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Abstract

This paper introduces the various forms of analogy in NARS, a general-
purpose reasoning system. NARS is an AI system designed to be adaptive
and to work with insufficient knowledge and resources. In the system, mul-
tiple types of inference, including analogy, deduction, induction, abduction,
comparison, and revision, are unified both in syntax and in semantics. The
system can also carry out relational and structural analogy, in ways compa-
rable to (though different from) that in some other models of analogy, such
as Copycat and SME. The paper addresses several theoretical issues in the
study of analogy, including the specification and justification of analogy, the
context sensitivity of analogy, as well as the role analogy plays in intelligence
and cognition.

Key words: Non-Axiomatic Reasoning System (NARS), Artificial General
Intelligence (AGI), term logic, experience-grounded semantics, extended
syllogism

1. Introduction

Analogy has been extensively studied in Artificial Intelligence (AI) and
Cognitive Science (CogSci) (Evans, 1969; Falkenhainer et al., 1989; Gentner
et al., 2001; Hofstadter and FARG, 1995; Holyoak and Thagard, 1989; In-
durkhya, 1992), and it is seen by some researchers as playing a key role in
cognition (Hofstadter, 2001).

This paper introduces a novel treatment of analogy. What distinguishes
it from the other works is that according to this treatment, analogy is not
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a stand-alone cognitive process, but one aspect of a unified mechanism of
intelligence and cognition. Furthermore, though analogy has various forms,
they can be captured consistently in a formal model of intelligent reasoning.

This formal model has been implemented in an AI system called NARS.
The system is a research project aimed at a unified theory of intelligence
(Wang, 2006). Analogy plays an important role in the model, where it is
tightly coupled with other cognitive processes and mechanisms.

In the following, the paper is going to start with a brief introduction to
the relevant parts of NARS, then to describe how the system carries out
“analogy”, under various interpretations of the word, and finally, to discuss
several theoretical issues on analogy.

2. NARS Basic

NARS stands for “Non-Axiomatic Reasoning System”, and is an attempt
to provide a unified theory and model of intelligence. Therefore, it can be
referred to as an AGI (Artificial General Intelligence) project (Goertzel and
Pennachin, 2007).

There have been many publications on various aspects of this research
(most can be accessed via the author’s homepage), with Wang (2006) as the
most comprehensive description of the project. It is impossible to describe
the whole NARS system in this paper, so, instead, this section summarizes
the parts that are most relevant to analogy.

2.1. Theoretical foundation

NARS can process three types of tasks : (1) knowledge to be remem-
bered (also called judgment), (2) question to be answered, and (3) goal to
be achieved. The system processes each task according to its (available and
relevant) beliefs, that is, the remembered knowledge (judgments) which is
obtained from previous tasks. At the current stage, all input tasks of NARS
are provided directly by human users in a formal language (to be introduced
later), though in the future they may also come through a natural language
interface or a sensorimotor interface.

The system is a reasoning system, and like other automated reasoning
systems (Lenat, 1995; Nipkow et al., 2002; Robinson and Voronkov, 2001), it
represents knowledge in a formal language, depends on a semantic theory to
link the language to the outside environment, follows certain formal inference
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rules in each step, and has a memory structure and a control mechanism to
organize inference steps into an inference process for each task.

NARS is “intelligent”, in the sense that it is designed according to the
opinion that “intelligence” is the ability for a system to adapt to its envi-
ronment while working with insufficient knowledge and resources. It means
the system only has a constant processing capability, but has to be open to
novel tasks, and process them in real time. Under the restriction of available
knowledge and resources, the system must learn from its experience, and
make its best attempt to accomplish the tasks (Wang, 2007).

Designed under the assumption of adaptivity and knowledge-resources
insufficiency, the components of NARS (language, semantics, rules, memory,
and control) turn out to be fundamentally different from those in traditional
reasoning systems. NARS is not a theorem prover or only does deduction
in first-order predicate logic, and it does not use model-theoretic semantics,
neither. Based on available knowledge, the inference rule may produce in-
correct predictions. The system does not remember everything it is told or
has derived, or access whatever it does remember with the same easiness.
For a given task, the system’s processing does not follow a predetermined
algorithm, but is highly sensitive to its history and context. On the other
hand, it does not mean that the processing is random or arbitrary.

In the following, the major components of NARS are briefly introduced
one by one.

2.2. Representation language

The beliefs and tasks in NARS are expressed in a formal language, Nars-
ese, using terms and statements. A “term” is an internal identifier, which
can either be atomic (without inner structure) or compound (formed by an
operator from component terms). “Statement” is a special type of compound
term, which consists of an inheritance relation (or its variant) between two
terms, indicating their substitutability in inference process.

In Narsese, the inheritance relation is symbolized as “→”, and defined by
being reflexive and transitive in its idealized form. An inheritance statement
“S → P” consists of a subject term S and a predicate term P , linked together
by the inheritance relation. Intuitively, it states that “S is a specialization
of P , and P is a generalization of S”. Therefore, “Bird is a kind of animal”
can be represented in Narsese as statement “bird→ animal”.

Being transitive, inheritance is a special case of substitutability. If both
statements “S → M” and “M → P” are true, so is “S → P”. We can see
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the conclusion as obtained by substituting a term in a premise by another
term in the other premise, as far as the directions of the involved inheritance
relations are the same.

A variant of the inheritance relation, called similarity and symbolized
as “↔”, allows the two terms to substitute each other in any direction.
Therefore “S ↔ P” (and “P ↔ S”) means both “S → P” and “P → S”.

Assuming insufficient knowledge and resources, an actual belief in NARS
is never in the above idealized form, that is, being absolutely true. Rather,
it is only true to a degree. Concretely, the system’s belief on “Bird is a kind
of animal” is represented as a judgment “bird→ animal <f, c>”, that is, a
statement with truth-value.

A truth-value in NARS has two factors, a frequency factor and a confi-
dence factor. The frequency factor is a real number in [0, 1], defined as the
proportion of positive evidence among available evidence, that is, f = w+/w.
The confidence factor is a real number in (0, 1), defined as the proportion of
current available evidence among future available evidence, after the coming
of a unit amount of new evidence, that is, c = w/(w+1). For the current dis-
cussion, “evidence” can be understood intuitively, and its formal definition
and measurement (such as the above w+ and w) have been given in several
publications, such as Wang (2005, 2006).

In this way, Narsese gets an experience-grounded semantics (Wang, 2005).
According to this semantics, the truth-value of a statement is determined by
how much the statement is supported (or refuted) by the evidence collected
from the system’s experience, rather than by how well the statement corre-
sponds to a fact in the outside world; the meaning of a term is determined by
the role the term plays in the system’s experience (that is, how it is related
to other terms by the inheritance relation and its variants), rather than by
an entity in the outside world referred to by the term.

To express complicated content, a statement can have a compound term
as its subject or predicate. For example, “The Sun is larger than the Earth”
can be expressed in Narsese as statement “(×, Sun,Earth)→ larger”, where
the subject term is a compound “(×, Sun, Earth)”, a product of term Sun
and term Earth, representing the relation between the two terms. Therefore,
the statement literally states that “The relation from Sun to Earth is a special
case of the relation larger (than)”.

In Narsese, a question is a statement with a unknown truth-value. For
example, “(×, Sun, Earth)→ larger” is a question “Is the Sun larger than
the Earth?” A question can also include variable terms to be instantiated,
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like “(×, Sun,Earth)→ ?x”, a question asking for a term that best specifies
the relation from Sun to Earth, and “(×, ?x, Earth)→ larger”, a question
asking for something that is larger than Earth. An answer to a question
should be a matching belief, like “(×, Sun, Earth)→ larger <f, c>” for the
above three questions.

There are other types of compound terms in Narsese (such as sets, in-
tersections, differences, images, disjunctions, conjunctions, and negations),
and variants of inheritance (such as implication and equivalence, indicating
the substitutability between statements). For a complete specification of the
Narsese grammar, see Wang (2006).

2.3. Inference rules

As a reasoning system, NARS derives new tasks and beliefs from given
ones, according to its inference rules, which is built into the system, rather
than provided by the user (as the “rules” in production systems).

In NARS, a typical inference rule is given one task (which can be a judg-
ment, a question, or a goal) and one belief (a judgment) as premise, and
derives a task as conclusion. When the given task is a judgment, the rule
carries out forward inference, and the derived task is a judgment, and it will
also become a belief of the system; when the given task is a question (or
goal), the rule carries out backward inference, and the derived task is a ques-
tion (or goal), and its solution will contribute to the solution of the given
task, as far as the system knows.

Since in NARS forward inference and backward inference are closely re-
lated, in the following we will focus on the former. Such an inference rule R
has the form of

{St1 <t1>, St2 <t2>} ` St <t>

which takes two judgments as premises, and produces one judgment as con-
clusion, whose truth-value is a function of those of the premises, that is,
t = FR(t1, t2). Since each truth-value consists of a frequency factor and a
confidence factor, each “truth-value function” is actually a pair of equations
for the two factors respectively.

All the inference rules of NARS are designed and justified according to
the experience-grounded semantics, so FR calculates the evidence to the con-
clusion provided by the premises alone.

One important rule is the revision rule

{St <t1>, St <t2>} ` St <t>
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which is invoked when the two premises contains the same statement St,
but with truth-values t1 and t2 that come from different evidences. The
corresponding truth-value function Frev calculates t from t1 and t2, according
to the additivity of amount of evidence and the relationship between amount
of evidence and truth-value:

Frev : f = f1c1(1−c2)+f2c2(1−c1)
c1(1−c2)+c2(1−c1)

, c = c1(1−c2)+c2(1−c1)
c1(1−c2)+c2(1−c1)+(1−c1)(1−c2)

Intuitively, the frequency factor of the conclusion is a compromise of the
frequency factors of the premises (so it can be seen as conflict resolution),
and the confidence factor of the conclusion is higher than the confidence
factors of the premises (so it can be seen as evidence accumulation).

A major group of rules in NARS is the syllogistic rules, in each of which
the two premises share exactly one common term, and the conclusion is
about the other two terms. Considering all premise combinations involving
inheritance and similarity relations, the basic syllogistic rules are listed in
Table 1.

St1 <t1> M → P P →M M ↔ P
St2 <t2>

S → P <Fded> S → P <Fabd> S → P <F ′ana>
S →M P → S <Fexe> P → S <F ′abd>

S ↔ P <Fcom>
S → P <Find> S → P <Fexe>

M → S P → S <F ′ind> P → S <Fded> P → S <F ′ana>
S ↔ P <Fcom>
S → P <Fana>

S ↔M P → S <Fana>
S ↔ P <Fres>

Table 1: Basic Syllogistic Rules

In the table, different rules associate to different truth functions, which
are listed in Table 2, and function F ′R is obtained from FR by switching t1
and t2.

To discuss each rule and its truth-value function is beyond the scope of
this paper (and such discussions can be found in previous publications on
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Inference Type Function frequency confidence
deduction Fded f = f1f2 c = f1c1f2c2

abduction Fabd f = f2 c = f1c1c2
f1c1c2+1

induction Find f = f1 c = c1f2c2
c1f2c2+1

exemplification Fexe f = 1 c = f1c1f2c2
f1c1f2c2+1

comparison Fcom f = f1f2

f1+f2−f1f2
c = c1c2(f1+f2−f1f2)

c1c2(f1+f2−f1f2)+1

analogy Fana f = f1f2 c = c1f
2
2 c2

2

resemblance Fres f = f1f2 c = c1c2(f1 + f2 − f1f2)

Table 2: Truth Value Functions of the Syllogistic Rules

NARS), so only some of them (those directly related to various forms of
analogy) will be introduced in the next section. At here, it is enough to
notice that the seven truth-value functions associated with syllogistic rules
can be divided into two groups, with respect to the confidence factor of its
conclusion:

Strong Inference including deduction, analogy, and resemblance. The con-
clusions produced by these functions have 1.0 as the upper bound of
their confidence factors. If both premises are absolutely true (i.e., fre-
quency is 1, and confidence converges to 1), so is the conclusion. There-
fore, these rules have counterparts in binary logic, coming from the
transitivity of the inheritance and similarity relations in their idealized
form.

Weak Inference including abduction, induction, exemplification, and com-
parison. The conclusions produced by these functions have 0.5 as the
upper bound of their confidence factors. Even if both premises are
absolutely true, the conclusion is not. Therefore, these rules have no
counterpart in binary logic, and look like logical fallacy if the truth-
values are omitted.

There are other rules in NARS that handle structural inference of com-
pound terms, higher-order inference on implication and equivalence relations,
as well as matching beliefs to questions and goals. For more details on them,
see Wang (2006).
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2.4. Memory and control

Given the requirement in the inference rules that the premises used to-
gether in an inference step must have at least one shared term, it is natural
to cluster the beliefs and tasks in the system into “concepts”, according to
the terms in them. For example, the belief “bird → animal <f, c>” can be
accessed in concepts Cbird and Canimal (though not in concept CEarth), and
the question “(×, Sun, Earth) → ?x” can be accessed directly in concept
C(×,Sun,Earth), as well as indirectly in concepts CSun and CEarth, since they
correspond to the components of the compound.

In this way, a concept is labeled by a term, and contains tasks and beliefs
associated with that term. A concept is a unit both for storage and for
processing, since every inference step happens in some concept, and only uses
premises stored locally. Roughly speaking, the system’s memory contains a
collection of concepts, and each concept contains a collection of tasks and a
collection of beliefs. When the system gets an input task (from a human user
or another computer system), it will be sent to the directly related concepts,
which will process it, as well as send derived tasks to other concepts, which
will do the same, and also send their processing results back (as derived
tasks), which may contribute to the processing of the initial input tasks.

The major functions of the system are carried out by repeating the fol-
lowing working cycle:

1. Check the system-wide task buffer, and select new (input or derived)
tasks to add into the corresponding concepts. If a task is a judgment, it
is also added as a belief.

2. Select a concept from the memory, then select a task and a belief from
the concept.

3. Use the task and the belief as premise to produce derived tasks, accord-
ing to applicable rules.

4. Add the derived tasks into the task buffer, and send report to the envi-
ronment (user or other system) if the task provides a best-so-far answer
to an input question.

5. Return the belief, task, and concept back to memory.

All the “selections” in step (1) and (2) are probabilistic, in the sense that
all the items (tasks, beliefs, or concepts) within the scope of the selection
have priority values attached, and the probability for each of them to be
selected at the current moment is proportional to its priority value. When
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an new item is produced, its priority value is determined according to its
parent items, as well as the type of mechanism that produces it. At step (5),
the priority values of all the involved items are adjusted, according to the
immediate feedback collected during the current step.

The details of the priority functions are beyond the scope of this paper.
Here we only need to say that they are designed to give higher priority to more
important and relevant items, judged mainly according to the experience of
the system.

This picture also shows why it is said previously that the meaning of a
term is nothing but its relations with other terms, because all the information
associated with a term is in its corresponding concept, which contains tasks
and beliefs that relate the term to other terms. For this reason, we can
similarly talk about the meaning of a concept, which is just that of the
corresponding term.

With the inputting and deriving of new beliefs and tasks, as well as the
removing of old ones (“forgetting”), the meaning of a term in the system
changes from time to time, though not arbitrarily, but is accurately deter-
mined by the system’s communication and inference history.

Since at any moment the system typically has many tasks competing for
processor time, each of them usually does not have the chance to interact
with all the beliefs residing in the same concept, but only those that happen
to be selected during the processing of the task. Therefore, when a task
is processed within a concept, the concept is used with a partial meaning,
rather than with its full meaning. In some concepts, there are some stable
and consistent beliefs with high priority, so they are almost always invoked
whenever tasks are processed in the concept. We can say that these beliefs
consist of the “essence” of the concept. On the contrary, some concepts
lack such a stable core, and consequently their “current meaning” change
dramatically from time to time. Of course, the distinction between these two
types of concept is fuzzy and relative, but still, it will help us in the following
discussion.

3. Analogy in NARS

Though Wang (2006) provides much more details on the components and
aspects of NARS than the brief summary in the previous section, the book
does not address analogy as a separate topic, and that is what this paper
provides.
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Like most words in a natural language, the word “analogy” has been used
in many different, though related, senses. In this section, several major senses
of the word are identified, and, for each of them, more details are provided
to show how it shows up in NARS.

3.1. Simple analogy

First, in the previous section we have introduced the analogy rule in
NARS: if concepts S and M are similar to each other, then S can substitute
M in its inheritance relation with P . This rule indeed captures a special
case of what we usually call “analogy”, that is, “if two concepts are similar,
one can be used as the other”. In this paper, this form of analogy is called
“simple analogy”, since it is carried out as a single inference step.

This rule is applicable as far as the two premises contain exactly one
shared term, which is related to the other two terms by an inheritance relation
and a similarity relation, respectively. There is no additional requirement,
such as whether the terms are in the same “domain” or not, whatever that
means.

The truth-value function of the analogy rule is defined as

Fana : f = f1f2 , c = c1f
2
2 c2

2

where <f1, c1> is the truth-value of the inheritance premise, and <f2, c2> is
that of the similarity premise.

Instead of deriving this function from certain general principles step by
step (which can be found in Wang (2006)), in this paper we just list some
special cases and features of this function:

• When the similarity is so strong as to make the two terms identical
(i.e., f2 = 1 and c2 ≈ 1), the truth-value of the conclusion is very close
to that of the other premise — it is just like a substitution between
two identical concepts, or synonyms.

• When there is no similarity (i.e., f2 = 0), no conclusion can be derived
— c = 0 means “I don’t know”, no matter what value f has.

• In general, the confidence of the conclusion is more sensitive to the
truth-value of the similarity premise than to the other (inheritance) —
only strong similarity can lead to confident analogy.
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Obviously, though this analogy rule looks natural and general, it cannot
cover all forms of “analogy” in the previous research, which typically cor-
respond to problem-solving processes consisting of multiple steps. Even so,
these processes usually can be carried out in NARS, though not merely by the
analogy rule. Some of these cases are discussed in the following subsections.

3.2. Relational analogy

A common form of analogy has the form of a problem “A is to B as C is
to what?”. In Narsese, it is expressed as question “(×, A,B)↔ (×, C, ?x)”,
which, as explained in the previous section, asks the system to find a constant
term D to instantiate the variable term ?x, so that the relation between A and
B, (×, A,B), is similar to (or identical to, as an extreme case) the relation
between C and D, (×, C, D). Since here the similarity are not between
individual concepts, but between their relations, this type of analogy is called
“relational analogy” in this paper.

A well-known model of this type of analogy is Copycat (Hofstadter and
FARG, 1995), which is designed to work in the domain of letter strings, and
can solve problems like “If abc is changed to abd, how would ijk be changed
in the same way?”, where abc, abd, and ijk correspond to the A, B, and C
in the previous pattern of relational analogy, respectively.

To show how such a problem is solved in NARS, let us see the simplest
case of relational analogy in the domain of letter string, by asking the system
“(×, a, b)↔ (×, i, ?x)”, where letters a, b, and i correspond to the A, B, and
C in the general pattern, respectively.

What will be the solution of NARS to this problem? Well, it depends.
Since NARS is a general-purpose reasoning system, there is no built-in so-
lution to domain-specific problems. Instead, the solution depends on what
the system believes about the concepts involved. Therefore we can analyze
this problem-solving process under different assumptions about the system’s
beliefs.

Assuming the system knows the order of all letters in the alphabet, its
memory contains the following beliefs:

(1) (×, a, b)→ successor <1.00, 0.99>
(2) (×, i, j)→ successor <1.00, 0.99>

Here frequency 1.00 indicates that all the evidence is positive, and confidence
0.99 indicates that the system is quite sure about these beliefs.
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If the above two judgments happen to be selected as premises in an in-
ference step within concept Csuccessor, from Table 1 we can see that one of
the applicable rules is the comparison rule, and according to Table 2, the
conclusion is

(3) (×, a, b)↔ (×, i, j) <1.00, 0.49>

which provides an answer to question “(×, a, b)↔ (×, i, ?x)” when the vari-
able term ?x is unified with the constant term j.

What if the system has belief (1) but not (or fail to recall) belief (2)?
Then the answer may be different. Assuming the system takes the following
beliefs into consideration:

(4) (×, i, h)→ predecessor <1.00, 0.99>
(5) predecessor → neighbor <1.00, 0.99>
(6) successor → neighbor <1.00, 0.99>

Then, using the comparison rule, from (5) and (6) the system gets

(7) predecessor ↔ successor <1.00, 0.49>

that is, the predecessor relation and the successor relation are similar (to
some extent) because both specify a neighbor in the alphabet.

From (4) and (7), using the analogy rule, the system gets

(8) (×, i, h)→ successor <1.00, 0.24>

that is, the relation between i and h can be seen as successor, to certain
extent (see the low confidence).

Finally, from (1) and (8), using the comparison rule again, the system
gets a different answer to the question

(9) (×, a, b)↔ (×, i, h) <1.00, 0.19>

What if the system initially has all the beliefs (1,2,4,5,6)? In that case,
both (3) and (9) may be produced as candidate answers to the question.
Since (3) requests a single step while (9) needs three steps, we can expect
the former to be found first, but given the probabilistic premise-selection
mechanism, it is not guaranteed. Even so, when both of them are found, the
system will choose (3) as a better answer, since its confidence factor is higher.
It means if the system happens to find (9) first, it will be reported, but the
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system will change its mind, as well as its answer, if it finds (3) later. On
the other hand, if (3) is found first, there won’t be another answer reported,
even if the system finds (9) afterward.

Of course, to fully solve the problems addressed by Copycat will be much
more complicated than the previous examples, since the system needs to
handle concepts like “leftmost”, “opposite”, “successor group”, etc., as well
as the relationships among them. Furthermore, letter string abc can be
perceived either as compound term “(×, (×, a, b), c)” or “(×, a, (×, b, c))”,
so the number of candidate answers will be much larger. Even so, there
is no fundamental difficulty for NARS to handle these problems, given the
expressive power of Narsese and inferential power of the inference rules of
the system.

Between Copycat and NARS, there is a recognizable “meta-level simi-
larity” (or “family resemblance”, since the author is a former member of
Hofstadter’s research group). When facing a relational analogy problem of
the form “A is to B as C is to what?”, both systems usually try to perceive, or
categorize, the relation between A and B in such a general level that makes it
possible to find something with the same, or a similar, relation with C. When
there are multiple candidates, various factors will be taken into consideration
to evaluate the “strength” of the analogy. Of course, given the differences
between NARS and Copycat in technical details, they are not going to al-
ways provide the same results, though there will be a large overlap, given
their common understanding of analogy as “using one concept as another”.
(Wang and Hofstadter, 2006)

3.3. Structural analogy

Another influential model of analogy in cognitive science is the Structure-
Mapping Engine, SME. In this model, analogy is taken as “a mapping of
knowledge from one domain (the base) into another (the target) which con-
veys that a system of relations known to hold in the base also holds in the
target”, and “Objects are placed in correspondence by virtue of correspond-
ing roles in the common relational structure.” (Falkenhainer et al., 1989)

For example, SME can establish an analogy between the situations of
“water-flow” and “heat-flow”, by establishing a one-to-one mapping between
the objects in the two domains: “water” to “heat”, “pipe” to “bar”, “beaker”
to “coffee”, and “vial” to “ice cube”. (Falkenhainer et al., 1989)

In general, the analogy problem is formalized in SME as: given the sets
of items in the base and target domains B and T , respectively, as well as
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the within-domain relations among the items R, find a one-to-one mapping
between items in their subsets b and t that keeps the relations. After such a
structure alignment, other relations in the base domain can be mapped into
the target domain. Given its stress on “structure”, this type of analogy is
called “structural analogy” in this paper.

To solve this type of problem in NARS, the first observation is that a
“structure”, in the current sense, can be represented in Narsese as a multi-
component product, with the roles of the components implicitly indicated
by the order of the components in the product. Using the example from
Falkenhainer et al. (1989), the “simple-water-flow structure” can be repre-
sented in Narsese as (×, water, beaker, vial, pipe), and the “simple-heat-flow
structure” as (×, heat, coffee, ice-cube, bar).

Structure analogy between domain B and domain T can be expressed in
Narsese as finding similar products (×, b1, ..., bn)↔ (×, t1, ..., tn), with bi ∈ b
and ti ∈ t (i = 1, ..., n), that for a relation rj ∈ R, (×, bj1, ..., bjm) → rj if
and only if (×, tj1, ..., tjm)→ rj, where j1, ..., jm is a subsequence of 1, ..., n.

Again, let us use a simple example to show how NARS solves this type
of problem. Assume the base domain contains terms water, beaker, pipe,
and the target domain contains terms bar, coffee, heat. The system has the
following initial beliefs:

(1) (×, water, beaker)→ contained-in <1.00, 0.99>
(2) (×, water, pipe)→ flow-in <1.00, 0.99>
(3) (×, beaker, pipe)→ joined <1.00, 0.99>
(4) (×, heat, coffee)→ contained-in <1.00, 0.99>
(5) (×, heat, bar)→ flow-in <1.00, 0.99>

As in the previous example, products of the same relation will be judged
as similar by the comparison rule, so from (1) and (4), the system can derive

(6) (×, water, beaker)↔ (×, heat, coffee) <1.00, 0.49>

and in the same way, from (2) and (5)

(7) (×, water, pipe)↔ (×, heat, bar) <1.00, 0.49>

NARS has the following theorem (Wang, 2006):

((S1 ↔ P1) ∧ (S2 ↔ P2)) ≡ ((×, S1, S2)↔ (×, P1, P2))
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That is, two products are similar if and only if the corresponding components
are similar pairwisely.

As a special case, when the terms involved are products with common
components, the system can “concatenate” them into “structures”, that is,
products with more than two components:

(((×, S1, S2)↔ (×, P1, P2)) ∧ ((×, S1, S3)↔ (×, P1, P3)))
≡ ((×, S1, S2, S3)↔ (×, P1, P2, P3))

This theorem, when applied on (6) and (7), gives us a structural analogy

(8) (×, water, beaker, pipe)↔ (×, heat, coffee, bar) <1.00, 0.24>

The details about how to use NARS theorems in inference and how to calcu-
late the truth-values of compound statement (like conjunction) are explained
in Wang (2006).

In a similar way, more terms, like vial and ice-cube, can be added into
the structures.

The above theorem also means that similar products (structures) implies
similar sub-products (sub-structures), that is,

((×, S1, S2, S3)↔ (×, P1, P2, P3)) ⊃ ((×, S1, S2)↔ (×, P1, P2))

so from this theorem and (8), the system get

(9) (×, beaker, pipe)↔ (×, coffee, bar) <1.00, 0.24>

Finally, from (3) and (9), the analogy rule produces

(10) (×, coffee, bar)→ joined <1.00, 0.06>

From this simple example, we see that NARS can carry out structure
alignment by concatenating individual relations into longer ones, while keep-
ing the correspondence between their components. After such a mapping is
established, the additional relations in the base domain can be mapped into
hypotheses (that is, beliefs with low confidence) in the target domain.

As described previously, when there are different ways for NARS to collect
evidence for the same statement, the results will be combined using the
revision rule, and when there are competing answers to a question, the choice
is made mainly (though not completely) according to their confidence factors.
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Restricted by insufficient resources, when facing a SME-style analogy
problem, NARS will not try to exhaustively go through all possibilities. In-
stead, it will start from what it can find quickly, then build on it. Since
NARS does not follow a predetermined algorithm when building structural
analogy, its performance and efficiency cannot be directly compared to that
of SME.

Once again, we have not seen fundamental problems for NARS to solve
various types of structural analogy problems, even though many of them will
surely be much more complicated than the previous example. Since NARS
is very different from SME, for the same structural analogy problem, the two
models do not process it by following the same procedure, and they may
produce different results. Even so, some overlapping can still be expected.

3.4. General analogy

Finally, if we use the word “analogy” in its most general sense to mean
“using one concept as another”, we can even say that almost all inference in
NARS is analogy.

As said above, NARS uses a term-oriented language and an experience-
grounded semantics. Each belief in the system does not describe a “state
of affairs” in the outside world, but rather describes the form and extent to
which one term can be used as another (according to the system’s experience)
— this is how the inheritance relation and its variants (such as the similarity
relation) are defined.

During the inference processes of NARS, the inference rules deal with
this can-be-used-as relation: the revision rule pools evidence from different
sources together, and the syllogistic rules extend the relations further to
the previously unrelated terms, based on the transitivity in different rela-
tion types and directions. For example, in the similarity relation, the two
directions have the same transitivity, while in the inheritance relation the
transitivity is much “stronger” in one direction than in the other, though in
the latter case it still exists.

In this general sense, “analogy” in NARS becomes the synonym of “rea-
soning”, “inference”, or even “thinking”, so it is indeed “the core of cogni-
tion” (Hofstadter, 2001). We can see cognition, or intelligence, as the mech-
anism by which a system uses its past experience to deal with the current
and to prepare for the future, by perceiving a novel situation as similar to
a past situation. In this sense, analogy covers almost everything in AI and
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CogSci, and NARS shows that such a process can be formally specified and
computationally implemented.

4. Issues in Analogy

This section discusses several theoretical issues in analogy, as well as their
treatments in NARS.

4.1. Working definition

As we have seen so far, the word “analogy” has different interpretations
in AI and CogSci. Even in NARS, the word can be used to describe several
different, though related, processes.

Since a word in a natural language often has multiple senses, to argue
which sense is the “true meaning” of the word does not make too much
sense. However, as far as we limit the discussion to a concrete situation, it
is still better to use a word with a relatively clear and consistent meaning,
chosen according to the requirement of that situation.

This is specially desired when designing a formal or computational model
for certain notions, there we usually need to choose a “working definition”
for each notion to be captured in the model. For this kind of usage, it is a
bad idea to allow the same word to be used with different meanings. On the
other hand, given the difference in research focus, it is normal for the same
word to have different working definitions in different research projects.

In the technical descriptions of NARS, “analogy” has been used to mean
“simple analogy”, which refers to the inference rule defined previously. As
shown in Table 1, in NARS different types of inference, including “revi-
sion”, “deduction”, “induction”, “abduction”, and “analogy”, are defined
in a purely formal way, that is, by the type of the relations and the posi-
tion of the shared term in the premises. This treatment has the advantage
of simplicity and clarity, while still keeping the intuitive sense of the cog-
nitive functions that are usually associated with these notions: “revision”
with “belief change”, “deduction” with “demonstration”, “induction” with
“generalization”, “abduction” with “explanation”, and “analogy” with “sub-
stitution”.

In NARS, the types of inference are not defined by their cognitive func-
tions, because in the system such a function usually can be carried out in
different ways, depending on the available knowledge and resources. For ex-
ample, previously we have shown that a question “(×, A,B) ↔ (×, C, ?x)”
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can be answered by following different inference paths and using different
rules. To collectively call them “analogy” provides little help in understand-
ing the process. Similarly, even though in the broad sense almost all inference
in NARS can be considered as “analogy”, to use the word in this way when
talking about the details of the system is not a good idea — it is not really
wrong, but not very informative.

For similar reasons, in NARS analogy is not defined as “structure map-
ping” (though it can be done), or being “cross domain” (though it often does)
— there is no logical difference between “intra-domain” and “cross-domain”
analogy in NARS.

The “simple analogy” process is obviously less complicated than the other
forms of analogy in NARS, but it does not mean that it is necessarily less
useful than the others, or that it does not qualified to be called “analogy”.
Since NARS can also cover the other forms, the decision of using “analogy”
to name an inference rule does not restrict the system’s capability in any
manner, though it may initially cause some confusion among the readers
who are used to a different usage of the word.

Please note that the claim “NARS can do analogy” is different from the
claim “NARS can do analogy exactly like a human”. Though it is possible
for NARS to establish a similarity relation between concepts “water-flow”
and “heat-flow” in the system, it does not mean that the system has built an
analogy between these two English phrases as in the mind of a typical native
speaker of the language. In a typical human mind and in a typical computer
system, these two phrases have different associations, and therefore different
meanings. However, these meanings have overlap, and the mechanism of
similarity evaluation can be explained by the same principle. It is in this
sense that an AI system like NARS can be said to be “making analogy”.

4.2. Validity

NARS differs from the previous works on analogy in that it is a reasoning
system following a logic.

It is well known that, though analogy plays an important role in providing
novel ideas, the conclusions are not always reliable — actually analogy often
produce wrong conclusions. Concepts C1 and C2 share many properties
and relations does not mean that they share all properties and relations,
otherwise they are not merely similar, but identical, and the inference from
one to the other is not analogy, but deduction in the classical sense.
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This situation is recognized by the researchers in the field, who therefore
refer to the results of analogy as hypotheses, conjectures, or tentative con-
clusions, such as saying “Each candidate inference must be interpreted as a
surmise, rather than a logically valid conclusion.” (Falkenhainer et al., 1989)

If a conclusion derived by analogy could turn out to be wrong, in what
sense it is still a reasonable conclusion? What makes us prefer analogy over
arbitrary guess?

The common answer is “Analogy plays an important role in human cog-
nition”, which is of course justifiable. However, such an answer is not enough
for a system like NARS, which is designed to be a normative model of in-
telligence in general, not a descriptive model of human intelligence. For this
reason, analogy, as well as the other types of inference, must be justified in
NARS as being “logically valid”, rather than “psychologically real”.

How is that possible, after we admit that analogy often produces wrong
conclusions? The key here is to understand that there are different types of
“logic” with different criteria for validity.

In its general and original sense, “logic” is the study of the principles
of valid inference, where “valid” means justifiable according to certain cri-
teria. In the last century, mathematical logic has achieved great success in
formalizing valid inference in demonstrating conclusions in mathematics, to
the extent that many people now implicitly take “logic” as a synonym of
“mathematical logic”. However, it is not hard to see that what is consider
as “valid inference” in demonstrating mathematical conclusions is of a very
special nature, and cannot be applied to inference in other domains.

NARS is designed to adapt to its environment while working with insuffi-
cient knowledge and resources, which means it is impossible to guarantee its
conclusions to be confirmed by its future experience. However, it does not
mean “validity” cannot be defined in this situation. On the contrary, it sug-
gests that in an adaptive system validity can only be based on the system’s
past experience, not its future experience. Though in principle the future will
always be different from the past, there is no way for a system to do better
than to adapt according to the past, with the hope that the environment is
at least relatively stable, so the future will not be completely different from
the past.

In NARS, the justification for the validity of analogy, like that of the
other types of inference, is provided by its experience-grounded semantics
(Wang, 2005). As explained previously, in NARS truth-value is defined with
respect to the evidence collected in the (past) experience of the system. Using
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it, the system can distinguish “full” analogies from “partial” analogies (by
the frequency factor), as well as “strong” analogies from “weak” analogies
(by the confidence factor). Though its analogical conclusions may turn out
to be wrong, this function still helps the system in adaptation, therefore is
justifiable in principle.

Since the human mind is evolved as an adaptive system, and it often has
to work with insufficient knowledge and resources (Medin and Ross, 1992), it
is not a coincidence if NARS seems similar to the human mind here or there.
Especially, NARS can explain, justify, and reproduce certain well-known dis-
crepancy between human behavior and traditional models of reasoning, like
mathematical logic (Wang, 2001) and probability theory (Wang, 1996). Even
so, the design of NARS is not directly guided, or justified, by psychological
observations (“the human way”), but by more general principles (“the right
way”) — the two are not the same, though often similar to each other.

4.3. Selectivity

One aspect that makes analogy more tricky than the other types of in-
ference is the selection of premises. When two concepts (including relations
and structures) are compared, the resulting similarity largely depends on the
features being compared. For some other inference, like induction, the usual
preference is to consider as much evidence as possible, but many meaningful
analogies can be obtained only by deliberately exclude some features as irrel-
evant. What makes the situation even more complicated is that the standard
of relevance seems to be hard to specify, since what in one case is considered
as relevant will become irrelevant in the next case, even in the same concept.

This is also what makes metaphor, a topic closely related to analogy,
difficult to analyze. It has been revealed in the study that when a concept is
used metaphorically, only part, but not all, of its properties and attributes
are involved (Lakoff and Johnson, 1980).

As a general-purpose reasoning system working with insufficient knowl-
edge and resources, NARS can neither limit itself to a predetermined mi-
crodomain, nor ask the user to only feed it with knowledge that is rele-
vant to an analogy to be made. Instead, the system depends on a domain-
independent memory and control mechanism to select the beliefs to be used.

As described previously, when the system is given a problem to solve (a
new task), it does not first decide which type of inference to use. Instead,
the task is added into the memory to interact with the available beliefs in
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the involved concepts. When the task and a belief are both selected (prob-
abilistically), their formal features (the type of relation, the position of the
shared term, etc.) decide the applicable rules. In this way, the system does
not deliberately select relevant information for an analogy. Rather, it makes
analogy that happens to be recognized at the moment.

Furthermore, not all the conclusions (analogical or not) are useful. Ac-
tually, most of them are not, and will be forgot soon by the system. An
analogical conclusion must show some desired properties (such as suggesting
a new answer to a question) to be kept. Therefore, NARS does not know
how to only make good analogies. It makes all kinds of them, though only
the good ones will be remembered for long.

This does not mean the system will blindly try all possibilities, of course.
As described previously, there are priority distributions maintained among
items competing resources of the system, and the more useful and relevant
items will get more resources in the long run, even though there is no way
for the system to always make the optimal decision, judged in hindsight.

One nature of this memory and control mechanism is that the meaning
of a concept in the system is highly context-sensitive. Here “context” is the
internal situation of the system at the moment, which changes constantly,
due to the system’s external interaction with the environment, as well as its
internal inference activity. For a given concept, what the system believes
about it, and which of the beliefs happen to be recalled, decide what kind
of analogy the system is going to make on it. The analogical conclusions,
when adding into the concepts, will more or less change the meaning of the
concepts, and therefore they will influence what the system is going to do
next.

4.4. Integrity

Another major feature that distinguishes NARS from other models of
analogy is: though analogy plays an important role in NARS, it is not ev-
erything the system does (unless the notion is used in a very broad sense).
As shown in Table 1, analogy is defined as one of the syllogistic rules, and it
is used together with the others in solving problems. Except in trivial cases,
a problem-solving process in NARS consists of multiple inference steps, with
several types of inference interwoven. When the analogy rule is used in such
a process, very often its promises are produced by other types of inference,
and its conclusions will be used by other rules. The system rarely solves a
problem using the analogy rule alone.
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Furthermore, the selection of inference rule in the working cycle is “data
driven”, in the sense that it is the tasks and beliefs that happen to be recalled
by the system at the moment that decide which rules are applicable at that
step. When a user assigns a problem to NARS, she is like saying “Solve
this in whatever way you can found”, but not “Solve this using analogy”,
or “Solve this by induction, then analogy, finally deduction”. Of course, the
user can carefully prepare the input in such a way that the system can only
find one possible way to solve it, but that will be exceptional, rather than
the normal situation.

When talking about “relational analogy” and “structural analogy”, we
see that in NARS there may be other types of inference involved. Therefore,
except at the level of a single inference step, “analogy” in NARS is not an
inference process separable from the other inference processes.

Similarly, even if the system accomplishes something we call “analogy”, it
is often a by-product of many internal activities. The system may happen to
notice the structural similarity between an atom and a planet system while
working on another task, though not under the explicit instruction to look
for such an analogy.

An interesting analogy in AI and CogSci is among the opposition between
rule-based and case-based expert systems, between prototype and exemplar
categorization models, as well as between neural networks making predictions
based on the statistics of all data points and those only considering the
nearest neighbors. At a general level, the question is the same: when we use
past knowledge to solve new problems, should the knowledge be generalized
first, or should it be directly transferred from old instances to new ones? It
should not be a surprise if both sides can provide supporting evidence for
their position, because we do, and should, use both methods. In a system
like NARS, where multiple types of inference are consistently and uniformly
implemented, this opposition does not exist anymore, since the system can
simply use whatever information available with whatever methods applicable,
given the current situation.

Some researchers argue that the analogy process (in the sense of “re-
lational analogy” and “structure analogy”) and the “high-level perception”
process cannot be separated from each other, since the meaning of concept
change during the establishing of a complicated analogy (Chalmers et al.,
1992). NARS does not only treat the two processes as one, but also goes
even further by treating other cognitive faculties as reasoning, such as learn-
ing (Wang, 2000) and categorizing (Wang and Hofstadter, 2006). In NARS,
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words like “reasoning” and “learning” (or “analogy” and “high-level percep-
tion”) are usually just different descriptions of the same underlying process
and mechanism — when we call it “reasoning”, we focus on the relationship
between the premises and the conclusions in the steps; when we call it “learn-
ing”, we focus on the long-term effect of the process on the whole system.
In the same way, when a process is considered as “analogy”, the focus is on
how the concepts correspond to each other; when the process is considered as
“high-level perception”, the focus is on how the boundary of certain concept
is checked and adjusted. Wherever the focus is, the system cannot have one
functionality without the others. Furthermore, the practice of NARS shows
that the ideas like “fluid concepts” and “creative analogies” do not necessar-
ily conflict with other desired features, such as the ones suggested in Forbus
et al. (1998): memory, learning, and domain independence .

NARS can uniformly carry out multiple cognitive functions in a domain-
independent manner, mainly because it is designed in the framework of rea-
soning system, where each inference step must follow a simple and rigid rule
that is justified in isolation, while these steps can be linked together in run-
time to form various inference processes, which can be very complex and
flexible (Wang, 2006). This approach produces systems with higher adaptiv-
ity and generality than those following predetermined algorithms from input
to output, though the latter are usually more efficient and reliable in solving
problems in limited domains.

Even though general-purpose and domain-independent models are intu-
itively attractive, AI and CogSci are still dominated by special-purpose and
domain-specific research, partly because of the belief that to study a com-
plex phenomena like intelligence and cognition, we have to follow a reduc-
tionist approach. Literally speaking, this conclusion is correct, but it often
obscures the fundamental difference between general-purpose systems and
special-purpose systems, as well as between domain-independent systems and
domain-dependent systems, because the former cannot be achieved by adding
many the latter together, and the former can be solved using a reductionist
method without changing its nature, as far as the reduction is done in proper
places.

To study analogy together with other cognitive processes gives the re-
search a different perspective. For this reason, NARS provides an interesting
model for analogy, though it does not necessarily mean that it works better
than models like Copycat and SME in their own domains.
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5. Summary

NARS is designed to be a general-purpose and domain-independent intel-
ligent system. Theoretically, it is special because the system is designed to be
adaptive and to work with insufficient knowledge and resources. Technically,
it is special because it uses a term-oriented formal language, an experience-
grounded semantics, a set of rules unifying many types of inference, a dy-
namic memory structure allowing fluid concept, and a control mechanism
supporting real-time resource allocation.

In NARS, there are several processes that are related to what people call
“analogy”:

Single step inference. There is an analogy rule that is designed and used
consistently with rules for other types of inference.

Multi-step inference. The problems studied in existing “analogy” models,
like Copycat and SME, can be solved in NARS as multi-step inference
processes, typically with more than one type of rule involved.

Inference in general. The inference process in NARS can be considered as
“analogy” in the sense that it is always about how to use one concept
as another, though there are various concrete cases included.

As far as analogy is concerned, NARS has the following major differences
from the other existing models:

• As a normative model of intelligence, in NARS all forms of analogy are
carried out by a formal logic, and justified according to the principle
of adaptation;

• As a domain-independent model of general intelligence, in NARS anal-
ogy is closely coupled with the other types of inference, as well as other
cognitive processes.

Analogy indeed plays an important role in intelligence and cognition.
Therefore, even though there have been many interesting works in this field,
we still need to keep an open mind on how analogy should be perceived and
modeled, given that we may have only explored a small part of the territory.
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