ned as w++k
w+k .

Here k is the same constant introduced above. Obviously, no matter
what will happen in the near future, the \success frequency" will be in
the interval [l; u] after the constant period. This is because the current

frequency is w+

w
, so in the \best" case, when all evidence in the near future

is positive, the new frequency will be w++k
w+k ; in the \worst" case, when all

evidence in the near future is negative, the new frequency will be w+

w+k .
This measurement shares similar intuition with other interval approaches

[5, 22, 43]. For example, \ignorance", i, can be represented by the width

of the interval (here it happens to be 1 � c, so ignorance and con�dence

are complement to each other). However, in NAL1 the interval is de�ned
as the range the frequency will be in the near future, rather than in the
in�nite future. In this way, some theoretical problem can be avoided. For
example, as discussed about the \second-order probability", it is also im-
possible for an open system to determine such an interval for the in�nite
future. So, the interval will be processed di�erently from those interpreted
as \lower/upper bound of (objective) probability". For example, during
revision, two intervals that have no common sub-interval still can be com-
bined.
Now we have three functionally identical ways to represent a truth value:

1. as a pair of weights fw+, wg, where w � w+ � 0;
2. as a pair of ratios <f; c>, where f 2 [0; 1], and c 2 [0; 1]; or
3. as an interval [l; u], where 0 � l � u � 1.

Because NARS is designed under the assumption of insu�cient knowl-
edge and resources, all the judgments within the system are supported by
�nite evidence, that is, w is positive and �nite. When truth values are rep-
resented by the other two forms, this requirement becomes l < u, u� l < 1,
and 0 < c < 1.
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Beyond the normal truth values, there are two limit points useful for the
interpretation of truth values and the de�nition of inference rules:

Null evidence: This is represented by w = 0, or c = 0, or u � l = 1.
It means that the system actually know nothing at all about the
inheritance relation.

Total evidence: This is represented by w ! 1, or c = 1, or l = u. It
means that the system already know everything about the statement
| no future modi�cation of the truth value is possible. Especially,
(S � P <1; 1>)() (S < P ).

The one-to-one mappings among the three truth value forms are listed
in Table 3.
This table can be easily extended to include w� (the weight of negative

evidence), i (1� c, degree of ignorance), and e (expectation, to be de�ned
in the next section). Actually, any valid (not inconsistent or redundant)
assignments to any two of the nine measurements (for examples, w+ = 3:5
and i = 0:1, or f = 0:4 and l = 0:3) will uniquely determine the values of
the others. Therefore, the three forms of truth value can even be used in
mixture.
To have di�erent, but closely related forms and interpretations for truth

value (or uncertainty) has many advantages:

� It give us a better understanding about what a truth value really
means in NAL1, since we can explain it in di�erent ways. The map-
pings also tell us the interesting relations among the various uncer-
tainty measurements.

� It provides a user-friendly interface. if the environment of the system
is human users, the uncertainty of a statement can be represented in
di�erent forms, such as \I've tested it w times, and in w+ of them it
was true", \Its past success frequency is f , and the con�dence is c",
or \I'm sure that its success frequency with remain in the interval [l,
u] in the near future". Using the mappings in the above table, we can
maintain an unique form as internal representation, and translate the
other two into it in the interface.

� It make the designing of inference rules easier. For each rule, there
should be a function calculating the truth value of the conclusion from
the truth values of the premises, and di�erent functions correspond to
di�erent rules. As we will see in the next section, for some rule, it is
easier to choose a function if we treat the truth values as weights, while
for another rule, we may prefer to treat them as ratios or intervals.
No matter which form and interpretation is used, the information

carried is actually the same.
� It is easier to compare the measurements in NAL1 to various other ap-
proaches of uncertain representations, because di�erent forms capture
di�erent intuitions about uncertainty. See [38, 39, 41] for examples.
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3.3. Grammar

As an extension of IL, ETL, and ITL. NAL1 can also answer the two
types of questions:

evaluation: To check a given inheritance relation \S �?P", it requires a
numerical answer, that is, the system evaluates the truth value of the
inheritance relation, according to available evidence. Now, \I don't
know" corresponds to the special truth value for \Null evidence", as
de�ned before.

selection: To look for a term with an inheritance relation to a given term,
\? � P" (or \S �?") need both a term and an evaluation of the
truth value of the answer. The system will look for a term T , such
that \T � P" (or \S � T") has a truth value that make the relation
\close" to \T < P" (or \S < T"). In the next section, we will de�ne
the \closeness" accurately.

In summary, the formal language used by NAL1 is de�ned by the follow-
ing grammar:

<judgment> ::= <term>�<term><truth-value>
<question> ::= <term>�? <term> j ? �<term> j <term>�?

<term> ::= <letter> j <letter><term> j <term> -<term>
<letter> ::= ajbj � � � jyjz

As previously discussed, there are di�erent ways to represent the truth
value of a judgment.
For a reasoning system in which NAL1 is implemented, the language

can be used both as the \external communication language" (by which the
system exchanges information with its environment) and as the \internal
representation language" (by which the memory of the system is described).

4. NON-AXIOMATIC LOGIC 1: INFERENCE RULES

4.1. Validity of the Rules

Like other reasoning systems, NARS has a set of inference rules that de-
rive conclusions recursively from input knowledge. However, the traditional
de�nition of validity of inference rules, that is, \to get true conclusions from
true premises", no longer makes sense in NARS. With insu�cient knowl-
edge and resources, even if the premises are true with respect to the past
experience of the system, there is no way to get infallible predictions about
the future experience of the system | even the the premises themselves
may be challenged by new evidence.
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This does not mean that all answers are equally good for a question. As
an adaptive system, NARS should answer current questions according to
past experience. So, in this situation, an inference rule is valid not because
the conclusions will not be challenged in the future, but the conclusions
are summaries of (and only of) the information carried in the premises,
according to the semantics of the system.
A direct implication of the above consequence is that all the inference

rules are \local rules", in the sense that each rule only takes a constant
number of premises to get conclusions. In NAL1, all rules take one or
two judgment(s) as premises. Several authors, for instance Pearl [29], have
correctly pointed out that such local rules can cause problems, for examples
ignoring related information, repeated using of correlated evidence, and so
on. With insu�cient resources, ignoring related information is inevitable in
each inference step. As long as the system can revise the conclusion when
the related information is take into account in a future inference step, this
is not a reason to reject local rules. The fact that the system's resources
are insu�cient itself implies the possibility of ignoring relevant evidence.
What we need to do, when designing the system, is not to make sure
that all relevant evidence will be considered when a question is answered,
but to let the system use relevant evidence as much as possible, under
the constraints of a�ordable resources. The problem caused by correlated
evidence is discussed in the next subsection.

4.2. Revision

As discussed above, it is possible (actually it is usually the case) for
the judgments in the memory of NARS to conict with each other, in the
sense that at a certain time, there are two co-existent judgments attaching
di�erent truth values to the same inheritance relation, as the following:

S � P fw+
1 ; w1g

S � P fw+
2 ; w2g

where the truth values are represented as weights of evidence. 6

Such conicts are caused by the fact that judgments are based on di�er-
ent sections of the experience of the system, say E1 and E2. In principle,
we can accurately de�ne the section of experience that a judgment is based
on: each input judgment is an atomic section of experience, and a derived
judgment is based on the union of the experience sections upon which the
premises are based.

6Unlike in �rst order predicate logic, where any conclusion can be derived from a

pair of propositions that only di�er in there truth values, in NAL a conict is a local
problem that not all results are a�ected. See the subsection on syllogisms.
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According to the semantics of NAL1, as long as E1 and E2 has no com-
mon elements, the two bodies of evidence supporting the two judgments are
not correlated to each other (that is, no evidence is repeatedly counted in
the two premises). Therefore, the conclusion derived from the two should
be

S � P fw+
1 + w+

2 ; w1 + w2g;

where the evidence from di�erent sections of experience is summarized, or
pooled [41].
This sounds easy, but with insu�cient resources, NARS cannot maintain

a complete record of related experience for each judgment, because to do
this, we have to assume that, no matter how much space is required for the
record (the length of an experience section has no upper bound) and how
much time is required for the processing, it can always be satis�ed.
Therefore the \correlated-evidence recognition problem" cannot be com-

pletely solved with insu�cient resource. Actually, this is also true for hu-
man beings: we simply cannot exactly remember all evidence that supports
each judgment we made. On the other hand, the problem must be han-
dled somehow, otherwise, as Pearl said in [29]: in a bidirectional reasoning
system, \A cycle would be created where any slight evidence in favor of A
would be ampli�ed via B and fed back to A, quickly turning into a stronger
conformation (of A and B), with no apparent factual justi�cation."
What NAL1 does for the problem is to record only a constant part of the

related experience for each judgment, and use it to determine whether two
judgments are based on correlated evidence. 7 Though not perfect, it is a
reasonable solution when resources are insu�cient, and \reasonable solu-
tions" are exactly what we expect from a non-axiomatic system. It is also
similar to the strategy of human mind, since we usually have impressions
about where our judgments come from, but such impressions are far from
complete and accurate.

4.3. Choice

What NAL1 should do when two conicting judgments are based corre-
lated evidence? Ideally, we would like to exactly record the contribution of
each input judgment, and to subtract the weight of the overlapping section
from the truth value of the conclusion. Unfortunately, this is impossible,
because the experience recorded for each judgment is incomplete, as dis-
cussed previously.
The rule that NAL1 uses for the problem is a simple one: to take the

judgment with a higher con�dence (no matter what its frequency is) as
the conclusion. For an adaptive system, if it must make a choice between

7In a recent implementation, a \postmark" mechanism is used for this purpose, and
it works well. See [40] for details.
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conicting judgments, the one related to much experience has a higher
priority.
Choices are necessary in another situation: among competing answers.

For a selection question with the form \S � ?" (\? � P" can be similarly
processed), the system is asked to �nd a term T (not S itself, of course) as a
\typical element" in the intension of S. Ideally, the best answer is provided
by a judgment \S � T <1; 1>" (here the truth value is represented by the
frequency and confidence of the judgment). However, it is impossible,
because confidence cannot reach 1 in NAL1. Therefore, we have to settle
down with an answer which is the best the system can �nd under the
constraints of available knowledge and resources.
Assuming the competing answers are

S � T1 <f1; c1>

S � T2 <f2; c2> :

Which one is better? Let us consider some special cases �rst:

1. c1 = c2, that is, the two answers are supported by the same amount
of evidences (for example, both comes from statistical data of 100
samples). Obviously, the answer with a higher frequency is preferred,
since that inheritance relation has more positive evidence than the
other.

2. f1 = f2 = 1, that is, all available evidence is positive. Now the
answer with a higher con�dence is preferred, since it is more strongly
con�rmed by the experience.

3. f1 = f2 = 0, that is, all available evidence is negative. Now the
answer with a lower con�dence is preferred, since it is less strongly
refuted by the experience.

From the special cases we can see that to set up a general rule to compare
competing judgments in terms of which is more hopeful to be con�rmed by
the future experience of the system, we need to somehow combine the two
numbers in a truth value into a single measurement.
In NAL1, expectation, e, is de�ned for this purpose. Di�erent from a

truth value (which is used to record past experience), an expectation (of a
judgment) is used to predict future experience. \e = 1" means the system
is absolutely sure that the inheritance relation under consideration will
always be con�rmed by future experience, \e = 0" for always refuted, and
\e = 0:5" for no preference between a positive predication and a negative
one. Intuitively, similar to subjective probability [21], e can be interpreted as
the estimation about a future \inheritance frequency", or a bet the system
will accept about a future \inheritance test". Under the assumption of
insu�cient knowledge, in NAL1 e only takes values in (0; 1), with 0 and 1
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as limits. For a selection question, the system takes the answer that has
the higher expectation between the competing two.
To calculate e from < f; c >, we can see that under the assumption

that the system make predictions according to its (past) experience, it
is natural to use f as e's \�rst-order approximation". However, such a
maximum-likelihood estimate is not good enough when c is small [16]. For
example, if a hypothesis has been tested only once, nobody will take an
expectation as 1 (if the test is a success) or 0 (if the test leads is failure).
Intuitively, e should be more \conservative" (more close to the \no pref-

erence" point, 0.5) than f under the consideration that the future may be
di�erent from the past. Here is where the con�dence c a�ects e | the
more evidence the system has accumulated, the more con�dent the system
is (indicated by a larger c), then the more closely its predicted frequency e
will be bound to its experienced frequency f .
Therefore, it is natural to de�ne

e = c(f � 0:5) + 0:5:

Identically, it can be written as c = (e � 0:5)=(f � 0:5) (when f 6= 0:5),
so it says that c indicates the ratio that f is (to use Good's term in [16])
\squashed" to the \no preference point" to become e. When c = 1 (total
evidence), e = f ; when c = 0 (null evidence), e = 0:5.
To express the de�nition of e in the other two forms of truth value leads

to interesting results.
When the truth value is represented as an interval, from the mappings

among di�erent forms of truth value that listed in Table 3, we get

e = 0:5(l+ u)

It's exactly the expectation of the future frequency, that is, the middle point
of the interval in which the frequency will be in the near future.
When the truth value is represented as weights of evidence, from the

mappings we get

e =
w+ + k

2

w + k

which is a continuum with k as a parameter. This formula turns out
to be closely related to Hardy's beta-form based continuum (with equally
weighted positive evidence and negative evidence) [16], and Carnap's \�-
continuum" (with the logical factor, or the prior probability, to be 1/2) [9].
Though interpreted di�erently, the three continua share the same formula,
and make identical predictions. All the three continua have Laplace's low

of succession as a special case (when k = 2), where the probability of a

next success is estimated by w++1
w+2

.
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Now we can see how the choice of the constant k can inuence the be-
havior of a system. Let's compare a system A1 (with k = 1) and a system
A2 (with k = 10). The problem is to make a choice between two com-
peting answers \S � P1 fw

+
1 ; w1g" and \S � P2 fw

+
2 ; w2g" (where the

truth values are represented as weights of evidence). It is easy to see that
when w1 = w2 or w+

1 =w1 = w+
2 =w2, the preferences of the two systems

have no di�erence. It is only when a system need to make a choice be-
tween a higher f and a higher c that will the k matter. For example, when
w+
1 = w1 = 2; w+

2 = 5, and w2 = 6, A1 will choose the �rst answer (since
all of its evidence is positive), while A2 will choose the second answer (since
it is \better tested", and its frequency is not much lower than the other).
Therefore, k is one of the \personality parameters" of a reasoning system,

in the sense that it indicates certain systematical preference or bias, and
there is no \optimal value" for it in general. The larger k is, the more
\conservative" the system is, in the sense that given the same amount of
evidence, it always make less change in e, compared with a system with a
smaller k. This parameter was called \attening constant" by Good (see
[16], where he also tried to estimate its value), and interpreted by him as
a way to choose a prior probability distribution. The same parameter is
interpreted by Carnap as \the relative weight" of the logical factor [9].
One reasonable alternative of the choice rule is to choose the conclusion

probabilistically. The judgment with a higher con�dence (for evaluation)
or a higher expectation (for selection) is not always chosen as the answer,
but is given a higher probability to be chosen. In this way, the decisions
are more variable and indeterministic, so have some advantages in certain
circumstances [18].

4.4. Syllogisms

The major inference rules in NAL1 are the (extended) syllogisms. When
two judgments share a common term, they can be used as premises to infer
the inheritance relations between the other two (unshared) terms.
Totally, there are four possible combinations of premises and conclusions,

corresponding to the four �gures of Aristotle's syllogisms:

1. From \M � P < f1; c1 >" and \S � M < f2; c2 >" to get \S �
P < f; c >". This is Aristotle's �rst �gure, and what Peirce called
deduction [1, 30]. Let us refer to the function that calculate f and c
from f1, c1, f2, and c2 as F1.

2. From \P � M < f1; c1 >" and \S � M < f2; c2 >" to get \S �
P <f; c>". This is Aristotle's second �gure, and what Peirce called
abduction (or hypothesis) [1, 30]. Let us refer to the function that
calculate f and c from f1, c1, f2, and c2 as F2.

3. From \M � P < f1; c1 >" and \M � S < f2; c2 >" to get \S �
P < f; c >". This is Aristotle's third �gure, and what Peirce called
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induction [1, 30]. Let us refer to the function that calculate f and c
from f1, c1, f2, and c2 as F3.

4. From \M � P < f1; c1 >" and \S � M < f2; c2 >" to get \P �
S < f; c >". This rule, not discussed by Aristotle and Peirce, was
called the fourth �gure by Aristotle's successors [4]. Let us refer to
the function that calculate f and c from f1, c1, f2, and c2 as F4.

Considering the conclusions that can be got by exchange the order of the
premises, we get a complete syllogisms table for NAL1, Table 4, where F 0

i

is the function got by exchange < f1; c1> and < f2; c2> in the function
Fi, (ti) is the truth value of the premise Ji, and (Fi) is the truth value of
the conclusion, calculated by Fi.
By extending the truth value and interpreting them both extensionally

and intensionally, the syllogisms in NAL1 are quite di�erent from Aristo-
tle's and Peirce's, though still related to them.
The functions in Table 4 can be built by considering the relations among

the involved truth values in terms of Triangular norm (T-norm) and Tri-
angular conorm (T-conorm). T-norm and T-conorm are function from
[0; 1] � [0; 1] to [0; 1] that are monotonic, commutative, associative, and
with boundary conditions satisfying the truth tables of the logical opera-
tors AND and OR, respectively [5, 6, 11]. They also can be extended to
take more than two arguments.
The usage of T-norm and T-conorm in NAL1 is di�erent from their usual

usage [6, 11] in which they are used to determine the degree of certainty
of the conjunction and disjunction of two propositions, respectively. In
NAL1, T-norm y = T (x1; : : : ; xn) is used when a quantity y is conjunctively
determined by two or more other quantities x1; : : : ; xn, that is, y = 1 if
and only if x1 = � � � = xn = 1, and y = 0 if and only if x1 = 0 or
: : : or xn = 0; T-conorm y = S(x1; : : : ; xn) is used when a quantity y is
disjunctively determined by two or more other quantities x1; : : : ; xn, that
is, y = 1 if and only if x1 = 1 or : : : or xn = 1, and y = 0 if and only
if x0 = � � � = xn = 0. These quantities are not about the conjunction or
disjunction of two judgments. 8

Since the two premises are about two di�erent inheritance relations, and
the frequency and con�dence of a judgment are determined by di�erent
factors, f1, c1, f2, and c2 can be referred to as mutually independent to
each other in the sense that given any three of them, the last one cannot
be determined, or even bounded approximately.
Given the ratio interpretations of the truth value and the independence

among f1, c1, f2, and c2, it is natural For NAL1 to use the \probabilistic"

8In NAL1, the conjunction or disjunction of two judgments is not de�ned as a
judgment.
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operators (see the comparison of di�erent T-norms and T-conorms in [6]):

T (a; b) = ab; S(a; b) = a+ b� ab:

T-norm and T-conorm with more than two arguments are de�ned as:

T (x1; : : : ; xn) = T (T (x1; : : : ; xn�1); xn);

S(x1; : : : ; xn) = S(S(x1 ; : : : ; xn�1); xn):

From the point of view of NAL1, \deduction" is the extended \rule of
transitivity". Only positive evidence for both premises is counted as pos-
itive evidence of the conclusion, and positive evidence for either of the
premises is counted as relevant evidence of the conclusion. It follows that
evidence that is positive to one premiss and negative to the other is negative
evidence of the conclusion, and negative evidence to both premises is re-
garded as irrelevant to the conclusion. Consequently, we have the following
boundary conditions:

f =

8>><
>>:

1 if f1 = 1, and f2 = 1
0 if f1 = 1, and f2 = 0
0 if f1 = 0, and f2 = 1
undetermined if f1 = 0, and f2 = 0

The con�dence of the conclusion is determined conjunctively by the
amount of relevant evidence and the con�dences of the premises, that
means, it is determined by c1, c2, and S(f1; f2), which measures the extent
that \at least one premiss is positive". Obviously, c is 0 when any of the
three factors is 0: either one premiss is supported by null evidence, or the
premises are irrelevant to the conclusion. c is 1 only when all the three
factors are 1, though in NAL1 con�dences cannot reach 1, but have it as a
limit.
In summary, we get

F1 : f = T (f1;f2)
S(f1;f2)

= f1f2
f1+f2�f1f2

c = T (S(f1; f2); c1; c2) = (f1 + f2 � f1f2) c1c2

In NAL1, \abduction" is the inference that from a shared element M
of intensions of S and P to determine the truth value of \S � P", and
\induction" is the inference that from a shared element M of extensions
of S and P to determine the truth value of \S � P". From the symmetry
between extension and intension, we know that F2 = F 0

3 (and F3 = F 0
2).

Therefore, we only need to discuss one of them, say F3.
In determining the truth value of \S � P" from the common instance

M of the two terms, the truth values of the two premises have di�erent
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functions. The frequency of \M � P", f1, estimates the frequency of
the conclusion, since we are taking the property (\having P as part of
intension") of a special term M as a property of the general term S. On
the other hand, f2, c1 and c2 conjunctively determines to what extentM can
be counted as a piece of relevant evidence of the conclusion. At most, we
can only get one term (indicated by w = 1, according to the interpretation
of the truth value) in the extension of S as evidence. Therefore, for the
conclusion, we take w = T (f2; c1; c2). Writing as functions from f1, c1, f2,
c2 to f and c, we have

F2 : f = f2
c = f1c1c2

f1c1c2+k

F3 : f = f1
c = f2c1c2

f2c1c2+k

De�ned as above, abduction and induction are no longer \inversed de-
ductions" [25, 30], and the di�erence between them and deduction is still
there: deductive conclusions are usually much more con�dent (with 1 as
upper bound) than abductive and inductive conclusions (with 1

1+k as upper

bound). 9

Using F2 or F3, we can de�ne NAL1's conversion rule. In term log-
ics, \conversion" is a inference from a single premiss to a conclusion by
interchanging the subject term and the predicate term [4].
Now we can see it as a special case of abduction by taking \P � S <

f0; c0>" and \S � S <1; 1>" (a tautology) as premises. As a result, we
get the truth value function of the conversion rule:

f = 1

c = f0c0
f0c0+k

Similarly, we can get the same result by seeing conversion as a special case
of induction with \P � P <1; 1>" and \P � S <f0; c0>" as premises.
Now how to understand the conversion rule directly? From our interpre-

tation of the truth value, we see that the positive evidence for \S � P"
are also positive evidence for \P � S", but the negative evidence of the
former is irrelevant to the latter. It means that the conclusion can only
be conformed, but never refuted, by such a rule (this is di�erent from the
cases in ETL and ITL). As a result, we have f = 1 in all situations. For the
weight of the conclusion, we know that it is at most 1, and it only happens

9Here we can see the personality parameter k's another function: to indicate the rel-
ative con�dence of abductive/inductive conclusions. Comparatively speaking, a system

with a small k relies more on abduction and induction, while a system with a large k

relies more on deduction.
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when f0 = c0 = 1. In that case, P is in the extensions of both S and P .
Therefore, we take w = T (f0; c0).
This analysis lead us to the truth value function of the \fourth �gure",

where we have
F4 : f = 1

c = f1f2c1c2
f1f2c1c2+k

That is, just like the situation of the conversion rule, no negative evidence
for the conclusion can be collected in this way, and w of the conclusion is
determined conjunctively by f1; f2; c1, and c2. Only when f1f2c1c2 = 1,
can the conclusion get a support measured by w = 1, since then we have
\P < S", that is, P is in the extensions of both S and P .
There is another interesting result. From \M � P < f1; c1 >" and

\M � S <f2; c2>", NAL1 can directly get \S � P <f1;
f2c1c2

f2c1c2+k
>" by

induction. However, there is also an indirect way to get a truth value for
\S � P" from the same premises: �rst, by conversion, the second premiss
derives \S � M < 1; f2c2

f2c2+k
>", then, from this judgment and the �rst

premiss, NAL1 can get a deductive conclusion \S � P < f1;
f2c1c2
f2c2+k

>".
Compared with the direct result, the indirect conclusion has the same fre-
quency, but a lower con�dence.
Similarly, abduction and the fourth-�gure can be replaced by conversion-

then-deduction, but with a con�dence loss. On one hand, the results show
that all inference rules in NAL1 will cause certain information loss (though
having some other information preserved), therefore direct conclusions are
more con�dent. On the other hand, the fact that the same frequency is
arrived by following di�erent inference paths shows that the truth value
functions are not coined individually in ad hoc ways, but closely related to
each other, since all of them are based on the same semantic interpretation
of the truth value.

4.5. A Summary

Similar to IL, ETL and ITL, the memory of NAL1 can also be described
as a network, where \�" is the only type of link, with truth value as
weight, between nodes (terms). To solve an evaluation question means to
determine the weight of a link, given its beginning and ending node; to solve
a selection question means to locate a node with the strongest link (that is,
the highest expectation) from or to a given node. Since by applying rules,
both the topological structure of the network and the values of the weights
can be changed, what the system does is much more than searching a static
network for the desired link or node.
The choice rules are for choosing between competing links; the revision

rule is for merging two links that share both the start and end nodes but
supported by distinct bodies of evidence; the conversion rule is for reversing
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a link; and �nally, the syllogisms are for chaining two adjacent links into a
new one, where di�erent combinations of directions correspond to di�erent
types of inference. We can represent them by the patterns in Figure 2,
where a link (from subject term to predicate term) with a single arrow is
a premiss, and a link with a double arrow is a conclusion (the symmetric
conclusions in the syllogisms are omitted). This \network interpretation"
of NAL1 reminds us Minsky's comment [26]:

For the purposes of psychology, we'd better to set aside the du-
bious ideal of faultless deduction and try, instead, to understand
how people actually deal with what is usual or typical. To do
this, we often think in terms of causes, similarities, and depen-
dencies. What do all these forms of thinking share? They all
use di�erent ways to make chains.

We also collect all the functions, in all the three forms of truth value, in
Table 5.
It is possible to �nd direct intuitive justi�cations for a function in a

form that is di�erent from the previously discussed ones (for example, Bai
Shuo in [2] also reached the revision rule in the ratio form from a di�erent
starting point), but such justi�cations are not always obvious.

5. An Example

Up to now, we have completely de�ned a non-axiomatic logic, NAL1,
with its grammar, semantics, and inference rules.
To get a non-axiomatic reasoning system, we need to provide a memory

and a control mechanism, which are adaptive and work with insu�cient
knowledge and resources. A description of the two components can be
found in [40].
In this section, let us see how NAL1 works on an example.

5.1. Background Knowledge

The experience of the system, provided by a human user, consists of the
following judgments:

(J1) birds � flyers <1; 0:8>
(J2) doves � birds <1; 0:8>
(J3) doves � swimmers <0; 0:8>
(J4) swans � birds <1; 0:8>
(J5) swans � flyers <1; 0:8>
(J6) swans � swimmers <1; 0:8>
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(J7) penguins � birds <1; 0:8>
(J8) penguins � flyers <0; 0:8>
(J9) penguins � swimmers <1; 0:8>

The truth values are represented in the \< frequency; confidence >"
form. To simplify the presentation, only two frequencies appear in the input
judgments: 1 and 0, corresponding to \all evidence is positive" and \all
evidence is negative", respectively. All the input judgments are assigned
a con�dence value 0.8 by the user. Under the presumption that k = 1
(the constant for \near future" de�ned previously), it means that all the
judgments are supported by evidence with w = 4 (so c = w

w+k = 0:8).

5.2. Deduction

The �rst question is: \doves �?flyers", that is, \Are doves yers?".
From J1 and J2, by deduction, the system get:

(J10) doves � flyers <1; 0:64>

That means, because all available evidence is positive, the answer is \Yes".
However, the con�dence of the conclusion is lower than either of the premises',
so it is easier to be revised by future evidence. Generally speaking, all
syllogistic inferences cause con�dence loss, that is, the con�dence of the
conclusion is always lower than lowest con�dence of the premises.

5.3. Induction

The second question is: \birds �?swimmers", that is, \Are birds swim-
mers?".
From J4 and J6, by induction, the system get:

(J11) birds � swimmers <1; 0:39>

The conclusion is \Yes", but not con�dent, compared with the above de-
ductive conclusion. If the time supply is very tight, the system will report
the answer to the user, then turn to other tasks. Otherwise, from J7 and
J9, the system can get another inductive conclusion:

(J12) birds � swimmers <1; 0:39>

J11 and J12 looks identical, but since they are supported by distinct bodies
of evidence, the system can use the revision rule to get a summarized
conclusion:

(J13) birds � swimmers <1; 0:56>

Though the frequency remains unchanged, the confidence increases, re-
ecting the accumulation of evidence.
If the system continue to work on this question, negative evidence will

be found by an induction from J2 and J3:
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(J14) birds � swimmers <0; 0:39>

Obviously, it conicts with J13. Using the revision rule once again, the
system get:

(J15) birds � swimmers <0:66; 0:66>

That means \Most birds are swimmers." Generally speaking, revision cause
a compromise between the frequencies of the premises (weighted by a func-
tion of the corresponding con�dence), and a monotonically increase of con-
�dence.
Another property of NARS that can be noticed here is: which answers

are possible are determined by the \logic components" of the system, such
as the inference rules, but which possible answer is actually reported in a
certain situation is determined by the \control components" of the system,
such as the memory structure and resources supply. In this example, J11,
J12, J13, J14, and J15 are all possible answers. If they compete with each
other, J15 will win, because it has the highest con�dence. 10

5.4. Abduction

The third question is: \? � birds", that is, to look for a typical type of
bird.
At the �rst glimpse, we can see that J2, J4, and J7 are equally good

answers for this question. However, if the system can spend more resources
on this question, even the input judgments can be revised by taking other
evidence into account.
From J1 and J5, by abduction, the system get:

(J16) swans � birds <1; 0:39>

That is, swans has a property of birds, that is, being flyers, therefore
\swans � birds" get some positive evidence. Because J16 and J4 are
based on di�erent experience sections of the system, they can be combined
by the revision rule to get

(J17) swans � birds <1; 0:82>

Now the system's belief about \Swans are birds" become stabler, as the
result of considering more evidence.
Similarly, from J1 and J8, the system gets another abductive conclusion:

(J18) penguins � birds <0; 0:39>

Because penguins lack the property of \being flyers", they are not birds,
in this aspect. When this judgment is used to revise J7, the system get:

10The system will not use J14 and J15 for another revision, because they are based
on correlated evidence.
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(J19) penguins � birds <0:86; 0:82>

Now, after summarizing evidence, the system still believe penguins are
birds, but atypical ones. Because the negative evidence is found by com-
paring the properties (intensions) of penguins and birds, the conclusion
cannot be interpreted extensionally as \86% penguins are birds". Now the
frequency value, 0.86, is more similar to the \membership grade" in fuzzy
set theory or \degree of representativeness" studied in cognitive psychology.
For doves, the system can do similar inferences. However, since \Doves

are yers" is not an input judgment, but a derived one, and in the derivation
\Doves are birds" has been used, the corresponding abductive conclusion
cannot be used to revise \Doves are birds", because the evidence of the
two judgments are correlated. We can see that the problem caused by
\bidirectional inferences" (discussed in subsection 3.2) does not appear
here.
As a result, swans will be referred to by the system as a better instance

of birds, compared with penguins and doves.

6. Conclusions

The major aim of this paper is to completely de�ne NAL1. The detailed
comparisons of it with other theories are left for other papers. The most
important contribution of NAL1 is that it is designed to work in a rea-
soning system which is adaptive, �nite, real-time, and open. To do this,
ideas including term-oriented language, experience-grounded semantics, lo-
cal syllogistic rules, and so on, are invented and applied.
The most distinguishing features of NAL1 is its ability of uniformly rep-

resenting and processing multiple types of uncertainty (including random-
ness, fuzziness, and ignorance), and doing multiple types of inference (in-
cluding deduction, induction, abduction, and revision).
The major limitation of NAL1 is its expressive capacity. With a single

inheritance relation and atomic terms, NAL1 has problems in representing
many types of knowledge. However, this limitation belongs to NAL1 only,
rather than to the NARS project as a whole. Actually, as the simplest
one in the NAL family, NAL1 is deliberately equipped with a formal lan-
guage that is as simple as possible. It is not designed to be used directly
for practical purpose, but to be a prototype by which some ideas can be
demonstrated and tested. In its future extensions, other inheritance re-
lations (such as \2" and \=") and structured terms (such as the unions,
intersections, di�erences, and ordinary relations of terms) will be intro-
duced, and hopefully the system will become competent in its expressive
capacity.
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NAL1 is not a \logicist" approach, since it does not use �rst order predi-
cate logic and model-theoretic semantics, and have non-deductive rules. It
is still a logic, however, in the sense that it uses a domain-independent for-
mal language to represent knowledge, and uses formal rules to capture pat-
terns appearing in human reasoning [37]. By naming it a \Non-Axiomatic
Logic", I am trying to show that, from the viewpoint of arti�cial intelli-
gence, the problems of the traditional \symbolic AI" [3, 25, 34] are not
caused by the ideas like \formalization", \symbolization", \logical infer-
ences", and so on, but by the ideas like \axiomatization", \computation",
\binary logics", \consistent and complete system", and other concepts that
explicitly or implicitly assume the su�ciency of knowledge and resources.
Currently, the two classes of ideas are not clearly distinguished. I believe
the second class is improper for AI, but the �rst class can still be fruitful.
In NAL1, all judgments are about \to what extent one term can be used

as another", and all inferences are about the \can-be-used-as" relation (for-
mally de�ned as the inheritance relation), which remind us mathematician
Ulam's comment on logic and arti�cial intelligence: \It is the word `as'
that must be mathematically formalized : : : Until you do that, you will not
get very far with your AI problem". Hofstadter discussed this opinion in
[17], and generalized it into \Ulam's thesis": \AS is the key to AI". NAL1
can be seen as a primary step in this direction.
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fw+; wg <f; c> [l; u]

fw+; wg w+ = k fc

1�c
w+ = k l

u�l

w = k c
1�c

w = k 1�(u�l)
u�l

< f; c > f = w+

w
f = l

1�(u�l)

c = w
w+k c = 1� (u� l)

[l; u] l = w+

w+k l = fc

u = w++k
w+k u = 1� c(1� f)

Table 3. Relations among uncertainty measurements

J2 n J1 M � P (t1) P �M (t1)
S �M (t2) S � P (F1) S � P (F2)

P � S(F 0
4) P � S(F 0

2)
M � S(t2) S � P (F3) S � P (F4)

P � S(F 0
3) P � S(F 0

1)

Table 4. Inference rules of NAL1
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fw+; wg(and w�) <f; c> (and i = 1� c) [l; u](and i = u� l)

Revision w+ = w+
1 + w+

2 f =
c1
i1

f1+
c2
i2
f2

c1
i1
+

c2
i2

l =
l1
i1
+

l2
i2

1
i1
+ 1

i2
�1

w = w1 + w2 c =
c1
i1

+
c2
i2

c1
i1

+
c2
i2

+1
u =

l1
i1
+

l2
i2
+1

1
i1
+ 1

i2
�1

Conversion w+ =
w
+

0

w0+k
f = 1 l = l0

l0+k

w =
w+

0

w0+k
c = f0c0

f0c0+k
u = 1

Deduction w+ =
w
+

1
w
+

2

w1+w2+k�
w
�

1
w
�

2
k

f = f1f2
f1+f2�f1f2

l = l1l2

w =
w+

1
w2+w1w

+

2
�w+

1
w+

2

w1+w2+k�
w
�

1
w
�

2
k

c = (f1 + f2 � f1f2) c1c2 u = 1� l1 � l2 + l1u2 + l2u1

Abduction w+ =
w+

1
w+

2

(w1+k)(w2+k)
f = f2 l = l1 l2

l1(1�i2)+k

w =
w
+

1
w2

(w1+k)(w2+k)
c = f1c1c2

f1c1c2+k
u = l1 l2+k

l1(1�i2)+k

Induction w+ =
w
+

1
w
+

2

(w1+k)(w2+k)
f = f1 l = l1 l2

l2(1�i1)+k

w =
w1w

+

2

(w1+k)(w2+k)
c = f2c1c2

f2c1c2+k
u = l1 l2+k

l2(1�i1)+k

4th-Figure w+ =
w+

1
w+

2

(w1+k)(w2+k)
f = 1 l = l1l2

l1 l2+k

w =
w
+

1
w
+

2

(w1+k)(w2+k)
c = f1f2c1c2

f1f2c1c2+k
u = 1

Table 5. Truth value functions


