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Abstract

A new logic is introduced, and applied to the generating, evaluating,
using, and revising of generic sentences. This logic is designed for an
adaptive system working with insufficient knowledge and resources. It
is different from existing logics by using a term-oriented language, an
experience-grounded semantics, and a set of syllogistic inference rules. It
is argued that generic sentences should be seen as summarized experience,
which are represented as multi-valued statements, evaluated according to
available evidence, and generated by various types of inference rules.

1 Generic sentences and default rules

In the semantic analysis of natural languages, a “generic sentence” refers to a
sentence like “Birds fly”, which is general, usually accepted as true in spite of
the existence of counterexamples. The focus of the research is on the exact
meaning and truth value of this type of sentence [Carlson and Pelletier, 1995,
Cohen, 1999].

In the research of artificial intelligence (AI), related work has been carried
out as part of commonsense reasoning and non-monotonic logic, and the sen-
tences are usually called “default rules”. Beside the semantic properties of this
type of sentences, in AI people are also interested in using this kind of rules to
derive tentative conclusions [Reiter, 1980, Davis and Morgenstern, 2004].

The consensus reached in the above research is that a generic sentence (or
default rule) is normally, usually, or typically true, so it tolerates exceptions,
and is valid to be used in reasoning if the current case is not known to be an
exception. If a conclusion derived in this way is refuted by a new fact, it should
be considered as false, though the default rule remains valid. For example, from
a fact “Tweety is a bird” and a default rule “Birds fly”, It is valid to derive
a conclusion “Tweety fly”. If later it turns out that Tweety cannot fly, the
conclusion is revised, but the premises remain the same.
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Though some properties of generic sentences can be explained in this way, the
above approach has problems in handling certain aspects of genetic sentences.

One problem is their generation. At the current time, the default rules in
AI systems are usually provided by the designer. If genetic sentences are about
normal situations, how can we (and computer systems) judge whether a given
sentence is normally true or not? Do genetic sentences represent the primi-
tive properties of kinds, or come eventually from the individuals in the kinds?
[Cohen, 1999] Is there an algorithm of this procedure that can be implemented
in a computer? If “Birds fly” comes from induction from flying birds, how many
observations are enough to support the conclusion?

A related issue is the revision of the default rules. If our judgments about
whether a situation is tentative and fallible, when do we realize that what was
seen as exceptions in the past should now be taken as the normal situation? For
example, if the environment gets polluted to such an extent that some future
generations of birds are poised and lose their flying capacity, can we still take
“Birds fly” as a true generic sentence?

Furthermore, even if we have got a set of default rules, there is no guarantee
that the conclusions derived from them will be consistent. A well known exam-
ple of this problem is the “Nixon Diamond”: from a fact “Nixon is a Quaker”
and a generic sentence “Quakers are pacifists”, the conclusion is “Nixon is a
pacifist”; from a fact “Nixon is a Republican” and a generic sentence “Repub-
lican are not pacifists”, the conclusion is “Nixon is not a pacifist”. To solve
this contradiction, the priority of each default rule needs to be specified and
compared [Brewka, 1994].

A special case of the above situation is when the related categories, about
which the generic sentences are stated, have a subset relationship among them.
For example, from a fact “Tweety is a bird” and a generic sentence “Birds
fly”, the conclusion is “Tweety flies”; from a fact “Tweety is a penguin” and
a generic sentence “Penguins do not fly”, the conclusion is “Tweety does not
fly”. Again there is a contradiction. Since “penguin” is a subset of “bird”,
people usually give the second conclusion a higher priority, according to the
“specificity principle” [Touretzky, 1986]. However, even this situation is not as
simple as it looks. As argued in [Wang, 1995b], specificity is just one of several
factors influencing the handling of conflicting conclusions, and it is not always
the dominating factor.

In this paper, we do not plan to review all the solutions proposed for the
above problems. Instead, a new logic is introduced, which provides unified
solutions to the above problems and many other problems in logic and AI.

The logic to be discussed is NAL (Non-Axiomatic Logic). It is designed for
an adaptive reasoning system working with insufficient knowledge and resources
[Wang, 1995a]. In the following we will focus on the aspects of the logic that
is directly related to genetic sentences. For the other issues, please visit the
author’s website for publications and demonstrations.

NAL uses a formal language, Narsese, for knowledge representation, and a
set of inference rules to derive new knowledge from given knowledge, as well
as to answer questions according to available knowledge. The system works
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with “insufficient knowledge and resources”, in the sense that it is open to all
possible new knowledge and questions (expressible in Narsese, of course), and
the questions must be answered in real time. It means that new knowledge may
conflicts with old knowledge, a question may go beyond the current knowledge
of the system, and the system cannot afford the time expense of exhaustively
using its knowledge on every question.

To work under this restriction, NAL uses a term-oriented language, an
experience-grounded semantics, and a set of syllogistic inference rules.

2 Inheritance judgments

The basic form of knowledge in NAL is an inheritance statement “S → P”,
where S is the subject term, P is the predicate term, and “→” is the inheritance
relation. In the simplest case, a term is an identifier, like “bird”, “animal”, and
“fly”.

The inheritance relation is defined by being reflexive and transitive. Accord-
ing to this definition, for any term X, “X → X” is always true (reflexivity).
Also, if “X → Y ” and “Y → Z” are true, so is “X → Z” (transitivity).
Intuitively, “S → P” indicates that “S is a specialization of P , and P is a
generalization of S”. For example, “Birds are animals” can be represented as
“bird → animal′′.

Roughly speaking, the system’s experience is the knowledge it gets from the
environment. In an idealized situation, the experience consists of inheritance
statements defined above. Given experience K, the system’s beliefs, K∗, is the
transitive closure of K, excluding statements whose subject and predicate are
the same term.

With respect to a given K, the truth value of a statement is either true or
false. Given experience K, the truth value of a statement is true if it is in K∗,
or has the form of T → T , otherwise it is false.

Given experience K, let the set of all terms appearing in K to be the vo-
cabulary of the system, VK . Then, the extension of a term T is the set of
terms TE = {x |x ∈ VK ∧ x → T}. The intension of T is the set of terms
T I = {x |x ∈ VK ∧ T → x}. Intuitively, the extension of a term includes its
specializations, and its intension includes its generalizations. The meaning of a
term T consists of its extension and intension.

The above definitions set up an idealized situation, where the experience
consists of binary statements, and terms have well-defined meanings. In the
following, this idealized situation is extended into a practical situation, where
statements are multi-values, and terms have fuzzy meanings.

For an inheritance statement “S → P” and a term M , if both “M → S”
and “M → P” are true, it is positive evidence for the statement; if “M → S”
is true but “M → P” is false, it is negative evidence. Symmetrically, if both
“P → M” and “S → M” are true, it is positive evidence for the statement; if
“P → M” is true but “S → M” is false, it is negative evidence. Evidence is
defined in this way, because as far as a term in positive evidence is concerned,
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the inheritance statement is correct; as far as a term in negative evidence is
concerned, the inheritance statement is incorrect.

Since according to the previous definition, terms in the extension or intension
of a given term are equally weighted, the amount of evidence can be simply
measured by the size of the corresponding set. Therefore, for “S → P ,” the
amount of positive, negative, and total evidence is, respectively,

w+ = |SE ∩ PE |+ |P I ∩ SI |
w− = |SE − PE |+ |P I − SI |
w = w+ + w−

= |SE |+ |P I |

When comparing competing beliefs and deriving new conclusions, we usually
prefer relative measurements to absolute measurements. Also, it is often more
convenient for the measurements to take values from an interval, while the
amount of evidence has no upper bound.

A natural relative measurement for uncertainty is the frequency of positive
evidence among all available evidence. In NAL, the “frequency” of a statement
is defined as

f = w+/w

When w = 0 (and therefore w+ = 0), f is defined to be 0.5.
A confidence measurement is used in NAL to indicate the stability of a

frequency evaluation, by comparing the amount of available evidence to the
future evidence of a unit amount. Therefore, we have

c = w/(w + 1)

That is, confidence is the percent of the amount of evidence the system currently
has among the amount of evidence the system will have in the near future.

Together, f and c form the truth value of a statement in NAL. A statement
plus its truth value is called a “judgment” in NAL.

Given the above definition of frequency, after the coming of evidence of the
unit amount, the new f value will be in the interval

[w+/(w + 1), (w+ + 1)/(w + 1)]

This is because the current frequency is w+/w, so in the “best” case, when all
evidence in the near future is positive, the new frequency will be (w++1)/(w+1);
in the “worst” case, when all evidence in the near future is negative, the new
frequency will be w+/(w + 1).

The interval representation of uncertainty provides a mapping between the
“accurate representation” and the “inaccurate representation” of uncertainty,
because “inaccuracy” corresponds to willingness to change a value within a
certain range.

Within the system, it is necessary to keep an accurate representation of the
uncertainty for statements, but it is unnecessary for communication purposes.
To simplify communication, uncertainty can be represented by a verbal label.
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In this situation, the truth value corresponds to the relative ranking of the label
in the label set.

If in a language there are only N words that can be used to specify the
uncertainty (or some kind of degree) of a statement, and all numerical values
are equally possible, the most informative way to communicate is to evenly
divide the [0, 1] interval into N sections: [0, 1/N], [1/N, 2/N], ..., [(N-1)/N, 1],
and use each label for each section.

For example, if the system has to use a language where “false,” “ambivalent”
and “true” are the only valid words to specify truth value, and it is allowed to say
“I don’t know,” then the most reasonable approach for input is to map the three
words into frequency intervals [0, 1/3], [1/3, 2/3], and [2/3, 1] (corresponding
to truth values <0, 2/3>, <1/2, 2/3>, and <1, 2/3>), respectively, and ignore
all “I don’t know”. For output, all judgments whose confidence is lower than
1/3 become “I don’t know”. and for the others, one of the three words is used,
according to the section in which the frequency of the judgment falls.

Given experience K (as a finite set of binary inheritance statements), for an
inheritance relation “S → P” derived from it, w is always finite. Also, since
the system has no need to keep statements for which there is no evidence, w
should be larger than 0. For uncertainty represented in the other two forms,
these translate into 0 < c < 1 and l < u, u− l < 1.

Beyond the above normal values of uncertainty, there are two limit cases
useful for the interpretation of uncertainty and the design of inference rules:

Null evidence: This is represented by w = 0, c = 0, or u − l = 1. It means
that the system knows nothing at all about the statement.

Full evidence: This is represented by w = ∞, c = 1, or l = u. It means that
the system already knows everything about the statement — no future
modification of the uncertainty value is possible.

Though the above values never appear in actual beliefs of the system, they
play important role in system design. Especially, when both frequency and
confidence are 1, the judgment “S → P < 1, c >” represents an inheritance
statement “S → P”, which is the one used to define the idealized experience. In
this way, the semantics of Narsese is defined by a subset of the language. Given
the experience of the system K consisting of binary inheritance statements, the
truth value of a Narsese judgment, with subject and predicate in VK , can be
determined by comparing the meaning of the two terms. All these judgments
form the beliefs of the system, K∗.

Similarly, we extend the concept of “meaning”. For a system whose beliefs
are represented in Narsese, the meaning of a term still consists of the term’s
extensional and intensional relations with other terms. The only difference is
that the definition of extension and intension is modified as follows: A judgment
“S → P < f, c >” states that S is in the extension of P and that P is in the
intension of S, with the truth value of the judgment specifying their degrees of
membership.
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Consequently, extensions and intensions are no longer ordinary sets with
well-defined boundaries as in the idealized situation. They are similar to fuzzy
sets [Zadeh, 1965], because terms belong to them to different degrees. What
makes them different from fuzzy sets is how the “membership” is measured
(in NAL, two numbers are used) and interpreted (in NAL, it is experience-
grounded) [Wang, 1996].

3 Inference rules

NAL uses syllogistic inference rules. A typical syllogistic rule takes two judg-
ments sharing a common term as premises, and derives a conclusion, which is
a judgment between the two unshared terms. For inference among inheritance
judgments, there are three possible combinations if the two premises share ex-
actly one term:

{M→P <f1, c1>, S→M <f2, c2>} ` S→P <Fded>
{M→P <f1, c1>, M→S <f2, c2>} ` S→P <Find>
{P→M <f1, c1>, S→M <f2, c2>} ` S→P <Fabd>

In each of these rules, the two premises come with truth values <f1, c1> and
<f2, c2>, and the truth value of the conclusion, <f, c>, is a function of them
— according to the experience-grounded semantics, the truth value of the con-
clusion is evaluated with respect to the evidence provided by the premises.
Following the work of Peirce [Peirce, 1931], the three rules above are taken as
corresponding to deduction, induction, and abduction, respectively, as indicated
by the names of the truth-value functions.

These truth-value functions are designed in the following procedure:

1. Treat all relevant variables as binary variables taking 0 or 1 values, and
determine what values the conclusion should have for each combination of
premises, according to the semantics.

2. Represent the variables in the conclusion as Boolean functions of those in
the premises, satisfying the above conditions.

3. Extend the Boolean operators into real number functions defined on [0, 1]
in the following way:

not(x) = 1− x
and(x1, ..., xn) = x1 ∗ ... ∗ xn

or(x1, ..., xn) = 1− (1− x1) ∗ ... ∗ (1− xn)

4. Use the extended operators, plus the relationship between truth value
and amount of evidence, to rewrite the functions as among truth values
(if necessary).
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The deduction rule in NAL extends the transitivity of idealized inheritance.
For the frequency of the conclusion, f , it is 1 if and only if both premises have
frequency 1. As for the confidence of the conclusion, c, it reaches 1 only when
both premises have truth-values < 1, 1 >. Therefore, the Boolean function we
get for deduction is

f = and(f1, f2), c = and(f1, c1, f2, c2)

which leads to truth-value function

Fded : f = f1f2, c = f1c1f2c2

The deduction rule is symmetric to the premises, that is, their order does not
matter.

In NAL, abduction is the inference that, from a shared element M of the
intensions of S and P , determines the truth value of “S → P ,” and induction
is the inference that, from a shared element M of the extensions of S and P ,
determines the truth value of “S → P .” Therefore, derived from the duality of
extension and intension, we have a duality of abduction and induction in NAL.

In both cases, the premises provide a piece of positive evidence with a unit
amount if and only if both of them have truth-value < 1, 1 >, which can be
represented as a Boolean function

w+ = and(f1, c1, f2, c2)

For the total amount of evidence, in abduction we get

w = and(f1, c1, c2)

and in induction we get
w = and(c1, f2, c2)

Please note that in the above representation we are mixing two forms of un-
certainty measurement: in the premises, the truth values are used, while in the
conclusion, the amounts of (positive/total) evidence are used. Also, in these
two rules, the two premises play different roles, and their order matters.

After rewriting the result as truth-value functions, we get

Fabd : f = f2, c = f1c1c2/(f1c1c2 + k)

Find : f = f1, c = f2c1c2/(f2c1c2 + k)

In the process of designing truth-value function for induction (and abduc-
tion), a crucial point is to see that when the premises are {M → P, M → S}, it
is the term M (as a whole) that is taken as evidence, and the amount of evidence
it can provide is less than 1. A mistake easy to make here is to think of M as a
set of evidences for “S → P ,” and think of the number of instances in M as the
amount of evidence of the conclusion. That interpretation is inconsistent with
the semantics of Narsese.

7



When two premises contain the same statement, but come from different
sections of the experience, the revision rule is applied to get a summarized
conclusion:

{S→P <f1, c1>, S→P <f2, c2>} ` S→P <Frev>

From the additivity of the amount of evidence and the relation between truth
value and amount of evidence, the following function is derived:

Frev : f =
f1c1/(1− c1) + f2c2/(1− c2)

c1/(1− c1) + c2/(1− c2)
, c =

c1/(1− c1) + c2/(1− c2)
c1/(1− c1) + c2/(1− c2) + 1

The revision rule produces more confident conclusions from less confident con-
clusions. In this way, general patterns repeatedly appear in the experience can
be recognized and learned.

If the two premises containing the same statement come from overlapping
sections of the experience, they cannot be used for revision, otherwise some
evidence will be repeatedly counted. Instead, the choice rule selects the one
with a higher confidence value.

The choice rule is also used when two judgments contain different statements,
but compete as answers for a question. For example, “Ravens are birds” and
“Penguins are birds” compete as answers for question “What are (the best
examples of) birds?” In this case, the one with a higher expectation is chosen,
and expectation is defined as a function of frequency and confidence:

e = c(f − 0.5) + 0.5

In NAL, a question is typically answered in a process consisting of multiple
inference steps, with the conclusion of one rule used as the premise of another
rule.

4 Compound terms

The inheritance statement “S → P” is the basic form of statement in Narsese,
but it is not the only form. In addition to it, the language contains other types
of statements, which are all built upon this basic form.

Derived inheritance relations: Beside the inheritance relation defined pre-
viously, Narsese also includes several of its variations:

• The similarity relation “↔” is symmetric inheritance. For example,
“raven ↔ crow” means “Raven is similar to crow”.

• The instance relation “◦→” is an inheritance relation where the sub-
ject term is treated as an atomic instance of the predicate term. For
example, “Tweety ◦→ bird” means “Tweety is a bird”.

• The property relation “→◦” is an inheritance relation where the pred-
icate term is treated as a primitive property of the subject term. For
example, “bird →◦ fly” means “Birds fly”.
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Sets: Though in general a term is not a set, in NAL there are special terms for
sets:

• The extensional set {T} is a term with T as the only instance. Conse-
quently, “Tweety is a bird” can also be represented as “{Tweety} →
bird”.

• The intensional set [T ] is a term with T as the only property. Con-
sequently, “Birds fly” can also be represented as “‘bird → [fly]”.

Compound terms: In inheritance statements, the terms not only can be sim-
ple terms (as in the above examples), but also can be compound terms
formed by other terms with a logical operator. For example, if A and B
are terms, then

• their extensional intersection (A ∩ B) is a compound term, initially
defined by (A ∩B)E = (AE ∩BE) and (A ∩B)I = (AI ∪BI),

• their intensional intersection (A ∪ B) is a compound term, initially
defined by (A ∪B)I = (AI ∩BI) and (A ∪B)E = (AE ∪BE).

Right after a compound term is created, its meaning is determined ac-
cording to its logical relation with its components (its “definition”), but
as soon as the system begins to get (input or derived) judgments on the
compound, they also contribute to its meaning, and such contributions
cannot always be reduced to its components. Therefore the principle of
compositionality in semantics is only partially true in NAL.

Ordinary relation: In Narsese, only the inheritance relation and its variations
are defined as logic constants that are directly recognized by the inference
rules. All other relations are converted into inheritance relations with
compound terms. For example, an arbitrary relation R among three terms
A, B, and C is usually written as R(A,B,C), which can be equivalently
rewritten as one of the following inheritance statements (i.e., they have
the same meaning and truth value):

• (× A B C) → R, where the subject term is a compound (× A B C).
This statement says “The relation among A, B, C (in that order) is
a special case of the relation R.”

• A → (⊥ R � B C), where the predicate term is a compound (⊥ R �
B C) with a “wildcard”, �. This statement says “A is such an x that
satisfies R(x,B,C).”

• B → (⊥ R A � C). Similarly, “B is such an x that satisfies
R(A, x,C).”

• C → (⊥ R A B �). Again, “C is such an x that satisfies R(A,B, x).”

Higher-order term: In Narsese, a statement can be used as a term, and called
a “higher-order” term. For example, “Birds are animals” is represented by
statement “bird → animal”, and “People know that birds are animals” is
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represented by statement “(bird → animal)◦→(⊥ know people �)”, where
the subject term is a statement. Compound higher-order terms are also
defined: if A and B are higher-order terms, so do their negations (¬A and
¬B), disjunction (A ∨B), and conjunction (A ∧B).

Higher-order relation: Higher-order relations are the relations whose subject
term and predicate term are both higher-order terms. In Narsese, there
are two of them defined as logic constants:

• implication, “⇒”, which intuitively corresponds to “if-then”, and is
defined as isomorphic to inheritance, “→”;

• equivalence, “⇔”, which intuitively corresponds to “if-and-only-if”,
and is defined as isomorphic to similarity, “↔”.

For each type of the above terms/statements, its meaning/truth-value is de-
fined similarly to how we define meaning/truth-value for term/statement in in-
heritance relation. There are inference rules taking these statements as premises
or conclusions. Detailed discussion about them is beyond the scope of this pa-
per. They are mentioned here merely to show that Narsese does not only have
inheritance statements.

5 Generic sentences in NAL

Generic sentences are usually represented as inheritance statements in Narsese.
For example:

• “Birds are animals” can be represented as
“bird → animal”.

• “Birds fly” can be represented as
“bird → [fly]”.

• “Ravens are black birds” can be represented as
“raven → ([black] ∩ bird)”.

• “Crows are smaller than ravens” can be represented as
“crow → (⊥ smaller � raven)”.

In these sentences, the subjects are atomic Narsese terms, which can also be used
as predicates, like common nouns (see [Krifka, 1995] for a comparison between
Chinese and English common nouns). They can be seen as “kinds”, and are
“unbounded” [Cohen, 1999] — they can be applied to new situations.

If the subject is an extension set, the statement is no longer generic:

• “Mei Sheng is a giant panda” can be represented as
“{Mei-Sheng} → giant-panda”.

• “The giant panda is an endangered species” can be represented as
“{giant-panda} → ([endangered] ∩ species)”.
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The undesired conclusion “Mei Sheng is an endangered species” cannot be de-
rived from these two statements using the deduction rule of NAL, because the
predicate of the first sentence and the subject of the second sentence are not
the same term.

As mentioned previously, NAL uses a numerical representation of truth value
for internal representation. By default, the above sentences will be translated
to the above statements with truth value <1, 2/3>.

Represented in Narsese, the “Nixon Diamond” consists of the following judg-
ments:

(1) {Nixon} → Quaker <1, 2/3>

(2) Quaker → pacifist <1, 2/3>

(3) {Nixon} → Republican <1, 2/3>

(4) Republican → pacifist <0, 2/3>

From (1) and (2), by deduction, we get

(5) {Nixon} → pacifist <1, 4/9>

Similarly, from (3) and (4), by deduction, there is

(6) {Nixon} → pacifist <0, 4/9>

From the conflicting judgments (5) and (6), by revision, NAL gets

(7) {Nixon} → pacifist <1/2, 8/13>

Therefore, the given knowledge provides the same amounts of positive and
negative evidence to the conclusion, so to the question “Is Nixon a pacifist?”,
the system has no preference between a “Yes” answer and a “No” answer.

However, if the system has other related beliefs before getting the above
sentences, the situation will be different. If the system thinks that Nixon is more
typically a Republican than a Quaker, the final conclusion will have a frequency
less than 1/2. If the system knowns some Republicans that are pacifists, the
final conclusion will have a frequency more than 1/2. So in general, the result
will show the overall effect of the related factors.

The problem of Tweety has a similar structure: from “Tweety is a bird” and
“Birds fly”, “Tweety flies” is derived; from “Tweety is a penguin” and “Pen-
guins do not fly”, “Tweety cannot fly” is derived. However, here the situation
is different from the previous one, because we also assume the system knows
that “Penguins are birds”. Under the assumption that “Tweety is a bird” is
derived partially from it and “Tweety is a penguin”, the two conflicting con-
clusions are based on overlapping evidence, so cannot be summarized through
revision. Instead, the choice rule picks the more confident conclusion as the
answer. Since “Tweety” has more properties of “penguin” than of “bird”, we
can expect “Tweety cannot fly” to have a higher confidence.
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Furthermore, “Tweety”, being a bird that cannot fly, is recognized as a piece
of negative evidence for “Birds fly”, and as a result, the frequency of the latter
statement is decreased, though it is still much larger than 1/2. In this way, a
“default rule” will be weakened by counter examples, until the total amount
of negative evidence reaches the amount of positive evidence. After that, the
negation of the statement (such as “Birds cannot fly”) may become a rule, with
a truth value corresponding to the available evidence.

To generate generic sentences in the first place, in NAL there are several
possibilities. “Robins fly” can be derived from “Robins are birds” and “Birds
fly” by deduction; “Birds fly” can be derived from “Tweety is a bird” and
“Tweety flies” by induction; “Robins are birds” can be derived from “Birds
fly” and “Robins fly” by abduction. Induction and abduction usually produce
conclusions in pair, and each may have a different truth value. For example, the
above abduction also generate “Birds are robins”. Later, however, this sentence
will get more negative evidence than “Robins are birds”. Of course, all the
above derivations include truth value calculations. In general, from premises
with the same truth values, deductive conclusions have higher confidence than
inductive and abductive conclusions. Judgments with the same content can be
summarized through revision to get more confident conclusions.

What is the threshold of truth value for a judgment to be accepted as a
default rule? In NAL, there is such a line, and “acceptance” is a matter of
degree. All the judgments are evaluated according to available evidence, and
every of them may be involved in future inference processes, though some of
them may contribute more than the others to the final results.

6 Discussions

The above description shows that the major components of NAL are fundamen-
tally different from that of conventional reasoning systems. To discuss these
differences in detail is beyond the scope of this paper (such discussions can be
found in the previous publications on this research). In this paper, we only
address the aspects of NAL that are directly related to generic sentences and
default rules.

A key difference in representation between NAL and the previous approaches
on generic sentences and default rules [Carlson and Pelletier, 1995, Cohen, 1999,
Reiter, 1980, Davis and Morgenstern, 2004] is that NAL is a multi-valued logic,
where the truth value of each statement is a pair of real numbers. This rep-
resentation is based on the empiricist belief that knowledge is a summary of
experience. This is why general statements are valuable for an adaptive system,
even if there are counter-examples.

To indicate whether an observed relation can be generalized to similar sit-
uations, a measurement is necessary — the system needs to know how often a
given relation can be observed. Therefore, “normally” is closely relation to “usu-
ally”, and without a numerical measurement, it is difficult to decide whether a
statement is “usually true”.
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Though NAL uses numerical truth values internally, it allows binary sen-
tences in its input and output, as approximations of the internal beliefs. A
common criticism to the numerical approaches in reasoning is that “The infor-
mation necessary to assign numerical probabilities is not ordinarily available”
[McCarthy and Hayes, 1969]. In NAL, a rough mapping is used between the
numerical and verbal representation of truth value, because what is important
here is not the accuracy of the representation, but a representation supporting
the related inference. In everyday activities, even when we attach the same
word, such as “likely” to two sentences, we often still be able to say that one
is “more likely” than the other. This phenomenon hints that there are details
in internal representation (beliefs) that is lost in external representation (sen-
tences). Exactly where each word falls in the numerical range is not that crucial
— different people often have different habit in using these words, which is fine
as far as the usage is consistent, and not too far away from the convention of
the language community.

For a general-purpose system like NAL that is open to all possible new
evidences, a numerical measurement of uncertainty is necessary for the internal
representation of the system, not because it is accurate, but because it is uniform
and simple, especially because the system needs to have rules for induction,
abduction, and so on. In these types of inference, uncertainty emerges even if
all the premises are certain, and the amount of evidence is a dominant factor for
the processing of the uncertainty. For this reason, it is still desired to represent
uncertainty numerically in the internal representation, even if verbal labels of
uncertainty can be used in the interface language (as explained when discussing
the “frequency interval”) for the sake of simplicity and naturalness.

According to the experience-grounded semantics of NAL, the truth value of a
statement does not measure how close the statement is to the “state of affairs”,
but how close the statement is to the experience of the system. The truth value
of “Birds fly” is determined by how often the birds under consideration fly, as
far as the system remembers, not by a comprehensive statistics on the percent
of flying birds among all birds in the universe — for an adaptive system, an
objective statistics is not as relevant as its past experience. For someone lives
in an island with a black swan, the next swan to meet is more likely to be black,
though it is known that there are much more white swan in the world.

This semantics provides a justification for non-deductive inference rules (in-
duction, abduction, and so on) — these rules are “truth-preserving” in the sense
that the conclusion is supported by the evidence provided by the premises. As
a result, general conclusions can be generated through induction, as well as
through deduction and abduction, and be revised by new evidence. The pre-
vious conclusions about the invalidity of induction [Hume, 1748, Popper, 1959]
basically says that “objective truth” cannot be obtained from finite evidence,
but the problem disappears after we realize that for an adaptive system, “true”
in empirical knowledge can, and only can, be defined with respect to the past
experience.

The truth value measurement of NAL is intuitively related to probability
theory, but is not derived from it. This is the case because a direct application
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of probability theory assumes sufficient knowledge about the probability distri-
bution of related items [Wang, 2001, Wang, 2004], so is inconsistent with the
assumption of insufficient knowledge and resources.

Almost all of the previous works on generic sentences are based on first-order
predicate logic, which was developed originally for the formalizing of mathemat-
ical reasoning [Frege, 1970, Whitehead and Russell, 1910]. In mathematics, the
knowledge and resources of the system can be assumed to be sufficient (with
respect to the problems to be solved). However, this is not the case in empirical
reasoning. Since the “generic sentences” under discussion is mainly a issue in
empirical reasoning, it is improper to base the work on a mathematical logic or
its extensions.

The NAL approach for generic sentences is characterized by term-oriented
language, experience-grounded semantics, and syllogistic inference rules. This
logic is not designed specially for generic sentences, but for adaptive reasoning
under insufficient knowledge and resources. Nevertheless, generic sentences turn
out to be a topic handled well by the logic. This is not a surprise, if we see these
sentences as generalizations of experience. Under the restriction of knowledge
and resources, these generalizations cannot be perfect, but they are still valuable
for our life.
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