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Abstract

Non-Axiomatic Reasoning System (NARS) is designed to be a general-purpose in-

telligent reasoning system, which is adaptive and works under insu�cient knowledge

and resources. This paper focuses on the components of NARS that contribute to

the system's induction capacity, and shows how the traditional problems in induction
are addressed by the system. The NARS approach of induction uses an term-oriented

formal language with an experience-grounded semantics that consistently interprets

various types of uncertainty. An induction rule generates conclusions from common

instance of terms, and a revision rule combines evidence from di�erent sources. In

NARS, induction and other types of inference, such as deduction and abduction, are

based on the same semantic foundation, and they cooperate in inference activities of the

system. The system's control mechanism makes knowledge-driven, context-dependent

inference possible.

1 Introduction

The term \induction" is usually used to denote the inference that derives general knowl-
edge from speci�c knowledge. There are some people who call all non-deductive inferences
\induction", but in this way the category includes too many heterogeneous instances to be
studied fruitfully.

There are three major academic traditions in the study of induction. The philosophi-
cal/logical study concentrates on the formalization and justi�cation of induction; the psy-
chological study concentrates on the description and explanation of induction in the human
mind; and the computational study concentrates on the implementation of induction in
computer systems.
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Though all these studies address induction in the above board sense, the precise ways in
which \induction" is formulated are quite di�erent. Consequently, the researchers actually
work on di�erent, though closely related, problems.

We can distinguish three kinds of formal model of induction, according to the unit of
knowledge focused in the study: (1) concept, (2) declarative sentence, and (3) procedural
sentence.

In the �rst kind of model, \induction" is de�ned as the procedure that takes descriptions
of instances of a concept (as input), and generates a description of the concept (as output).
Many machine-learning projects use the term \induction" in this sense (Michalski, 1983;
Quinlan, 1986).

The second kind of model de�nes \induction" as descriptive generalization, whose results
are sentences in a formal (declarative) language. Most philosophical/logical study and some
AI study on induction belong to this category (Cohen, 1989; Kyburg, 1970; Michalski, 1993).

In the third kind of model, \induction" is de�ned as the process from speci�c instances
to learn general cognitive skills. Such a treatment of induction can be found in (Holland
et al., 1986).

In this paper, we will focus our attention to the second kind of model. We will �rst
describe the related theories and introduce a new approach. Then, we will discuss how the
new approach deals with the problems related to induction. Because our study is about
normative models of induction, we will compare our approach with other related works
in logic, philosophy and arti�cial intelligence, but ignore the psychological literatures on
descriptive models of induction.

2 Background

Though Aristotle mentioned induction as the method by which general primary premises can
be obtained, he did not develop a theory for this type of inference, as he did for deduction.
It was Bacon who for the �rst time proposed a systematical inductive method, with the hope
that it could provide a general methodology for empirical science (Cohen, 1989).

However, such an approach was seriously challenged by Hume, who argued that the
inferences that extend past experience to future situations cannot have a logical justi�cation
(Hume, 1748). After Hume, most philosophical and logical work on induction are about the
justi�cation of the process. The mainstream approach is to use probability theory, with the
hope that though inductive conclusions cannot be absolutely true, they can have certain
probabilities (Carnap, 1950).

In recent years, the study of induction has been enriched by AI researchers. With com-
puter systems as tools and platform, di�erent formalizations and algorithms are proposed
and tested.

As mentioned previously, in this paper \induction" is used for the inference in which
general declarative knowledge is derived from, or con�rmed by, speci�c knowledge. In terms
of the formal language used, we can further divide the existing approaches in this domain
into three \families".

The �rst family uses propositional logic and probability theory. Let us say that S is a
proposition space and P is a probability distribution function on it. Induction is de�ned in
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this situation as the operation of determining P (HjE), where H is a hypothesis and E is
available evidence, and both belong to S. The inference | or more precisely, calculation |
is carried out according to probability theory in general, and Bayes's theorem in particular.
This family is the mainstream of the philosophical and logical tradition of induction study
(Keynes, 1921; Carnap, 1950; Good, 1983), and it has been inherited by the Bayesian school
in AI (Korb, 1995; Pearl, 1988).

The second family uses �rst-order predicate logic. Let us say that B is the background
knowledge of the system, and E is available evidence (both B and E are sets of statements in
�rst-order predicate logic). Induction is de�ned in this situation as the operation of �nding
a statement H that implies E and is also consistent with B. Because the inference from H
and B to E is deduction, induction thus de�ned, as the inference from E and B to H, is
often referred to as \reverse deduction". This family is very inuential in machine learning
(Michalski, 1993).

The third family uses term logic. This kind of logic, exempli�ed by Aristotle's system, is
characterized by the use of subject{predicate sentence and syllogistic rules. Though Aristotle
discussed induction briey in his work (Aristotle, 1989), it was Peirce who �rst de�ned
di�erent types of inference in term logic, roughly in the following manner (Peirce, 1931):

deduction induction abduction

M � P M � P P � M
S � M M � S S � M
|||| |||| ||||

S � P S � P S � P

One interesting fact is that though Peirce's distinction of deduction, induction, and abduction
is widely accepted, his formalization in term logic is seldom followed. Instead, the above
de�nition is rephrased within the frame of �rst-order predicate logic (Michalski, 1993). We
will see the subtle di�erence between these two formalizations later.

NARS, the new approach of induction that will be discussed in this paper, belongs to
the term-logic family. NARS stands for Non-Axiomatic Reasoning System. It is a general-
purpose reasoning system, which accepts knowledge provided by the user in a formal lan-
guage, and answers questions according to available knowledge and various inference rules
(Wang, 1994a; Wang, 1995b).

What distinguishes NARS from other reasoning systems is that it is designed to be
adaptive under insu�cient knowledge and resources.

Insu�cient knowledge and resources means that the system works under the following
restrictions:

Finite: The system has a constant information-processing capacity.

Real-time: The questions that the system need to answer have various time requirements
attached.

Open: No constraints are put on the knowledge and questions that the system can accept,
as long as they are expressible in the formal language.
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To adapt means that the system learns from its experiences. It answers questions and
adjusts its internal structure to improve its resource e�ciency, under the assumption that
future situations will be similar to past situations.

It follows from the above speci�cations that the ability of induction is necessary for
NARS. On one hand, due to insu�cient knowledge, the system needs to extend its previous
knowledge to novel questions. On the other hand, due to insu�cient resources, the system
needs to compress its knowledge by generalization, so as to use its time{space resources more
e�ciently.

In the following, we only address aspects of NARS that are directly related to induction.
For more comprehensive descriptions of the project, see (Wang, 1994a; Wang, 1994b; Wang,
1995b).

3 How to Represent Inductive Conclusions?

NARS uses a term logic, whose sentences (including all premises and conclusions in in-
duction) are all in the \subject{predicate" format, as in the logics of Aristotle and Peirce.
Formally, a statement in NARS has the following form:

S � P

where S is the subject term, and P is the predicate term. In the simplest situation, terms
are just identi�ers, or words, without any internal structure.

The relation \�" is an inheritance relation, which is de�ned in NARS by two properties:
reexivity and transitivity. Therefore, in ideal situations, we have

X � X

fX � Y; Y � Zg ` X � Z

where X, Y , and Z are arbitrary terms.
Intuitively, such a relation indicates that one term can be used as, or inherits the relations

of, the other, in a certain way. If a system knows \S � P" for sure, then S can substitute P
in sentences of the form \P � X", and P can substitute S in sentences of the form \X � S",
where X is an arbitrary term. The other way around, if all X that satisfy \X � S" also
satisfy \X � P", and all X that satisfy \P � X" also satisfy \S � X", then we have
\S � P" (Wang, 1994a). In English, \S � P" roughly corresponds to \S is P", if we ignore
the singular/plural distinction.

As mentioned previously, NARS is an adaptive system, and always open to new knowl-
edge, meaning that all judgments the system makes are based on its experience. Conse-
quently, whether \S � P" is true (i.e., whether there is an inheritance relation from S to
P ) is determined according to whether the system has experienced such a relation. In the
simplest situation, the system's experience is the stream of input knowledge provided by the
user, up to the current moment.

Such an experience-grounded semantics is fundamentally di�erent from traditional model-
theoretic semantics. In NARS, the truth value of a statement is not judged according to a
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constant set of axioms, and it may change as new evidence become available. What a truth
value measures is the extent to which the statement is supported by available evidence,
rather than the extent to which the statement is a matter of fact. Therefore, a truth value
also indicates the system's degree of belief, or uncertainty, on the statement (Wang, 1994a;
Wang, 1995a). We can see this more clearly later.

Truth value and degree of belief are usually treated as di�erent properties of a statement
| the former is objective and constant, while the latter is subjective and revisable. However,
if we concern about what is true to a system which has insu�cient knowledge and resources,
we can see that it cannot judge truth without consulting its experience.

To decide truth according to available evidence and according to axioms are basically
di�erent. In the former situation, no decision is �nal in the sense that it cannot be revised
by future evidence. Each piece of evidence, either a�rmative or rejective, contributes to a
certain extent to the evaluation of truth value. Therefore truth value is always a matter of
degree in a system like NARS.

This opinion is against a well-known conclusion proposed by Popper. He argues that
there is an asymmetry between veri�ability and falsi�ability | \a positive decision can only
temporarily support the theory, for subsequent negative decisions may always overthrow it"
(Popper, 1959).

The crucial point here is: what is the content of a general statement, or, in Popper's
words, a theory?

According to our opinion, \Ravens are black" is a general statement, for which a black
raven is a piece of positive (a�rmative) evidence, and a non-black (e.g., white) raven is a
piece of negative (rejective) evidence | the former verify an inheritance relation \raven �
black-thing" to a certain extent, while the latter falsify it, also to a certain extent. When we
say that \All ravens are black", it means that according to our experience, the inheritance
relation between the two terms only has positive evidence, but no negative evidence. In this
case, the truth value of the statement is still a matter of degree, determined by the amount
of available evidence.

What Popper refers to as theory are universal statements. Accordingly, when we say
\All ravens are black", we means that all ravens in the whole universe, known or unknown,
are black. Such a statement can only be true or false, and there is no middle ground (if
we ignore the fuzziness of the terms). We know the statement is false as soon as we �nd a
non-black raven, but we need to exhaust all ravens in the universe to know it is true.

Such a formalization of inductive conclusions is shared by the Baconian tradition of
induction (Cohen, 1989). According to an approach proposed by Cohen, induction is a
sequence of tests with increasing complexity, and the (Baconian) probability of a hypothesis
indicates how many tests the hypothesis passed in the process.

If we accept the above de�nition of scienti�c theory, all conclusions of Popper and Cohen
follow logically. However, why should we accept the de�nition? As a matter of fact, many
empirical scienti�c theories have counterexamples, and we do not throw them away (Kuhn,
1970). It is even more obvious when we consider our common-sense knowledge. A general
statement like \Ravens are black" works well as our guide of life, even when we know that
it has counterexamples. Such a statement can be applied to predict new situations, though
its truth value is determined by past experience. We do hope to establish theories that has
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no known counterexamples, but it does not mean that theories with known counterexamples
cannot be used for various practical purposes. Only in mathematics, where truth values are
determined according to �xed axioms, universal statements become available.

The above argument also serves as a criticism to the AI induction projects within the
framework of binary logic (Korb, 1995). To de�ne induction as \�nding a pattern to �t all
data" makes it a luxury that can only be enjoyed in a laboratory. Though such a paradigm
can produce research results, these results are hardly extendable to practical situations. Also,
this over-idealization makes the process fundamentally di�erent from the generalizations
happening in the human mind. It is even not appropriate to justify this approach as \a
preliminary step toward more complex studies", because when giving up the idea that \an
inductive conclusion can be falsi�ed once for all", the situation will become so di�erent that
the previous results are hardly useful at all.

In summary, inductive conclusions, as other knowledge, are represented in NARS as
inheritance relations between terms. Their truth values are not binary | either \true" or
\false", but are indicated quantitatively, according to the experience of the system.

4 How to De�ne Truth Value?

Because in NARS truth values are determined by available evidence, we need to �rst precisely
de�ne what is counted as evidence and how evidence is quantitatively measured.

Though it is natural to say that a black raven is a piece of positive evidence for \Ravens
are black", and a white raven is its negative evidence, Hempel points out that the concept
of positive/negative evidence cannot be easily de�ned in the �rst-order (predicate-oriented)
language in general (Hempel, 1943). Let us suppose that \Ravens are black" is formulated
as (8x)(Raven(x) ! Black-thing(x)), and that a piece of positive evidence is a constant
that when substituted into the variable x makes both the condition and the conclusion
true. Consequently, a green shirt will also be counted as a piece of positive evidence for the
sentence, because it con�rms the \logically equivalent" sentence (8x)(:Black-thing(x) !
:Raven(x)). Such a result is highly counterintuitive, and may cause many problems (for
example, a green shirt is also a piece of positive evidence for \Ravens are white", for exactly
the same reason).

Here we will not discuss the various solutions proposed for this paradox. Almost all of
these attempts are still within the framework of �rst-order predicate logic, whereas in the
following we can see that the problem does not appear in term logics like NARS.

From the de�nition of inheritance relation introduced previously, we see that if both
\M � S" and \M � P" are true, M counts as a piece of positive evidence for \S � P" |
the existence ofM , with its given relations with S and P , con�rms the proposed inheritance
relation from S to P , to a certain extent. On the other hand, if \M � S" is true but
\M � P" is not, M counts as a piece of negative evidence | the existence of M , with
its given relations with S and P , refutes the proposed inheritance relation from S to P ,
to a certain extent. As discussed previously, neither the con�rmation nor the refutation is
decisive in the sense that it cannot be revised in the future by other evidence.

Hempel's paradox does not appear in NARS, because a green shirt counts as neither
positive evidence nor negative evidence for \Ravens are black", according to the previous
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de�nition. Just as our intuition tells us, in NARS the existence of a green shirt is irrelevant
to whether ravens are black.

Now let us see how the amount of evidence is measured. Such a measurement, weight of
evidence, is suggested by (Keynes, 1921). Intuitively, when we get new (relevant) evidence
for a statement, the weight of evidence about that statement increases, because now our
judgment are based on more evidence. From the de�nition of evidence given previously, we
know when a term M becomes positive/negative evidence for statement \S � P". Ideally,
if all available positive/negative evidence of the statement can be represented as two sets of
such terms, respectively, it is natural to de�ne the weight of positive and negative evidence
as the size of the sets, respectively. Let us refer to them as w+ and w�, and call their sum,
w = w+ + w�, as the weight of avaliable evidence.

Therefore, if we assign w+ = 5 and w� = 3 for \S � P", it means that the stated
inheritance relation from S to P has been con�rmed �ve times and refused three times,
according to the system's experience. Of course, the system's actual experience is much more
complex than the above ideal situation. Usually evidence is not completely con�rmative or
rejective, and pieces of evidence are not equally weighted. Furthermore, many statements
are supported indirectly by statements derived from experience. These facts prevent us from
using the above method to actually determine concrete truth values, but we can still use
the method to de�ne and interpret truth value abstractly. As a result, w+ = 5 and w� = 3
means, more accurately, that the system's belief on \S � P" is as strong as the relation
has been con�rmed �ve times and refused three times, even though the value is not actually
determined in this way.

Though in principle all the information that we want to put into a truth value is rep-
resentable in the fw+; wg (or fw+; w�g) pair, it is not always natural or convenient for
many purposes. Instead of using absolute measurements, we often prefer relative measure-
ments, such as real numbers in the interval [0; 1]. Fortunately, it is easy to de�ne relative
measurements in terms of the weight of evidence de�ned above.

Let us de�ne the frequency of a statement, f , as w+=w. Because w is the number of
times that the proposed inheritance relation is checked, and w+ is the number of times that
the relation is con�rmed, f indicates the \success frequency" of the inheritances relation
between the two terms, according to the experience of the system.

Obviously, this measurement is often used in everyday life. It is also closely related to
probability, though it is still di�erent from probability under the traditional interpretations
(Kyburg, 1970) | logical (degree of con�rmation), empirical (relative frequency), and sub-
jective (degree of belief). As mentioned before, in NARS truth value indicates the support
the statement gets from evidence. Given the statement and the evidence, the value of f is
uniquely determined. This is similar to the logical interpretation of probability suggested
by Keynes (Keynes, 1921) and Carnap (Carnap, 1950). Di�erent from them, in NARS the
evidence is not explicitly expressed in a judgment, so f cannot be determined by logical
analysis within the language. Instead, f is de�ned as the frequency of favorite evidence,
which makes it similar to the probability under an empirical interpretation (Reichenbach,
1949). However, f is not the limit of the frequency, but its value at a certain moment in
a certain system, thus it is subjective and context-dependent. These features are stressed
by the subjectivists, though they refuse to explicitly ground probability on the frequency of
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favorable evidence (Savage, 1954).
To represent a truth value by a frequency value alone is not enough for NARS: in addition,

the system needs to know the the value of w in order to �gure out how to revise frequency
with new evidence (Wang, 1993). Can we �nd a natural way to represent the necessary
information in the form of a relative measurements, or, more speci�cally, as a ratio? Later
we will see why we do not want to use w directly (though this is possible), but prefer a
measurement in the [0; 1] interval.

One attractive idea would be to de�ne a \second-order probability". The frequency
de�ned above can be considered to be an estimate of the \�rst-order probability" (of the given
inheritance relation), and the second-order probability is used to describe how good the �rst-
order estimate is (Paa�, 1991). However, under the assumption of insu�cient knowledge, it
makes little sense to talk about the \probability" that \the frequency is an accurate estimate
of an objective �rst-order probability of the inheritance relation". Because NARS is always
open to new evidence, it is simply impossible to decide whether the frequency of a judgment
will converge to a point in the in�nite future, not to mention where the point will be.

However, it makes perfect sense to talk about the \near future". What the system needs
to know, from the value of w, is how sensitive a frequency is to new evidence | then the
system can use this information to make a choice among competing judgments. If we limit
our attention to a future of \�xed horizon", we can represent the information in w in a ratio
form.

Let us consider what will happen at the arrival of a piece of new evidence, with a constant
weight k. We de�ne the system's con�dence, c, on a judgment as w=(w+k). For our current
purpose, k can be any positive number. Intuitively, con�dence is the ratio of the weight of
the \all current evidence" to the weight of the \all evidence in the near future". It indicates
how much the system knows about the inheritance relation | the more the system knows
about the inheritance relation (i.e., the bigger w is), the more con�dent the system is about
the frequency, since any e�ect of the evidence arriving in the near future will be relatively
smaller. The higher the con�dence is, the harder it will be for the frequency to be changed by
new evidence, but this does not mean that the judgment is \truer", or the \more accurate",
because in an open system like NARS, the concept of a real or objective probability does
not exist.

It is easy to calculate w and w+ from f and c, and therefore the truth value of a judgment
can also be represented as a pair of ratios <f; c> (Wang, 1994a). In particular, \S � P <
1; 1 >" means that \S � P" is absolutely true. Though such a truth value cannot be
achieved by �nite amount of evidence, it serves as a limit and an idealized situation.

It is important to notice that f and c are two independent measurements, in the sense
that given the value of either of them, the value of the other cannot be determined, or even
bounded. Keynes argued for a similar relation between probability and weight of evidence
(Keynes, 1921). Roughly speaking, frequency and probability indicate the relative balance
between positive and negative evidence, which inuences the system's preference among
alternative conclusions; con�dence and weight of evidence indicate the absolute amount of
available evidence, which inuence the system's sensitivity to new evidence.

Some authors claim that when \probability" is interpreted as \degree of belief" of an
individual, and probability theory is used as a normative theory for how the individual should
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behave to maintain a consistent belief space, a probability distribution on the belief space is
capable of representing the sensitivity mentioned above, because its e�ect eventually appears
in the individual's preference among possible options in making a decision. Therefore, it can
be captured by the range of belief changes on receipt of further evidence. Because belief
changes can be properly handled by Bayes's theorem (and its variations, such as Je�rey's
rule), a new measurement is unnecessary (Cheeseman, 1985; Pearl, 1988; Spiegelhalter,
1986).

The problem in this argument, as shown in (Wang, 1993), is the assumption that all
reevaluation of the probability distribution P (x), caused by new knowledge E, can be put
into the form P (xjE), that is, by conditionalization on E. This assumption is not always
valid, because in the above formula E must satisfy the following constraints: (1) E is a
binary proposition, (2) E is already in the proposition space upon which P (x) is de�ned,
and (3) P (E) > 0.

Therefore, the susceptibility represented in the Bayesian approach, such as the con�dence
de�ned in (Pearl, 1988), only reects the stability of a probability assignment to certain
relevant evidence, and the restrictions upon new knowledge severely limits the learning ability
of the system. Especially, they make the system only open to certain types of new knowledge,
therefore cannot be used in systems designed under the insu�cient knowledge and resources
assumption, as de�ned previously.

Generally speaking, as argued in (Wang, 1993), the amount of evidence cannot be derived
from a �rst-order probability distribution de�ned according to the evidence. Therefore, we
do need a second measurement which is especially for this quantity.

5 How to Generate Inductive Conclusions?

Let us suppose that we know \Tomato is a kind of plant" and \Tomato is a kind of vegetable".
Now \tomato", as a common instance of \vegetable" and \plant", becomes positive evidence
for inductive conclusion \Vegetable is a kind of plant".

Formally, the induction rule of NARS looks like this:

M � P <f1; c1>
M � S <f2; c2>
S � P <f; c>

According to the de�nition of evidence, the termM now is, to a certain extent, a piece of
evidence for the conclusion, and the truth value of the conclusion is a function of the truth
values of the two premises. Similarly, \P � S" can also be assign a truth value, which is
omitted in the following discussions, because it can be obtained by exchanging the order of
the premises.

For our current example, \tomato" is M , \plant" is P , and \vegetable" is S. To deter-
mining the truth value of \vegetable � plant" from the common instance \tomato" of the
two terms, let us at �rst consider the following special situations.

1. When f1 = c1 = f2 = c2 = 1, M is a piece of (idealized) positive evidence for the
conclusion. According to the previous de�nitions, in this case we have w+ = w = 1 for
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the conclusion | that is, f = 1; c = 1=(1 + k). For the \Ravens are black" example,
here M is a black raven.

2. When f1 = 0; c1 = f2 = c2 = 1, M is a piece of (idealized) negative evidence for the
conclusion. According to the previous de�nitions, in this case we have w� = w = 1 for
the conclusion | that is, f = 0; c = 1=(1 + k). For the \Ravens are black" example,
here M is a non-black raven.

3. When f2 = 0, M is not an instance of S. In this case, no matter it is an instance of
P or not, it provides no evidence for the conclusion, therefore w = 0; c = 0, and f is
unde�ned. For the \Ravens are black" example, here M is not a raven (but a shirt,
for example).

4. When c1 or c2 is 0, one of the premises gets no evidential support, so the conclusion
get no evidential support, neither. That means w = 0; c = 0. For the \Ravens are
black" example, here either whether M is a raven or whether M is black is completely
unknown.

From these boundary conditions of the truth value function for induction, if we assume
all the variables take boolean values (either 0 or 1), we get f = f1 and w = AND(f2; c2; c1),
here AND is the boolean product of the arguments.

To extend the AND operator from boolean variables to variables in the [0, 1] interval
(i.e., with boolean values as boundary values), we can use the so-called T-norm (Bonissone
and Decker, 1986; Dubois and Prade, 1982; Schweizer and Sklar, 1983). T-norm is a binary
function de�ned on real numbers in [0; 1]. It is monotonic, commutative, associative and
has a boundary condition satisfying the truth table of the logical operator AND. For the
current purpose, we also want it to be continuous and strictly increasing, so that changes in
any one argument will cause a change in the function value. The most simple function that
satisfy the above requirements are multiplication (Schweizer and Sklar, 1983).

Consequently, for the inductive conclusion, we have

f = f1
c = (f2c2c1)=(f2c2c1 + k)

where k is the constant introduced previously.
To apply this formula to the \tomato" example, we can see that the truth values of

the two premises play di�erent roles in induction. The frequency of \tomato � plant", f1,
estimates the frequency of the conclusion, since we are taking the property (\being plant")
of the special term tomato as a property of the general term vegetable. On the other hand,
f2, c1 and c2 conjunctively determines to what extent tomato can be counted as a piece
of relevant evidence of the conclusion. It is because that if f2 or c2 is 0, tomato is not
an instance of vegetable (so it cannot serve as evidence); or, if c1 is 0, the �rst premise
provides no information about the relation between tomato and plant, thus the conclusion
gets no support, neither. Only when f2, c2, and c1 are all equal to 1, can tomato be
count as a piece of evidence (for the given conclusion) with a weight of 1 (because now
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\tomato � vegetable <f2; c2>" become \tomato � vegetable"), and whether the evidence
is positive or negative is completely determined by f1.

Therefore, when an inductive conclusion is actually generated, the system does not treat
all evidence as equal. For example, typical vegetables (with high f2 and c2 values) contribute
more to the conclusion. On the other hand, the truth value function is established according
to the relationship between w+, w, f , and c, de�ned in idealized situations (where all pieces
evidence are equally weighted, and are either completely positive or completely negative).
In this way, the idealization is a necessary step in the design process of the system, and it
also help us to understand the system's behavior.

It needs to be stressed again that the truth value of the conclusion indicates the support
provided by the evidence, rather than measures how many vegetables are plants in the real
world. If f1 = f2; c1 = c2, the system will assign the same truth value to \vegetables are
plants" and \plants are vegetables". This may look ridiculous to us, but both of them are
equally valid, given the evidence provided by \tomato" | we judge the second conclusion
as less true than the �rst one, because we take other evidence (provided by pine, daisy, and
so on) into account. We will see how the system does similar things in the following section,
but before considering other evidence, the system believes the two conclusions to the same
extent.

Because in NARS the truth value indicates the relation between a statement and available
evidence, induction is \ampliative" in the sense that its conclusions are more general than its
premises, but it is also \summative" in the sense that the conclusions claim no more support
than they actually get from the premises. Therefore the traditional distinction between these
two types of induction does not apply here (Cohen, 1989; Popper, 1959).

The system uses inductive conclusions to predict future situations, but it does not mean
that their truth values tell the system what the \state of a�rms" is in the \objective world".
A system behaves according to its beliefs, not because they guarantee success (such guaran-
tees are impossible, as Hume argued), but because it has to rely on its experience to survive,
even though the experience may be biased or outdated | this is what \adaptation" means.

Another feature that distinguishes the above induction rule from other induction systems
is that the rule is able to generate and evaluate an inductive conclusion at the same time.

Traditionally, the generating and evaluating of inductive conclusions (or hypotheses)
are treated as two separated processes. The most well-known arguments on this issue are
provided by Carnap and Popper, though their general opinions on induction are opposite
(Carnap, 1950; Popper, 1959). The consensus is that from given evidence, there is no
e�ective procedure to generate all the hypotheses supported by the evidence, therefore the
discovery of a hypothesis is a psychological process, which contains an \irrational element"
or \creative intuition". On the contrary, the evaluation of a given hypothesis, according to
given evidence, is a logical process.

The above opinion is in fact implicitly based on the speci�c language in which the induc-
tive process is formalized. In probability theory, there is no way to get a unique hypothesis
H from given evidence E for the purpose of induction, because for every proposition X in
the proposition space, P (XjE) can be calculated, at least in principle. In �rst-order predi-
cate logic, there are usually many hypotheses H that implies the given evidence E, and also
consistent with background knowledge B. In both cases, we can use some heuristics to pick
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up a inductive conclusion that has some desired properties (simplicity, for instance), but
this kind of selections are not derived from the de�nition of induction rule (Mitchell, 1980;
Haussler, 1988).

In term logic, the situation is di�erent. Here premises of an inductive inference must
be a pair of judgments that share a common subject, and the premises uniquely determine
an inductive conclusion. (Of course, there is also a symmetric inductive conclusion if we
exchange the order of the premises.) Therefore, in NARS we do not need an \irrational
element" or domain-dependent heuristics, and the discovery of a hypothesis, in the current
sense, also follows logic.

It does not mean, however, that when given the same evidence, everyone should get
identical inductive conclusions. One factor that cause \individual di�erence" is the constant
k for \near future". Given the same evidence, a system with a larger k will assign lower
con�dence to inductive conclusions, because it considers what may happen in a further
horizon. Consequently, such a system is more prudent, compared with a system with a
smaller k (Wang, 1995c). For our current purposes, there is no best k for a implementation
of NARS | it is a \personal parameter", and di�erent values generate di�erent behaviors.
In the following discussions, let us take k = 1 for simplicity. Therefore, by \near future" we
mean that \when the coming evidence has a unit weight".

6 How to Revise Inductive Conclusions?

From the above description, we see that NARS generates an inductive conclusion from a
single piece of evidence, given by a pair of judgments. Inductive conclusions generated in
this way have low con�dence | c � 1=2 (when k = 1), according to the truth value function
given above.

To increase the con�dence of the conclusion, evidence from di�erent evidence need to
be accumulated. For example, let us assume that M1 and M2 are di�erent evidence for
\S � P", and they assign truth values \fw+

1 ; w1g" and \fw+
2 ; w2g" (in terms of weight of

evidence) to the statement, respectively. If both M1 and M2 are taken into account, the
truth value of the inductive conclusion should be \fw+

1 + w+
2 ; w1 + w2g", because weight of

evidence is additive. Rephrasing the function in terms of frequency and con�dence, we get
the following revision rule for NARS:

S � P <f1; c1>
S � P <f2; c2>
S � P <f; c>

where
f = c1(1�c2)f1+c2(1�c1)f2

c1(1�c2)+c2(1�c1)

c = c1(1�c2)+c2(1�c1)
c1(1�c2)+c2(1�c1)+(1�c1)(1�c2)

This rule is applicable only when the two premises are based on di�erent evidence. In
NARS, a serial number system is used to approximately record the evidence that supports
each judgment. See (Wang, 1995b) for details.
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In the Bayesian approach, the evidence is accumulated by repeatedly applying Bayes's
theorem to new evidence. Positive (negative) evidence is that which increase (decrease) the
probability of the hypothesis in this process, and irrelevant evidence leave the probability
unchanged. As discussed previously, this approach limits the evidence that is acceptable
by the system. Besides, it also cause a paradox revealed by Popper (Popper, 1959). Let
H be a hypothesis whose prior probability (according to the background knowledge of the
system) is P (H). If the system then gets a piece of positive evidence E1 for H, the belief on
it should be revised, according to Bayesian theorem, to become P (HjE1), which is higher
that P (H). After that, the system gets a piece of positive evidence E2, which decreases the
belief to P (HjE1^E2). If P (HjE1^E2) happen to be equal to P (H), by de�nition, E1^E2

is irrelevant to H | altogether, it does not change the system's belief on H. However,
intuitively we feel that the system knows more about H after learning both E1 and E2.
What is wrong here?

In NARS, we can see that in this process f is �rst increased, then decreased, but c is
increased by both E1 and E2. Therefore, the �nal result is more con�dent (because it is
based on more evidence), though the inuences of the two pieces of evidence on frequency
cancel each other. In the Bayesian approach, both the f factor and the c factor are combined
into a single probability distribution. It works �ne for many purposes, but cannot handle
revision properly, where the roles played by the two factors are di�erent (Wang, 1993).

Let us continue to discuss the previous \vegetable{plant" example. Suppose after get-
ting the \tomato" evidence (which equally support \Vegetables are plants" and \Plants are
vegetables"), the system is told that \Pines are plants" and that \Pines are not vegetables".
According to the induction rule given above, \pine" provides a piece of negative evidence
for \Plants are vegetables", but is irrelevant to \Vegetables are plants". When these two
inductive conclusions meet the corresponding conclusions generated from \tomato", \Plants
are vegetables" obtains a frequency of 0.5 (because the positive and negative evidence have
equal weight), and \Vegetables are plants" has a frequency of 1 (because all known evidence
is positive). On the other hand, the former conclusion has a higher con�dence than the latter
| it is based on more evidence than the latter.

In this way, the induction rule generates a pair of inductive conclusions from two judg-
ments that share subject, and the revision rule merges corresponding inductive conclusions
to get more con�dent results. The revision rule can also be seen as a rule that resolve
conicts among beliefs.

Since the premises and conclusions of all the rules in NARS have the same syntax (as
judgments de�ned previously), it is natural for the system to integrate di�erent types of
inference. Besides the induction rule and revision rule, NARS also has rules for deduction,
abduction, exempli�cation, comparison and analogy (Wang, 1994a; Wang, 1995b), which are
beyond the scope of this paper. Here we only need to mention that the premises used by the
induction rule may be generated by the deduction (or abduction, and so on) rule, and that the
conclusions of the induction rule may be used as premises by the other rules. In particular,
the revision rule may merge an inductive conclusion with a deductive (or abductive, and so
on) conclusion. Consequently, though NARS has an induction rule, it is not an \inductive
logic", in the sense that it solves problems by induction only. The answers reported to the
user are usually cooperative results of several rules of a multi-step inference. In NARS, all
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these rules are established according to the same semantics introduced previously, where the
truth value of a judgment indicates the evidential support the judgment obtained. Di�erent
rules correspond to di�erent ways to collect evidence for various inheritance relations (Wang,
1995b).

Though, as discussed previously, in NARS induction is not ampliative in a certain sense,
the traditional distinction between \truth-preserving" and \ampliative" inferences is still
there. In NARS, the con�dence of deductive conclusions have a upper bound of 1, and we
already know that the upper bound for induction is 1=(1+ k), which is smaller than 1. If all
premises are absolutely certain, so are their deductive conclusions, but no are their inductive
conclusions.

Compared with other multi-strategy inference models using �rst-order predicate language
(Michalski, 1993), attribute-value language (Giraud-Carrier and Martinez, 1995), or inte-
grated symbolic/connectionist representation (Sun, 1995), the term logic model, proposed
by Peirce and extended in NARS, puts di�erent types of inference in the same framework in
a more natural, elegant, and consistent manner.

From the above discussion, we see that conclusions in NARS are based on di�erent
amounts of evidence, and, generally speaking, conclusions based on more evidence are pre-
ferred, because their relative stability. However, since NARS is designed to be an open
system, future evidence is always possible, therefore there is no way for the system to get
\complete evidence" for an inductive conclusion.

A reasonable retreat is to use all evidence known to the system | the so-called \total
evidence" (Carnap, 1950). Unfortunately, this is also impossible, because NARS has insuf-
�cient resource. The system has to answer questions under a time pressure, which makes
exhaustive search in knowledge space not a�ordable.

Moreover, in NARS the time pressure is variable, depending to the request of the user and
the existence of other information-processing tasks (Wang, 1995b). In this situation, even a
predetermined \satisfying threshold" become inapplicable | such a threshold is sometimes
too low and sometimes too high.

The control mechanism used in NARS is similar to \anytime algorithm" (Dean and
Boddy, 1988). If the system is asked to evaluate the truth value of a statement, it reports
the best conclusion (i.e., with the highest con�dence) as soon as such a conclusion is found,
then continue to look for a better one, until no resource is available for this task (see (Wang,
1995b) for how the system's resources are allocated among tasks). In this way, from the
user's point of view, the system may change its mind from time to time, when new evidence
is taken into consideration. The system will never say that \This is the �nal conclusion and
I will stop working on the problem."

The above discussion is directly related to the \acceptance" problem in inductive logic
(Kyburg, 1994). As put by Cohen, \what level of support for a proposition, in the light of
available evidence, justi�es belief in its truth or acceptance of it as being true?" (Cohen,
1989). In NARS, there is no such a thing as \accepted as being true". Judgments are true
to di�erent extent, and the system always follows the best-supported conclusion (compared
with its rivals), no matter what its truth value is | the standard is relative and dynamic,
not absolute and static. In this way, an inductive conclusion also bene�ts from the refutation
of competing conclusions, which is stressed by the Baconian tradition of induction (Cohen,
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1989) | though its truth value may not change in this process, its relative ranking becomes
higher.

According to the de�nition given be Peirce, the di�erence among deduction, abduction,
and induction is the position of the shared term in the two premises. This property of term
logic makes it possible for NARS to combine di�erent types of inference in a \knowledge-
driven" manner. In each inference step, the system does not decide what rule to use, then look
for corresponding knowledge. Instead, it picks up two pieces of most accessible knowledge
(provided by its memory-management mechanism, see (Wang, 1995b)) which share a term,
and decide what rule to apply according to the position of the shared term. In general,
an inference process in NARS consists many steps. Each step carries out a certain type of
inference, such as deduction abduction, induction, and so on. These steps are linked together
in run-time in a context-dependent manner, so the process does not follow a predetermined
algorithm.

Therefore, NARS is not an \inductive machine" which uses an e�ective algorithm to
generate inductive conclusions from given evidence. Carnap's argument against the possi-
bility of this kind of machine (Carnap, 1950) is still valid. However, this argument does not
prevent us from building a computer system that can do induction. The system does not
have a general purpose induction algorithm, but can solve problems under its knowledge and
resource constraints, and in the problem-solving activities there are inductive steps.

7 Conclusion

In this paper we introduces the components of the NARS project that are related to inductive
inference. This treatment of induction is characterized by the following features:

1. To use a term-oriented language, rather than the mainstream propositional/predicate
language, to represent knowledge.

2. To interpret truth value as a measurement of evidential support, and to use two num-
bers (frequency and con�dence) to represent it.

3. To de�ne induction (as well as deduction and abduction) as inheritance-based infer-
ences, in the form of an extended syllogism.

4. To calculate the truth value of inference conclusions (in induction, revision, and so on)
according to the above de�nition of truth value.

5. To mix induction and other types of inferences in run time in a context dependent man-
ner, and to treat inference processes as anytime algorithms so as to answer questions
under a variable time pressure.

Though the components discussed previously are relatively simple when compared with
other approaches of induction, they do naturally and consistently address many problems
arising in the history of the study of induction.

Such a treatment of induction is not necessarily suitable for all situations | as discussed
in the beginning of the paper, \induction" has di�erent interpretations. This approach,
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or the NARS project as a whole, is specially designed for the situation where an adaptive
system has to work under insu�cient knowledge and resources. Such situation has special
importance for arti�cial intelligence and cognitive science, for both theoretical and practical
reasons (Wang, 1994b; Wang, 1995b).

Acknowledgment

This work has been supported by a research assistantship from the Center for Research on
Concepts and Cognition, Indiana University.

References

Aristotle (1989). Prior Analytics. Hackett Publishing Company, Indianapolis, Indiana.
Translated by R. Smith.

Bonissone, P. and Decker, K. (1986). Selecting uncertain calculi and granularity. In Kanal,
L. and Lemmer, J., editors, Uncertainty in Arti�cial Intelligence, pages 217{247. North-
Holland, Amsterdam.

Carnap, R. (1950). Logical Foundations of Probability. The University of Chicago Press,
Chicago.

Cheeseman, P. (1985). In defense of probability. In Proceedings of the Eighth International
Joint Conference on Arti�cial Intelligence, pages 1002{1009.

Cohen, L. (1989). The Philosophy of Induction and Probability. Clarendon Press, Oxford.

Dean, T. and Boddy, M. (1988). An analysis of time-dependent planning. In Proceedings of
AAAI-88, pages 49{54.

Dubois, D. and Prade, H. (1982). A class of fuzzy measures based on triangular norms.
International Journal of General Systems, 8:43{61.

Giraud-Carrier, C. and Martinez, T. (1995). An integrated framework for learning and
reasoning. Journal of Arti�cial Intelligence Research, 3:147{185.

Good, I. (1983). Good Thinking: The Foundations of Probability and Its Applications. Uni-
versity of Minnesota Press, Minneapolis.

Haussler, D. (1988). Quantifying inductive bias: AI learning algorithms and Valiant's learn-
ing framework. Arti�cial Intelligence, 36:177{221.

Hempel, C. (1943). A purely syntactical de�nition of con�rmation. Journal of Symbolic
Logic, 8:122{143.

Holland, J., Holyoak, K., Nisbett, R., and Thagard, P. (1986). Induction. The MIT Press.

16



Hume, D. (1748). An enquiry concerning human understanding. London.

Keynes, J. (1921). A Treatise on Probability. Macmillan, London.

Korb, K. (1995). Inductive learning and defeasible infernce. Journal of Experimental &
Theoretical Arti�cial Intelligence, 7:291{324.

Kuhn, T. (1970). The Structure of Scienti�c Revolutions. Chicago University Press.

Kyburg, H. (1970). Probability and Inductive Logic. Macmillan, London.

Kyburg, H. (1994). Believing on the basis of the evidence. Computational Intelligence,
10:3{20.

Michalski, R. (1983). A theory and methodology of inductive learning. Arti�cial Intelligence,
20:111{116.

Michalski, R. (1993). Inference theory of learning as a conceptual basis for multistrategy
learning. Machine Learning, 11:111{151.

Mitchell, T. (1980). The need for biases in learning generalizations. In Shavlik, J. and
Dietterich, T., editors, Readings in Machine Learning. Morgan Kaufmann, San Mateo,
California. 1990. Originally published as a Rutgers Technical report.

Paa�, G. (1991). Second order probabilities for uncertain and conicting evidence. In
Bonissone, P., Henrion, M., Kanal, L., and Lemmer, J., editors, Uncertainty in Arti�cial
Intelligence 6, pages 447{456. North-Holland, Amsterdam.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Publish-
ers, San Mateo, California.

Peirce, C. (1931). Collected papers of Charles Sanders Peirce, volume 2. Harvard University
Press, Cambridge, Massachusetts.

Popper, K. (1959). The logic of Scienti�c Discovery. Basic Books, New York.

Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1:81{106.

Reichenbach, H. (1949). The Theory of Probability. University of California Press, Berkeley,
California. Translated by E. Hutten and M. Reichenbach.

Savage, L. (1954). The Foundations of Statistics. Wiley, New York.

Schweizer, B. and Sklar, A. (1983). Probabilistic Metric Spaces. North-Holland, Amsterdam.

Spiegelhalter, D. (1986). A statistical view of uncertainty in expert systems. In Gale, W.,
editor, Arti�cial Intelligence and Statistics, pages 17{56. Addison Wesley, Reading.

Sun, R. (1995). Robust reasoning: integrating rule-based and similarity-based reasoning.
Arti�cial Intelligence, 75:241{295.

17



Wang, P. (1993). Belief revision in probability theory. In Proceedings of the Ninth Conference
on Uncertainty in Arti�cial Intelligence, pages 519{526. Morgan Kaufmann Publishers,
San Mateo, California.

Wang, P. (1994a). From inheritance relation to nonaxiomatic logic. International Journal
of Approximate Reasoning, 11(4):281{319.

Wang, P. (1994b). On the working de�nition of intelligence. Technical Report 94, Center
for Research on Concepts and Cognition, Indiana University, Bloomington, Indiana.
Available via WWW at http://www.cogsci.indiana.edu/farg/peiwang/papers.html.

Wang, P. (1995a). Grounded on experience: Semantics for intelligence. Technical Report 96,
Center for Research on Concepts and Cognition, Indiana University, Bloomington, Indi-
ana. Available via WWW at http://www.cogsci.indiana.edu/farg/peiwang/papers.html.

Wang, P. (1995b). Non-Axiomatic Reasoning System: Exploring the Essence of Intelligence.
PhD thesis, Indiana University.

Wang, P. (1995c). Reference classes and multiple inheritances. International Journal of
Uncertainty, Fuzziness and and Knowledge-based Systems, 3(1):79{91.

18


