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Abstract. This paper reports the preliminary experiments in a general-
purpose reasoning system to carry out natural language comprehension
and production using a reasoning-learning mechanism designed to realize
general intelligence.

1 Introduction

This paper describes a new approach for Natural Language Processing (NLP)
in a system aimed at the realization of Artificial General Intelligence (AGI).

In the past decades there are two major approaches in NLP:

– The symbolic approach, which treats a natural language as a formal language
defined by a formal grammar [1].

– The statistical approach, which treats a natural language as a stochastic
process governed by hidden probabilistic distributions [2].

Though both approaches have made progress and produce valuable theoretical
and practical results, they are still far away from their goal. A major problem in
them is to treat language in isolation, without considering much of its relations
with other cognitive processes, such as reasoning, learning, categorization, etc.

The new approach to be introduced in this paper is based on two recent
movements in the related fields: cognitive linguistics and AGI.

Cognitive linguistics differs from the traditional (computational or statistical)
linguistics in its following hypotheses [3]:

– language is not an autonomous cognitive faculty,
– grammar is conceptualization,
– knowledge of language emerge from language use.

AGI differs from the mainstream AI in its stress on the general-purpose
nature of intelligence, as well as the holistic or integrative approaches to achieve
intelligence [4, 5].

In the following, I will explain how to introduce NLP capability into NARS,
which is an AGI project developed in the framework of a reasoning system [6, 7].
NARS is based on the theory that intelligence is the ability for a system to adapt
to its environment while working with insufficient knowledge and resources. It
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means that the system depends on finite capacity in information processing,
works in real time, and is open to novel tasks and knowledge. Because of this
assumption, NARS is very different from the traditional reasoning systems in
several major design issues. Given the length restriction, it is impossible to de-
scribe all aspects of NARS in this paper. In the following, only the parts of the
system that are directly related to NLP are described. For the other aspects of
the project, see [6, 7] and other publications, many of which are available at the
author’s website. NARS is an open source project, with online demonstrations.

The basic ideas of NLP in NARS can be summarized as the following:

– To represent linguistic knowledge in the same form as other types of knowl-
edge, with various levels of abstraction, so that lexical and grammatical
knowledge are unified, and directly associated with semantic knowledge.

– To obtain linguistic knowledge from multiple forms of inference, including
deduction, induction, abduction, and revision, so it can be derived from the
system’s experience in language usage.

– To use linguistic knowledge selectively in NLP tasks, according to their
records in usefulness and relevance to the current context, so as to capture
the fluid nature of meaning.

– To carry out NLP tasks as other cognitive tasks, using the same domain-
independent reasoning-learning mechanism, so as to integrate NLP into a
model of general intelligence.

2 Knowledge representation

NARS uses a formal language for both internal representation and external com-
munication, which is dubbed Narsese. One of its special property is that it is
a term-oriented language, and belongs to the “term logic” school, rather than
the “predicate logic” school [6]. The basic component of Narsese is a term, an
identifier that names a concept, which is a recognizable entity in the system’s
(internal and external) experience. An atomic term is just a sequence of charac-
ters from an alphabet. A Narsese statement relates a few terms to each other,
and its basic form is an inheritance statement “S → P”, where ‘S’ is the subject
term, ‘P ’ the predicate term, and ‘→’ the inheritance copula, which is a reflex-
ive and transitive relation between two terms. The statement says that S is a
specialization of P , and P is a generalization of S. For example, “A robin is a
bird” can be represented as “robin→ bird” in Narsese. A variant of inheritance
is the similarity copula, ‘↔’, which is reflexive, transitive, and symmetric. For
example, “A boat is just like a ship” can be represented as “boat↔ ship”.

To express complicated content in a term-oriented language, Narsese utilizes
compound term of various types, each of which is formed from some component
terms by a term connector that serves a logical function. They include:

Sets. A term can be a set formed by given instances or properties. For exam-
ple, {Pacific, Atlantic, Indian,Antarctic, Arctic} is an extensional set that
can be used in statement “{Pacific, Atlantic, Indian,Antarctic, Arctic} ↔
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ocean” to enumerate the oceans; [red, round] is an intensional set that can
be used in “apple→ [red, round]” to say “Apples are red and round”.

Intersections and differences. A compound term can be specified using the
instances (or properties) of existing terms. For example, (bird ∩ [black]) is
an extensional intersection representing “black bird”, while (bird − [black])
is an extensional difference representing “non-black bird”.

Products and images. Non-copula relations can be expressed by inheritance
statements. For example, “Cats eat fish” can be equivalently represented as
inheritance statements “(cat× fish)→ food”, “cat→ (food / , fish)”, and
“fish→ (food /cat, )”. Here (cat×fish) is a product that represents the re-
lation between “cat” and “fish”, (food / , fish) is an extensional image that
represents “things that take fish as food”, and (food /cat, ) is an extensional
image that represents “things that cats take as food”.

Narsese allows a statement to be used as a compound term to form a “higher-
order” statement. For instance, “John knows that the Earth is round” can be
represented as “{John× ({Earth} → [round])} → know”, where know is a re-
lation between a cognitive system John and a statement “{Earth} → [round]”.
Similar to the treatment in propositional logic, compound statements can be
composed from simpler statements, using statement connectors conjunction (∧),
disjunction (∨), and negation (¬). Furthermore, two “higher-order” copulas are
defined between statements: the implication copula, ‘⇒’, intuitively stands for
“if-then”, and the equivalence copula, ‘⇔’, for “if-and-only-if”, though they are
not defined exactly as in propositional logic [7].

Furthermore, a Narsese term can also represent a variable that can be instan-
tiated by another term, an event that is a relation with a temporal duration,
and an operation that can be executed by the system itself. The definitions and
treatments of these terms are described in [7], and some of the ideas come from
logic programming [8].

Since NARS is based on the assumption of insufficient knowledge and re-
sources, in it the semantic notions “meaning” and “truth-value” are specified
according to an “experience-grounded semantics” [6, 7]. The meaning of a term
is defined by its role in the system’s experience. The truth-value of a statement
is the evidential support the statement gets from the experience, and is written
as 〈f, c〉, with two factors: a frequency value in [0, 1] indicating the proportion
of positive evidence among all available evidence at the current time, and a con-
fidence value in (0, 1) indicating the proportion of current evidence among all
evidence available at a “time horizon”, after the coming of a constant amount
of future evidence.

3 Inference rules

As a term logic, NARS depends on syllogistic rules. Such a rule takes two
premises (which contain a common term) to derive a conclusion (which is be-
tween the other two terms). When the copula involved is inheritance, there are
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three basic syllogistic inference rules:

deduction abduction induction
first premise M → P P →M M → P

second premise S →M S →M M → S
conclusion S → P S → P S → P

These rules are named using the terminology introduced by Peirce [9], though
the exact definitions of the rules in NARS are not the same as his. In NARS,
the deduction rule extends the transitivity of the inheritance copula from binary
to many-valued, while the induction rule and the abduction rule can be seen
as “reversed deduction”, obtained from the deduction rule by exchanging the
conclusion with a premise, then renaming the terms.

Each inference rule has an associated truth-function to calculate the truth-
value of the conclusion from the truth-values of the premises. For the current
discussion, it is enough to know that the deduction rule is strong, as the con-
fidence value of its conclusion is relatively high (it can approach 1), while the
other two rules are weak, as they only produce conclusions with low confidence
values (less than 0.5). If the truth-values are omitted and the rule is applied
among binary statements, the strong rules are still valid, but not the weak rules.

When the conclusions about the same statement are derived from different
evidential basis, NARS uses a revision rule to calculate the amount of the accu-
mulated evidence and the corresponding truth-value. This mechanism allows the
weak beliefs to become stronger, as well as balances conflicting evidence. NARS
can handle inconsistent beliefs, and that is a major advantage it has over ap-
proaches based on probabilistic approach [10], since to maintain the consistency
(either in the logical sense or in the probabilistic sense) among the beliefs of an
AGI system is not feasible (due to its resource demand), no matter how much it
is desired. The consideration on scalability is a major reason for NARS to use
local inference rules to handle uncertainty, rather than the global rules required
by probability theory, such as Bayesian conditioning.

When the inheritance copula ‘→’ in the above rules is replaced by the im-
plication copula ‘⇒’, the inference rules remain valid in NARS. This group of
rules is isomorphic to the previous group, in the sense that the truth-functions
are the same, though the meaning of the sentences is different, due to the use of
different copulas. When one term is taken to mean “something that the system
knows” and is implicitly represented, a third group of rules can be obtained:

deduction abduction induction
first premise S ⇒ P P ⇒ S P

second premise S S S
conclusion P P S ⇒ P

This last group is closer to how these three types of inference are specified in
the current AI research, in the framework of propositional logic [11, 12]. The
above syllogistic rules show a common principle: in its conclusion, each rule
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summarizes the evidence provided by the premises, and the conclusion usually
contains compound terms that are not in the premises.

Beside the above rules, there are other inference rules in NARS for the other
copulas or term connectors, as well as rules for variable treatment (unification,
introduction, and elimination), plus temporal and procedural inference [6, 7].

4 Memory and control

In NARS, a concept Ct is an object uniquely named by a term t and contains
all the available sentences that have t as a component. For example, sentence
“robin→ bird” is stored and processed in concepts Crobin and Cbird.

A Narseses sentence expresses a conceptual relation. There are two types
of sentences in the system: a belief is a statement with a truth-value, which
summarizes the system’s experience on a conceptual relation; a task is a sentence
to be processed, which can be a piece of new knowledge to be absorbed, a question
to be answered, or a goal to be achieved by executing some operations.

The meaning of a concept is defined by its experienced relationship with other
concepts. For example, the meaning of Cbird at a certain moment is determined
by what the system knows and is thinking about the term bird. Restricted by
insufficient resources, NARS cannot take all existing beliefs into account when
processing every task, but has to use them selectively. Therefore, the current
meaning of a concept is determined by a subset of the tasks and beliefs existing
in the system that form the full meaning of the concept.

NARS can obtain new concepts either from its experience or from its reason-
ing activity. The initial meaning of a concept is usually simple, though it may
become complicated as the system gets more related experience. In particular,
the meaning of a composed concept may gradually become different from its
initial meaning, which is directly formed from the meaning of its components.

As a reasoning system, the running of NARS consists of repeated working
cycles. In each cycle, the system mainly works on a selected concept. With two
statements containing that term as premises, the applicable rules are invoked
to derive one or multiple conclusions. Derived conclusions are added into the
memory as new tasks. When a new task corresponds to an existing concept or
belief, it will be merged into it, so as to contribute to its meaning and/or truth-
value, otherwise it will create a novel concept or belief in the system. In general,
all compound terms (including statements) defined in Narsese can be generated
by the system itself, usually in more than one way. Therefore, even if there is no
input during this cycle, the system’s reasoning activity still changes the content
of the memory, as well as change the meaning of some terms and the truth-value
of some statements.

Working in an experience-driven manner, the inference steps to be carried
out in every moment is fully determined by the two selected premises in the
selected concept. Since NARS is assumed to have insufficient processing time,
it cannot fully process every task. Instead, the system dynamically allocates its
resources among the tasks, according to their relative urgency and importance
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to the system. While processing a task, the system cannot consider all related
beliefs, neither. Similarly, it gives the more useful and relevant beliefs higher
chance to be applied.

To implement the above control strategy, the system maintains a priority
distribution among the concepts in its memory, as well as among the tasks
and beliefs in each concept. In each cycle, a concept is selected probabilistically
according to the priority distribution among the competitors, and then a task
and a belief are selected in the concept in the same way. The priority distributions
are adjusted according to the immediate feedback collected after each inference
step, so as to achieve a high overall efficiency in task processing.

In general, the priority of a data item (a concept, a task, or a belief) depends
on three major factors:

its intrinsic quality, such as the clarity and simplicity of a concept, or the
confidence of a judgment in a task or belief;

its performance history, that is, whether the item has been useful to the
system in the past;

its immediate relevance, that is, whether it is directly related to the current
situation, as reflected in the existing tasks.

In this article, it is neither possible nor necessary to describe the details of the
measurements involved in the above factors. It suffices to know that the system
selectively uses its beliefs to process its tasks.

Since NARS is designed to depend on a constant amount of storage space,
the number of concepts and the number of tasks and beliefs within each concept
have upper bounds. When the memory (or a concept) is full, the concept (or
task/belief) with the lowest priority value is removed. This policy and the decay
that happens to all priority values form a forgetting mechanism. The system not
only constantly gets new tasks, beliefs, and concepts from the environment and
the reasoning process, but also loses some old ones from time to time.

In a “life-cycle” of the system, by default the system’s memory starts empty,
though for practical applications it may start with preloaded content. During a
life-cycle, the content of the memory changes constantly, as the result of new
experience and reasoning activity, and the internal states of the system never
repeat. Therefore, if a task is given to the system at different moments of a
life-cycle, it may be treated more or less differently.

5 NLP as reasoning

NARS has been formally specified and partially implemented [7]. Recently, some
preliminary experiments have been carried out to add NLP capability into the
system, which is what this paper reports.

The basic idea behind this attempt is that natural language processing uses
similar mechanism as other cognitive activities. Concretely, the innate represen-
tation and processing capacity is roughly the reasoning-learning-categorization
model specified in NARS. On the other hand, the language-specific knowledge
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is mostly learned from experience, rather than built into the system. Therefore,
what is needed for NARS to do NLP is to feed properly prepared knowledge
into the system, then to guide the system to carry out language processing
tasks. Where and how to get the linguistic knowledge is a separate topic that
will not be discussed here.

Since in NARS every “object of thought” is represented by a term in Narsese
and corresponds to a concept in the memory of NARS, the same is true for all
linguistic entities, such as words, phrases, and sentences (as well as other things
like phonemes, letters, characters, morphemes, etc., which will be addressed in
future research, not here).

For example, the English word “cat” will be represented in Narsese by term
cat, and correspond to a concept Ccat in NARS. Here bold font is used to
distinguish them from term cat and concept Ccat, since the latter are not directly
bounded to any natural language. English words are used for terms and concepts
in NARS to make the description easily comprehensible, though in principle cat
and Ccat could be renamed T3721 and CT3721, respectively, since their meaning
are determined completely by their relations with other terms and concepts,
rather than by the identifiers they have in NARS.

Like other terms, the meaning of a term like cat is determined by its relations
with other terms that have been experienced by the system. As far as the current
project is concerned, there are two major types of relation:

Syntactic, where the basic form represents the observed compositional relation
between word “cat” and sentence “Cats eat fish”. In Narsese, an English
sentence is represented as a sequence of words, so “Cats eat fish” can be
represented as “{cat× eat×fish} → sentence”, showing the co-occurrence
of the words involved and their order. Issues like tense and the singular/plural
difference are ignored at this stage of the project.

Semantic, where the basic form is the observed representational relation be-
tween the word “cat” and the term cat. In Narsese, this relation can be
expressed as “{cat× cat} → represent” and “{{cat× eat×fish}× ((cat×
fish) → food)} → represent”, where “represent” is a relation between a
“sign” (or “symbol”) and an “internal” term that does not directly appear
in the system’s (external) experience, but has been denoted by the sign.

Like other types of knowledge in NARS, each belief on a syntactic or semantic
relation is true to a degree, as indicated by its (two-dimensional) truth-value.

The major tasks in NLP, language understanding and language generation,
become question-answering tasks in NARS that contain Narsese sentence like
“{sentence× ?x} → represent” and “{?x × term} → represent”, respectively.
In the former, the task is to find a term that the given sentence represents; in the
latter, the task is to find a sentence that represents the given term. In Narsese,
a term with a ‘?’ prefix is a query variable to be instantiated.

In the following, a working example processed by NARS is explained, in a
simplified form (compared with the actual form produced by NARS). In this
example, the only syntactic information involved is word order, though it does
not mean that this approach can only process this type of information.
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Initially, NARS is given the following statements with the default truth-value:

{cat× cat} → represent 〈1, 0.9〉 (1)

{fish× fish} → represent 〈1, 0.9〉 (2)

{{cat× eat× fish} × ((cat× fish)→ food)} → represent 〈1, 0.9〉 (3)

From them, the system can uses the induction rule to derive generalized knowl-
edge, and in the process variable terms are introduced into the conclusion:

({$1× $2} → represent)⇒
({{$1× eat× fish} × (($2× fish)→ food)} → represent) 〈1, 0.45〉 (4)

(({$1× $2} → represent) ∧ ({$3× $4} → represent))⇒
({{$1× eat× $3} × (($2× $4)→ food)} → represent) 〈1, 0.29〉 (5)

Terms with the ‘$’ prefix are independent variables, and each indicates an arbi-
trary term. The above conclusions will contribute to the meaning of the phrase
“eat fish” and the word “eat”, respectively. From them and the following input

{dog× dog} → represent 〈1, 0.9〉 (6)

{meat×meat} → represent 〈1, 0.9〉 (7)

the system can derive the following conclusions using the deduction rule:

{{dog× eat× fish} × ((dog × fish)→ food)} → represent 〈1, 0.41〉 (8)

{{dog× eat×meat} × ((dog ×meat)→ food)} → represent 〈1, 0.26〉 (9)

These conclusions have relatively low confidence, but can still let the system un-
derstand and produce novel sentences it never heard before. With the accumu-
lation of evidence, the repeated patterns in the language will produce linguistic
knowledge with higher and higher confidence, though all the knowledge remains
revisable by new experience.

More details of these examples can be found at the author’s website.

6 Comparisons

Given the complexity of NLP, it is clearly impossible to compare the NARS
approach with the others in detail. Here only the major points are listed.

The above approach toward NLP has the following major properties:

– All language-specific knowledge are learned from experience, rather than
built into the system. The learning process can follow different rules, includ-
ing deduction, induction, abduction, analogy, revision, and so on. The system
can directly accept syntactic and semantic knowledge from the outside, so
as to bypass some internal learning process. Such input knowledge will still
be revised according to the system’s experience. Compared to the existing
approaches of NLP, this approach may be more similar to how a human be-
ing learns a natural language, though NARS is not designed as a descriptive
model of the human mind.
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– A natural language is treated as a conceptual system that changes over time.
New words, phrases, and sentences are introduced from time to time, and
the existing ones may change their meaning gradually. Even grammatical
conventions may change over time. Some of the changes are long-term and
irreversible, such as the learning and evolving of word meaning, while some
other changes are short-term and temporary, such as the content-dependent
interpretations of words. The system has the ability to adapt to such changes
that come from the environment, as well as to initiate such changes by using
a language creatively.

– Though the distinction of syntax, semantics, and pragmatics still exist,
these aspects of a language are not processed separately in the system.
Syntactic knowledge relates the words and phrases in a natural language
in various ways; semantic knowledge associates the words and phrases to
the terms/concepts; pragmatic knowledge links knowledge to goals (not dis-
cussed in this paper). However, they are all conceptual relations in NARS.

– Syntactic knowledge has various generality, with concepts from specific (like
“cat” and “eat”) to general (like “noun” and “verb”) at multiple levels.

– The processing of natural languages is unified with other cognitive processes,
such as reasoning, learning, and categorizing. The only specialty is the lin-
guistic knowledge, which is specific to each language and is learned.

Compared with the symbolic approach of NLP, the NARS approach is dif-
ferent in the following aspects:

– It does not require a built-in linguistic competence. There are still innate
grammar rules, but they belong to Narsese, the system’s native language. All
the natural languages are learned, including both vocabulary and grammar.

– Every piece of linguistic knowledge is statistical in nature. All “grammar
rules” can have exceptions and counterexamples, while still playing impor-
tant roles. What the system does is not to find the exact “laws” behind a
language, but to summarize its experience in the language, and to use the
summary in the most promising way, according to its estimation.

Compared with the statistical approach of NLP, the NARS approach is dif-
ferent in the following aspects:

– Though the truth-value in NARS is not binary, but intuitively similar to
probability, it is not defined according to probability theory. In particular,
the truth-values of beliefs in NARS at a certain moment do not form a
consistent probability distribution. Instead, the beliefs may contain explicit
or implicit conflicts [6].

– The truth-value calculation is carried out by the inference rules, which are
local operations in the sense that in each step of inference, only the premises
are considered, and system-wide impacts are usually achieved through many
inference steps. On the contrary, inference in probability theory are often
global (such as Bayesian conditioning), which are not affordable for a system
working with insufficient knowledge and resources.
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– Learning in NARS is incremental and ongoing. As shown by the previous ex-
ample, the system can learn a new sentence template from a single example,
though additional examples can increase the confidence of the conclusion.

Compared with the related works in cognitive linguistics, this new approach
has the following properties:

– It realizes the basic ideas in cognitive linguistics in a formal model.
– It provides a unification of NLP and reasoning-learning.

Though there are other inference-based NLP work [11], their grammar and
inference rules are very different from those of NARS. Detailed comparisions
with them will be left for future publications.

Compared with other AGI projects, this approach does NLP, without using
an NLP-specific module. Instead, language processing and other cognitive facul-
ties are coupled at a much deeper level and carried out by a unified mechanism.
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