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ABSTRACT

Psychological evidence shows that probability theory is not a proper descriptive
model of intuitive human judgment. Instead, some heuristics have been proposed
as such a descriptive model. This paper argues that probability theory has limi-
tations even as a normative model. A new normative model of judgment under
uncertainty is designed under the assumption that the system's knowledge and
resources are insu�cient with respect to the questions that the system needs to
answer. The proposed heuristics in human reasoning can also be observed in this
new model, and can be justi�ed according to the assumption.

KEYWORDS: Subjective probability, normative and descriptive mod-

els, heuristics and bias, insu�cient knowledge and resources,

non-axiomatic reasoning system.

1. Introduction

The study of human judgment under uncertainty reveals systematic dis-
crepancy between actual human behaviors and conclusions of probability
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theory [18], that is, between what we should do (according to probability
theory) and what we do (according to psychological experiments). There-
fore, probability theory is not a good descriptive theory for human reason-
ing under uncertainty, though it is still referred to as a good normative

theory.
When a normative model and a descriptive model conict with each

other, which one should be blamed? In this �eld, the dominant opinion is
to explain the inconsistency as fallacies, errors, or illusions that happen in
human thinking, for the following reasons:

1. Probability theory has a solid foundation. Its conclusions are derived
deductively from a set of intuitive, or even self-evident axioms [5].

2. Most of the people who make the fallacy are disposed, after explana-
tion, to accept that they made a mistake [19].

As a result, the research activities in this domain often consist of the
following steps [9, 12]:

1. To identify the problem by carrying out psychological experiments,
and compare the results with the conclusions of probability theory;

2. To explain the result by looking for the heuristics that are used by
humans and the factors that a�ect their usage, and to suggest and
verify methods to correct the errors.

Heuristics, as methods to assess subjective probability, \are highly eco-
nomical and usually e�ective, but they lead to systematic and predictable
errors" [18]. Compared with normative theories, such as probability the-
ory, heuristics are not optimal, not formal, not systematic, and not always
correct.
According to this opinion, the fact that probability theory cannot match

actual human reasoning is not a problem of the theory. Though the dis-
crepancy is well-known, probability theory, especially Bayesian approach,
is becoming more popular as a normative model of reasoning under uncer-
tainty.
\Bayesian approach" usually means the following in the current context:

1. Probability is a subjective measurement on uncertain belief, based on
available evidence and background knowledge.

2. The beliefs of a idealized person about a domain can be represented
by a (consistent) probability distribution function on a proposition
space.

3. Bayes' theorem is applied to revise one's beliefs with new evidence.

However, besides the mainstream opinion expressed above, there are
opinions to explain the discrepancy as a challenge to Bayesian approach:

� Probability theory can be interpreted di�erently, such as in the \fre-
quentist" [9] or \propensity" [4] interpretation.
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� There are alternative normative models that compete with Pascal
probability theory, such as Baconian probability [4] and belief func-
tion [16].

� Some formal descriptive models are proposed, such as information
integration theory [1].

Similarly, this paper attempts to address the following questions: Is
Bayesian approach always the correct model to use? If not, when and
why? Are there other normative models for reasoning under uncertainty?
What is wrong with the heuristics?
In section 2, the assumptions and limitations of Bayesian approach are

analyzed. In section 3, a new normative theory for judgment under un-
certainty is briey described. In section 4, the relationship between the
heuristics and the new theory is discussed. Finally, there are conclusions
arguing that the Bayesian approach is not always the appropriate norma-
tive model for the related problems.

2. Bayesian Approach as a Normative Model

Like other normative theories, Bayesian approach is based on certain
assumptions, therefore it is applicable only when the assumptions are sat-
is�ed. Though such a statement sounds trivial when put in this way, the
analysis about exactly when Bayesian approach can be applied is far from
su�cient.
A typical opinion on this issue can be found in the following statements:

� \The subjective assessment of probability resembles the subjective
assessment of physical quantities such as distance or size." [18]

� \Although the language of probability can be used to express any form
of uncertainty, the laws of probability do not apply to all variants of
uncertainty with equal force." [12]

Some authors even take such a radical position by claiming that \the
world operates according to Bayes' Theorem" [14].
According to this opinion, Bayesian approach is the normative model

for judgment under uncertainty, and it always gives the correct or optimal
answer, although sometimes it is not easy to apply the model. This opinion
is also advocated by some authors in the study of uncertainty reasoning in
arti�cial intelligence [3, 15, 17].
It is well known that the axioms of probability theory can be derived

from several assumptions about the relationships between evidence and
belief [5]. These assumptions, though reasonable for many situations, set
up limitations for Bayesian approach at the same time.
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2.1. Consistency

All applications of Bayesian approach begin with a consistent prior prob-
ability distribution on a prede�ned proposition (or event) space. The re-
quirement for consistency, though looks reasonable, is not always satis�-
able, for the following reasons:

1. When a system is open to new evidence, that is, the system works
in a continuous, incremental, or adaptive manner [11], it is always
possible for new knowledge to conict with previous knowledge.

2. Under a time pressure, it is often impossible for the system to locate
and consider all relevant knowledge when a judgment is made, so the
judgments based on di�erent knowledge may conict with each other.

In these situations, a belief system cannot be abstracted as a (consistent)
probability distribution on a proposition space.

2.2. Ignorance and revision

Though a probability distribution is a useful way to express one's un-
certainty about some events or propositions, it does not contain the infor-
mation about the amount of evidence that supports the probability distri-
bution [13]. This type of information is referred to by various authors as
\ignorance", \con�dence", \reliability", and so on [16, 21].
Some people argue that this information can be derived from a probabil-

ity distribution [15, 17], but this argument is invalid, because it is actually
based on a confusion between the background knowledge that supports a
probability assignment and the proposition that appears within a condi-
tional probability assignment as the condition. A detailed discussion on
this issue can be found in [20]. In the following, we will summarize the
argument briey.
Suppose we are talking about the uncertainty of the propositions in a

space S. For this purpose, we collect some background knowledge C, and
accordingly set up a prior probability distribution on S. We refer to the
distribution as PC(x) (x 2 S), and use the subscript C to indicate the fact
that the probability distribution is based on the background knowledge,
or context consideration, C. Now a piece of new knowledge E comes. If
E 2 S, the updated beliefs should be PC(xjE), and can be calculated
according to Bayesian theorem, when PC(E) > 0.
However, the above procedure cannot be applied when E is not in S

or PC(E) = 0. These situations happen typically when what need to be
changed is the background knowledge C. Intuitively, we know that some
probability distributions are established according to huge statistical data
or careful theoretical analysis, but some others are based on shaky guesses.
However, this di�erence, what we usually call the ignorance about the do-
main, cannot be reected within the probability distribution PC(x). When
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all our concern is about decision making in S, and C is remain unchanged
during the process, the above di�erence does not matter. However, if new
evidence suggests a revision of the distribution by changing C, Bayesian
theorem cannot help.
Sometimes an extension of Bayesian theorem, Je�rey's rule, can be used

to modify a probability distribution. If a proposition T 's previously es-
timated probability is P (T ) = v, and there is a piece of new knowledge
saying that T 's probability should be v0, T 's probability is changed to v0,
and for every judgment x in the space, its probability is changed from P (x)
to P 0(x), where P 0(x) = P (xjT ) � v0 + P (xj:T ) � (1 � v0). This is Jef-
frey's rule. When v0 = 1, we get Bayesian conditionalization. Obviously,
this rule can be used to change C, however, it is an updating rule (for
replacing old knowledge by new knowledge), rather than a revision rule

(for combining knowledge from distinct bodies of evidence). In updating, a
probability distribution is modi�ed according to a (new) single probability
assignment on a proposition, whereas the previous probability assignment
on the proposition is completely ignored. As a result, updating is asymmet-
ric, but revision (or evidence combination [16]) is symmetric [6]. Although
updating is a valid operation, it cannot be used to replace revision.

2.3. Extensional interpretation

Probability theory is traditional interpreted in an extensional way [19],
which means the following:

1. All sets are well-de�ned, that is, whether an object belongs to a set
has a (maybe unknown) \Yes/No" answer.

2. The probability of \A � B", where both A and B are sets, is usually
closely related to jA \ Bj=jAj. For instance, this ratio is often used
as an estimation of the probability, and its limit, if known, is often
taken as the probability [18].

3. The probability of \a 2 B", where a is an object and B is a set,
is often determined via another set R, the \reference class". When
\a 2 R" is true and the probability of \R � B" is known, this value
can be inherited by \a 2 B" [24].

Though this is a very useful and reasonable way to apply probability
theory to everyday life, we should keep the following points in mind.
First, this is a way to interpret probability, but not necessarily the only

way to do it. There are several concepts that are often confused with one
another: \probability" as a mathematical notion, \probability" under an
extensional interpretation, and \probability" as used in ordinary language
to express our (informal) degree of belief or uncertainty. These concepts
are closely related, but not identical.
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Second, by interpreting probability extensionally, some simpli�cations
are introduced. We assume that the extension of all concepts are well-
de�ned, and only extensional inclusion relations are related to probability
evaluation. Again, these assumptions are reasonable for some purposes,
but may be rejected for some other purposes.
There is a historical reason for why all mathematical and logical theories

(including probability theory) are more closely related to the extension of
concepts than to their intensions, but it does not mean that there is no
way (even in the future) to formally process the intension of concept, or
this should not be done.
In summary, Bayesian approach is useful, but also has limitations. In

some situations, it cannot be applied or should not be applied.

3. NARS as a Normative Model

Non-Axiomatic Reasoning System (NARS) is an intelligent reasoning sys-
tem which adapts to its environment under insu�cient knowledge and re-
sources. A formal and complete description about the system's logical
kernel has been published, also in the International Journal of Approxi-

mate Reasoning [21]. It is assumed that the readers of the current paper
have access to that paper, therefore in the following we only introduce the
aspects of the system that are most closely related to our current issue.

3.1. Theoretical assumption

NARS is designed under the assumption that the knowledge and re-
sources of the system are usually insu�cient with respect to the questions
that it needs to answer.
More concretely, the system's computing facilities (such as processor

time and memory space) are usually in short supply; the questions asked
by the environment have various time requirements attached; the system
is always open to new knowledge (which is not necessarily consistent with
the current knowledge of the system) and new questions (which may go
beyond the current knowledge scope of the system).
Being adaptive, the system accommodates itself to new knowledge, makes

judgments under the current knowledge{resource constrains, and adjusts
its memory structure and the distribution of its resources to improve its
time{space e�ciency, under the assumption that future situations will be
similar to past situations.
Because all the judgments are usually based on insu�cient evidence, the

system needs to measure how each of them is supported or refused by
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available evidence. The system also needs rules to make plausible inference
from given knowledge, and to revise previous beliefs in the light of new
knowledge. Therefore, among other things, NARS attempts to provide a
normative model for reasoning with uncertainty.

3.2. Uncertainty measurement

In the simplest version of NARS [21], each judgment has the form \S �
P [t]", where \S" is the subject term of the judgment, \P" is the predicate

term, \�" can be intuitively understood as \is a kind of" and \has the
properties of" (see [21] for its formal de�nition), and \t" measures the
uncertainty of the judgment.
Because all judgments in NARS are based on the system's experience,

the uncertainty of a judgment is actually represented by the weights of its
(positive and negative) evidence. If the system knows (from its experience)
a term M such that M is a kind of S and also a kind of P , or that both
S and P have the property of M , then M is counted as a piece of positive
evidence for S � P . If the system knows that M is a kind of S but not a
kind of P , or P has the property of M but S has not, then M is counted
as a piece of negative evidence for \S � P". Therefore, the uncertainty
of a judgment can be represented by a pair <w+; w�>, where w+ is the
total weight of positive evidence, and w� is the total weight of negative
evidence. w, the weight of all relevant evidence, is simply w+ + w�.
When a relative measurement is preferred, the same information can

be represented by a pair of real numbers in [0; 1], < f; c >, where f =
w+=w, the frequency (or proportion) of positive evidence among all relevant
evidence, and c = w=(w + 1), a monotonically increasing function of the
total weight of relevant evidence. c is referred to as the con�dence of the
judgment, because of the familiar phenomenon: the more evidence one
has collected, the more con�dent one feels when making a judgment on
the issue, though it does not follow that the judgment become \truer" or
\more accurate" in an objective sense [7, 8].
For a detailed discussion of the related semantics issues, see [22].

3.3. Inference rules

In NARS there are two types of rules, one is for new judgments derivation
(including deduction, induction, abduction, and so on), and the other is
for conict management. For our current purpose, we will concentrate on
the latter.
By a conict between two judgments, we mean that the two judgments

are about the same \S � P" relation, but they are based on di�erent bodies
of evidence, so they may attach di�erent uncertainty to the relation.
As mentioned previously, this kind of conict is a normal phenomenon
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in NARS. With insu�cient knowledge, it is always possible for new knowl-
edge to conict with previous knowledge. With insu�cient resources, the
system cannot a�ord the time to consider all of its knowledge to make a
judgment, so a judgment is usually based on part of the system's knowl-
edge. Therefore, even without new evidence, conicting judgments may
co-exist.
Though a normal phenomenon, the system does not let a conicting

pair of judgments stay in that way when it is found. When the inference
engine is fed two judgments \S � P <f1; c1>" and \S � P <f2; c2>",
two di�erent cases are distinguished: if the two judgments are based on
correlated evidence, then the updating rule is applied, otherwise the revision
rule is applied.
By \correlated evidence", we mean that some evidence is used to evaluate

the uncertainty of both judgments (for an exact de�nition and how the
system can recognize its happening, see [21]). The correlation may be either
full (i.e., the evidence of one judgment is included by that of the other) or
partial. For partially correlated evidence, an ideal solution is to merge
the evidence without repeatedly counting the shared part. However, under
insu�cient resources, it is simply impossible to distinguish the contribution
of each piece of evidence to the uncertainty of the judgment. Therefore in
both situations (full and partial correlations) NARS chooses the judgment
with a higher con�dence (that is, based on more evidence) as the result,
and ignores the other one.
When the evidence is not correlated, the revision rule is applied to get

a judgment based on the merged evidence. From the de�nition of f and c
(in terms of w+ and w�), and the convention that the weight of evidence
is additive during revision, we can directly get the conclusion \S � P <
f; c >" where f = (w1f1 + w2f2)=(w1 + w2) , and c = (w1 + w2)=(w1 +
w2 + 1).
We can see from the function that after a revision the conicting fre-

quency evaluations are \averaged" with a (monotonically increasing) func-
tion of con�dence as weight, and the con�dence is increased due to the
accumulation of evidence from di�erent sources. Therefore, con�dence in-
dicates the stability of a frequency assignment in the face of coniction
judgments.
For how the uncertainty measurement is used to predict future situations,

see [21].

3.4. Compared with Bayesian approach

NARS and Bayesian approach are based on di�erent assumptions. In
Bayesian model, whether an event will happen, or whether a proposition is
true, is uncertain, but their probability, or degree of uncertainty, is usually
certain. The resources expenses of the rules (for example, Bayes' theorem)



9

are ignored. On the contrary, in NARS the insu�ciency of knowledge
and resources is consistently and completely assumed. From here, some
concrete di�erences follow:

1. In the traditional interpretation of probability theory, only exten-
sional evidence is considered when the probability of a statement is
evaluated. In NARS, as de�ned above, extensional evidence (\shared
instances") and intensional evidence (\shared properties") are equally
treated when the uncertainty of a judgment is determined.

2. All the operations in Bayesian approach are within the same dis-
tribution function (with updating as an exception), therefore all of
the probability evaluations involved are based on the same chunk of
background knowledge, which can be omitted in formulae. In NARS,
each judgment is evaluated individually, so it is necessary to some-
how indicate the amount of its evidence. This is why a con�dence

measurement is introduced.
3. In NARS, all rules are \local", in the sense that the uncertainty of

the conclusion only depends on the premises. Therefore, the appli-
cation of a rule only involves several judgments. On the contrary,
Bayesian approach uses \global" rules. For example, when Bayes'
theorem (or Je�rey's rule) is used to update a distribution function,
most probability assignments in the whole proposition space need
to be re-calculated. Pearl correctly argues in [15] that local rules
cause incorrect conclusions by neglect relevant information. For a
system with insu�cient resources, however, local rules become the
only choice. The incorrect conclusions can be revised when the rele-
vant information is located in a later time [21].

4. As a result, NARS may contain (explicitly or implicitly) conicting
judgments. To handle them, NARS has both updating rule and re-
vision rule, whereas the latter is not available in a Bayesian model,
because the information about con�dence is absent there [20].

In spite of the di�erences, there are still many similar properties in the
two models. Both of them are normative models for judgment under uncer-
tainty, but they are based on di�erent assumptions about the environment
where the model is applied.

4. Heuristics and NARS

Though designed as a normative model, NARS shows some behaviors
that are usually explained in term of \heuristics and biases", when these
phenomena happen in human judgments [18].
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4.1. Availability

Availability, \the ease with which instances or occurrences can be brought
to mind", is a common heuristics in intuitive judgment of probability. It is
\a�ected by factors other than frequency and probability", therefore \leads
to predictable biases" [18].
The same phenomenon happens in NARS. Because NARS is built un-

der the assumption of insu�cient knowledge and resources, the following
properties are implied:

1. The system has to base its judgments on the available, though usually
incomplete, knowledge. Therefore, the estimation of the frequency of
an event is actually about the experienced frequency, rather then the
objective frequency.

2. Judgments must be made with the available resources. Therefore, the
system often cannot consider all of its knowledge, but only part of it.

3. Which part of the system's knowledge is consulted is determined by
several factors, such as relevance, importance, usefulness, and so on.
Therefore, it is not surprising that certain events, like priming and
association, inuence the availability distribution [2].

Because which piece of knowledge to use at each step of reasoning is
determined by the current context (by priming) and past experience (by
association), it is inevitable that some knowledge, necessary for the assess-
ment of uncertainty of a proposition, may be either unknown to the system
or cannot be recalled at the time. As a result, the system will have expec-

tation errors | i.e., the conicts between the system's expectations and
the system's future actual experience, but this type of error is not caused
by mis-designing or malfunction of the system. Under the knowledge and
resources constraints, the system has done its best. As long as it can re-
vise its beliefs according to new evidence, there is no error in the system's
operations, though there may be errors in the results of these operations.

4.2. Representativeness

Representativeness, or degree of similarity, is often used as probability
by human beings. \This approach to the judgment of probability leads to
serious errors, because similarity, or representativeness, is not inuenced
by several factors that should a�ect judgments of probability" [18]. The
basic di�erence between them is that \the laws of probability derive from
extensional considerations" [19], but similarity judgments are based on the
sharing of properties, so they are intensional.
As mentioned previously, here we need to distinguish three di�erent

meanings of \probability":

1. As a pure mathematical concept, probability is neither extensional
nor intensional.
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2. Probability theory is usually interpreted extensionally when applied
to a practical domain.

3. In everyday language and intuitive thinking, both extensional and
intensional interpretations of probability happen.

Why is only the extensional interpretation referred to as \correct"?
There is a historical reason: the normative theories about extension are
well-developed, but the theories about intension are not. Actually there
is no commonly accepted theory about how to de�ne and process the in-
tension of a concept. However, it does not imply that intensional factors
should not be taken into consideration when we make predictions about
uncertain events.
NARS is an attempt to equally treat extension and intension. When

the uncertainty of a judgment is determined, both the extensional factor
(shared instances) and intensional factor (shared properties) are considered
[21, 22]. By doing this, it does not mean that they are not di�erent, but that
their e�ects are the same in the judgment. It is valid to build normative
theories to process extension or intension separately, but it is also valid,
and maybe more useful, to have theories that process both of them in a
uni�ed manner. In the latter case, it is valid to use representativeness and
probability indiscriminately for certain purposes.

4.3. Adjustment and anchoring

For any system that accepts new knowledge or makes judgments by in-
crementally considering available knowledge, there must be a rule by which
a previous probability judgment is adjusted in light of new evidence or fur-
ther consideration [1].
The anchoring phenomenon, or insu�cient adjustment from the initial

point, is observed in human thinking [18]. By calling the observed ad-
justments \insu�cient", it is assumed that the correct adjustment rule is
Bayes' theorem, or its extension, Je�rey's rule.
As discussed previously, in NARS, two di�erent cases are distinguished

when judgments conict with each other. If the evidence supporting the
two judgments are correlated, the updating rule is applied, otherwise the
revision rule is applied.
In updating, there are also two possibilities: if the con�dence of the pre-

vious estimation is no lower than the con�dence of the new estimation,
then nothing is changed, otherwise the former is replaced by the latter.
Though the second possibility is the same with Je�rey's rule, what follows
is di�erent: NARS usually cannot a�ord the resources to update all re-
lated judgments, therefore only some of them are updated accordingly, by
applying the inference rules and the updating rule of NARS.
In revision, the new frequency is a weighted sum of those of the premises,

as discussed in the previously.
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Therefore, in all situations, the adjustment of frequency in NARS is
no more than what required by probability theory. If conditionalization
(Bayes' theorem and Je�rey's rule) is the correct way of adjustment, NARS
shows the anchoring bias, too. However, as argued above and in [20], it
is not always valid to use updating as revision, or to assume su�cient
resources for global updating. Again, there is nothing wrong in NARS.

5. Conclusions

This paper is a follow-up of [21], and its purpose is to show some im-
plications of the formal model de�ned in the previous paper. For a more
recent and complete description of the NARS project, see [23].
Though the above discussions only address some, but not all, aspects of

the system, we can still get some conclusions about the models of judgment
under uncertainty.
Despite the fact that NARS is designed as a normative model, the system

shows some behaviors similar to those happens in human thinking, which
are usually explained in terms of heuristics.
NARS is no less normative than probability theory in the sense that

it is developed from some basic principles and assumptions about what
should a system (human or computer) do with incomplete and inaccurate
knowledge [21]. It is true that when applied into a practical domain, NARS
may produce wrong expectations, but so does probability theory.
NARS is not proposed to replace Bayesian models. In Good's terms

[10], Bayesian approach is toward a \Type I" rationality by maximizing
the expected utility, while NARS is toward a \Type II" rationality where
the cost of computing must be taken into account. If Bayesian approach can
be applied in a situation (i.e., the computational cost and the revision of
background knowledge can be ignored there), it is still better than NARS.
It is in situations where Bayesian approach cannot or should not be applied
that approaches like NARS will take over.
NARS is not proposed as a descriptive model for actual human thinking,

such as Anderson's model [1]. Its behavior is still di�erent from that of a
human being. The approach is not justi�ed by psychological data, but by
logical analysis. Therefore there is no psychological experiment conducted
to verify the theory.
However, psychological observations, as those reported in [18], do have

a strong relation to the study of normative models. From the above dis-
cussion we conclude that there is no unique normative model for judgment
under uncertainty | di�erent models can be established according to dif-
ferent theoretical assumptions. NARS is \less idealized" than Bayesian ap-
proach, because it assumes stronger knowledge{resource constraints. The
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behavior of NARS is more similar to those of people, therefore we have
reason to believe that its assumptions are more \realistic" | that is, more
similar to the human cognitive mechanism. This result can be explained
by the observation that human mind was evolved, and still works, in an
environment where the knowledge and resources are usually insu�cient to
solve its problems.
On the other hand, we see that it is possible to �nd a normative interpre-

tation for the \heuristics". They are not necessarily \e�cient but biased".
Sometimes they indicate the right thing to do, though they do not always
succeed.
As for the \biases" and \fallacies" discussed in the psychological liter-

ature, the situation is complex. NARS cannot explain all of them, but it
does suggest a distinction: some violations of probability theory happen in
the situations where probability theory cannot or should not be applied,
and they may be explained by other normative theories, therefore they
are not necessarily errors. The real errors happen when probability theory
should be applied, but the person fails to do so.
Even for the latter case, an explanation is suggested from the study

of NARS: because the human mind usually works under some assumptions
about knowledge and resources that is quite di�erent from what probability
theory assumes, it needs some special e�ort (which does not always succeed)
to suppress the \natural law of thinking", and to learn, to remember, and
to follow probability theory.
Now we can say that by analyzing the so called \heuristics and biases",

we not only �nd limitations in human reasoning, but also �nd limitations
in probability theory, especially in Bayesian approach. Just like nobody is
born with a digital calculator embedded in brain, a brain does not include
a Bayesian network, and even for a good reason | in the environment for
a human to survive, the assumptions made by Bayesian approach are not
always correct, or, usually incorrect.
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