Non-Axiomatic Reasoning System (Version 2.2)

Pe1 Wang
Center for Research on Concepts and Cognition
Indiana University
510 N. Fess, Bloomington, IN 47408

pwang@cogsci.indiana.edu

April 14, 1993

Abstract

Non-Axiomatic Reasoning System (NARS) is an in-
telligent reasoning system, where intelligence means
working and adapting with insufficient knowledge and
resources.

NARS uses a new form of term logic, or an ex-
tended syllogism, in which several types of uncertain-
ties can be represented and processed, and in which
deduction, induction, abduction, and revision are car-
ried out in a unified format. The system works in
an asynchronously parallel way. The memory of the
system is dynamically organized, and can also be in-
terpreted as a network.

After present the major components of the system,
its implementationis briefly described. An example is
used to show how the system works. The limitations
of the system are also discussed.

1 Introduction

Non-Axiomatic Reasoning System (NARS) is an in-
telligent reasoning system.

Intelligence is understood here as the ability of
working and adapting to the environment with in-
sufficient knowledge and resources. More concretely,
to be an information processing system that works
under the Assumption of Insufficient Knowledge and
Resources (AIKR) means the system must be, at the
same time,

a finite system — the system’s computing power,
as well as its working and storage space, is lim-
ited;

a real-time system — the tasks that the system
has to process, including the assimilation of
new knowledge and the making of decisions, can
emerge at any time, and all have deadlines at-
tached with them;

an ampliative system — the system not only can
retrieve available knowledge and derive sound
conclusions from it, but also can make refutable
hypotheses and guesses based on it when no cer-
tain conclusion can be drawn; and

an open system — no restriction is imposed on
the relationship between old knowledge and new
knowledge, as long as they are representable in
the system’s interface language.

Furthermore, to be an adaptive system (or learning
system) means the system must also be

a self-organized system — the system can accom-
modate itself to new knowledge, and adjust its
memory structure and mechanism to improve its
time and space efficiency, under the assumption
that future situations will be similar to past sit-
uations.

By reasoning system, I mean an information pro-
cessing system that has the following components:

a formal language for the communication between
the system and the environment;

an interpretation of the formal language that
makes its sentences correspond (maybe loosely)
to human knowledge represented in natural lan-

guage,;

a user interface through which the system can ac-
cept knowledge from the environment, and an-
swer questions according to its knowledge;

an inference engine with some inference rules to
carry out tasks, such as match questions with
knowledge, generate conclusions from promises,
and derive subquestions from questions;

a memory that store the tasks to be processed, and
the knowledge according to which the tasks are
processed; and

a control mechanism that is responsible for the
choosing of premise(s) and inference rule(s) in
each step of inference, and the maintaining of
the memory.

In this paper, I will describe NARS-2.2’s theoreti-
cal foundation, its various components, its implemen-
tation, and its limitations. I’ll briefly compare it with
other systems, but leave detailed discussions to future
papers.

2 Theoretical Foundation

What differentiates NARS from other Al approaches
in theoretical consideration is its working definition
of intelligence: the ability to work and adapt with
insufficient knowledge and resources.

Of course it is too early to make a universally ac-
ceptable definition for intelligence, but it is still neces-
sary for each research paradigm to set up its working
definition, since such a definition can specify the goal
of the research, and provide a kernel for the whole
theory and technical tools.

In the following, I will explain why the NARS
project (previously referred as Non-Axiomatic Logic,
or NAL) chooses such a working definition for intel-
ligence.

2.1 The working environment of hu-

man mind

It is easy to see that the human mind often works
under AIKR, and (of course) is an adaptive system:

e Its computing power, as well as its working and
storage space, is limited. We cannot think about
too many things simultaneously. We cannot re-
member everything we knew previously.

e It has to work in real time. Many information-
processing tasks are imposed upon us by our en-
vironment, in spite of whether we are ready to
process them; all the tasks have deadlines at-
tached (also determined by the environment), re-
gardless whether or not we can get a satisfying
result by that deadline.

e It has to guess. If we only acted on what we are
absolutely sure about, we could hardly do any-
thing at all. To guess and then make mistakes is
still better than to do nothing.

e It is open to new knowledge. We cannot make
restrictions on what can happen in the future.
Even if there is something happening that con-
flicts with our current beliefs, we cannot refuse
to accept it as new evidence.

e By adapting to its environment, a human mind
makes self-adjustments based on the current sit-
uation and previous experience. Therefore, only
under the assumption that the future situation
will be (more or less) similar to past situations
(at certain general level), can such adjustments
be expected to really improve the system’s be-
havior.

I don’t mean that we never work with sufficient
knowledge and resources. For some familiar and sim-
ple problems, we can assume that our knowledge and
resources are relatively sufficient for solving them.
For such problems, an information-processing model
that assumes sufficient knowledge and resources is
a good approximation, while considering AIKR will
make things unnecessarily complicated. My point
here is: it makes sense to study adaptive systems
under AIKR, since the human mind often (though
not always) works in this way. To us, the available
information is usually too much to be processed, at
the same time too little to make infallible predictions.

2.2 The assumptions of traditional

theory

In mathematics, things are extremely different.
There what we have are idealized objects with ide-
alized relations among them. Mathematicians (like
Hilbert) hope to build a consistent, complete and de-
cidable system (I call it a full-aziomatic system). It
has a set of axioms and a set of derivation rules, and

all questions in the domain can be answered by the-
orems derived from the axioms, following an algo-
rithm. In such a case, and only in such a case, the
sufficiency of knowledge and resources can be com-
pletely achieved in the following sense:

e There is no upper bound on the number of ax-
ioms, theorems, and rules that the system can
maintain at a given time;

e The system answers questions in a one-by-one
way, and the turn-around time is determined by
the complexity of the algorithm;

e The system has complete knowledge about the
domain, so no guessing is necessary, that is, all
answers are guaranteed to be true;

e The system already knows everything it needs
to know at the very beginning, therefore it is no
longer open to new knowledge;

e Such a system has no need to adapt or to learn,
since 1t is already good enough for the given do-
main.

Computer science, with its close historical relations
with mathematics, inherits the assumption of the suf-
ficient knowledge and resources. This assumption is
behind the definition of Turing machine, computa-
tion, algorithm, as well as other kernel concepts of
the discipline. As a result, in a domain where we
have sufficient knowledge and resources (in respect
to the problem to be solved), we have a solid theoret-
ical foundation and many useful tools. In contrary, if
we have to solve problems under AIKR, there is no
ready-made theory to guide us. It is another reason
to study adaptive systems under AIKR, since such
systems haven’t been adequately studied yet.

2.3 The problems of artificial intelli-
gence

Only when scientists begin to explore artificial intel-
ligence, did the systems designed according to tradi-
tional computer science theory begin to reveal their
weaknesses: they are too rigid, too brittle, not cre-
ative, and so on ([Smolensky 88] and [Holland 86]).
Even after such systems have solved some problems
which are hard or unsolvable for a human being, we
still don’t think they are intelligent. It seems, as
stated in Tesler’s Theorem ([Hofstadter 79]), “Al is
whatever hasn’t been done yet”.

This suggests that in our everyday usage, “in-
telligence” does not merely refer to the ability of
solving certain problems, but to the (meta)ability to
solve problems under certain constraints: the solu-
tions should be creative, context-dependent, flexible,
efficient, robust, and so on. If a problem is solved
by following a predetermined algorithm, even though
the solution itself may be excellent, the solving pro-
cess 1s not considered intelligent. On the other hand,
the designing of the algorithm will be considered as
intelligent, as long as it is not done by following a
meta-algorithm.

This observation supports our previous claim: only
under AIKR, intelligence becomes possible and nec-
essary. We can rephrase Tesler’s Theorem as: “Al is
whatever hasn’t been done by a full-axiomatic system
yet”.

Let’s take a look at a list of subfields of Al:

understanding natural language
producing natural language
recognizing scenes

recognizing sounds

planing actions

playing games

proving theorems

thinking creatively

thinking analogically

and compare the list with other computer application
domains, such as:

evaluating formulas
maintaining databases
controlling assembly lines

We can see that the problems in the first list, which
are relatively easy for human beings but hard for com-
puters, are all inherently related to AIKR. If we ab-
stract and idealize these problems to such an extent
as to assume the knowledge and resources are suffi-
cient, then the problems will either become drasti-
cally different from the original ones, or even com-
pletely disappear. For example, if knowledge and re-
sources are sufficient, many problems in game play-
ing and theorem proving can be solved by exhaus-
tive search, while creative thinking become impossi-
ble and analogical thinking unnecessary — only de-
ductive thinking is left.

2.4 Al and AIKR

As a matter of fact, to design a computer system
which can work and adapt with insufficient knowl-
edge and resources is not a completely new idea to
the discipline of artificial intelligence and cognitive
science, since

1. some sub-fields, such as machine learning and
uncertain reasoning, are totally devoted to such
efforts;

2. many theories/systems assume certain types of
insufficiency of knowledge and/or resources; and

3. AIKR is closely related to ideas like minimal ra-
tionality in [Cherniak 86] and limited rationality
in [Russell and Wefald 91].

What distinguishes the NARS project from other
approaches is:

1. here “adapting under AIKR” is accepted as a
whole,

2. the principle is further specified, and
3. it is implemented in a reasoning system.

The following are some anticipated objections and
my responses:

The “idealization” objection: “We know that
the human mind usually works under AIKR, but
if you want to set up a formal model, you must
somehow idealize the situation.”

Response: It is true that any formal model is an
idealization, and so is NARS. The problem is
what to omit and what to preserve in the ideal-
ization. In NARS-2.2, many factors that influ-
ence human reasoning are ignored, but AIKR is
strictly assumed throughout. Otherwise, the sys-
tem would work in a different manner: it could
still solve many practical problems, but in a not-
so-intelligent way, like many “expert systems”.

The “goodness” objection: “There will be many
defects for a system to work under ATKR. The
system will provide bad answers to us.”

Response: This is absolutely true. In fact, we’ll
see that NARS makes various types of mistakes.
However, this cannot be used as an objection to

ATKR, but should be understood as a price we

have to pay. From our working definition of in-
telligence, it follows that an intelligent system
need not necessarily be better than an unintelli-
gent one in terms of solving practical problems,
such as addition ([Hofstadter 79]). Intelligence
is what we have to use when we cannot solve
a problem in a mechanical (full-axiomatic) way.
Therefore, with all its defects, to work under
ATKR is still better than to do nothing at all, or
to “idealize” the original problem into a totally
different one, then solve the latter perfectly.

The “simplification” objection: “AIKR is neces-
sary, but at the beginning, we should decompose
it into separate problems, then solve them one
by one to make things easy.”

Response: This is the approach that many current
AT approaches take. They try to modify or ex-
tend some of the assumptions of traditional the-
ory, and keep the others untouched. I call them
semi-aziomatic approaches. For example, Bayes
networks and Non-monotonic logic systems are
only open to certain types of new knowledge,
many learning systems still use binary logic, few
systems work in real time, and so on. As a result,
the applicability of the theory is more limited.
On the other hand, the theoretical assumptions
conflict with each other, and a lot of efforts have
to be made to deal with the inconsistency. As
an example, in many non-monotonic logic sys-
tem, a concrete conclusion (such as “Tweety can
fly”) can be rejected by new evidence (such as
“Tweety is a penguin”), but a “default rule”
(such as “Birds normally can fly”) cannot ([Re-
iter 87]). Is it possible for us to draw such
a line in our empirical knowledge? In NARS,
since AIKR is treated as a whole, the theoretical
foundation of the system is more consistent, and
(amazingly) the system is simpler technically. It
seems that it is better to treat “adapting under
ATKR” as one problem with many aspects than
as many loosely related problems.

The “importance” objection: “AIKR should be
respected, but it is not so important as to be
referred to as AI’s kernel AI’s kernel should
be -+ --- ” (there will be hundreds of different

opinions).

Response: What we expect from a working defini-
tion is: it is relatively simple, but has plenti-
ful implications. I don’t claim that “adapting

under AIKR” can explain all phenomena that
are usually associated with intelligence, but it
does explain many of them. In the following,
I’ll try to derive non-monotony, parallel process-
ing, distributed representation, meaning fluidity,
fault-tolerance, internal competition, autonomy,
context-sensitivity, and so on, from such a work-
ing definition of intelligence. Therefore, it is pos-
sible for us to have a pretty small kernel that
explains many phenomena. In this way, we can
also have a better idea about the relations among
these phenomena. By the NARS project, I want
to explore how far this working definition can
lead us. I hope it will lead us further than other
current definitions of intelligence do.

3 Interface Language and Its
Interpretation

As a reasoning system, NARS needs a formal lan-
guage to communicate with the environment. Its
environment is either other information processing
agents (human or computer), or, when it is a sub-
system of a system, other sub-systems (sensory sub-
system, motor sub-system, natural language inter-
face, and so on). NARS accepts new knowledge (told
by the environment) in the language, and answers
questions (asked by the environment) in the language,
too.

3.1 Term-oriented language

Traditionally, the meaning of a formal language L
is provided by a model-theoretic semantics, where a
term @ in L indicates an object A in a domain D,
and a predicate P in L indicates a property p in D.
A proposition P(a) is true if and only if the object 4
actually has the property p.

Such a semantics works well for mathematics (or
generally, for all full-axiomatic systems and some
semi-axiomatic systems), but due to AIKR, it is no
longer applicable to a non-axiomatic system. With
insufficient knowledge, it is impossible to measure
to what extent a proposition can match the real
world. Even the concept of possible world (or state-
description, as in [Carnap 50]) is too ideal to be used
here: we cannot list all possible worlds, since to do
that we have to list all possible terms and all possible
predicates. If it could be done, then the system would

be no longer open to new knowledge that including
novel terms and/or predicates.
What makes the things more complicated is:

1. the knowledge provided by the environment may
be uncertain or conflict with each other;

2. when knowledge is insufficient, the system has to
guess; and

3. if there are more than one reasonable guess, the
system have to decide which is more strongly
supported by the system’s past experience,
therefore more plausible under the assumption
that the future will be similar to the past.

It still makes sense to talk about the truth value of
a proposition under ATKR, since the system need to
indicate how the proposition is supported /refused by
what it was told by the environment in the past. Such
a truth value is only indirectly related to the “real
world”. After all, for NARS to be intelligent, what
it need to do is to adapt to its environment, which,
if consists of sensory/motor sub-systems or honest
human beings, will lead the system to set up a model
for the real physical world, but it is not necessarily
the case.

As a result, binary logics, even three-valued log-
ics or model logics, are not suitable here — we need
more information. However, under AIKR, it is im-
possible to explicitly record all pros and cons for each
statement S (that is, a sentence of the interface for-
mal language) and to compare them in general, so
we have to measure them in some way, and to com-
press the information into numbers. For a statement
S, if we can find a natural way to distinguish the
positive evidence K_;-I' and the negative evidence Kg
for it from all available knowledge K, and to define a
measurement function F for the amount of evidence,
then it seems that the simplist way is to use the pair
< F(K%), F(KZ) > (or < F(KY), F(Ks) >, where
F(Ks) = F(K;’) + F(Kg) is the amount of all evi-
dence) as S’s current truth value in the system.

However, if we try to apply this idea to extend
the truth value of first order predicate logic, we’ll
meet Hempel’s famous Ravens Paradoz ([Good 83]):
A green tie, or white shoe, is positive evidence for “All
ravens are black”, since it is positive evidence for the
logically equivalent statment “All non-black things
are non-ravens”. But this is counter-intuitive, and it
will imply other strange conclusions, such as a green
tie is also positive evidence for “All ravens are red”,
“All ravens are blue”, and so on. It is unnecessary

and impossible to discuss the paradox in detail here,
so I only say that this is one reason for NARS to
abandon predicate logic and to use term logic.

In traditional term logics, such as Aristotle’s and
Peirce’s, all statement consists of two terms, a subject
S and a predicate P, which are related by the copula
be, which is interpreted as a whole-part relation, as
including, or belonging to.

In NARS, the “be” relation is represented as “C”,
and interpreted as inheritance. A statement “S C P”
can be intuitively understood as “S is a kind of
P” (from an eztensionel point of view) and “S has
P’s property” (from an intensional point of view).
Or correspondingly, we can say “S inherits P’s at-
tributes” and “P inherits S’s instances”, which can
be further described as “if X C S, then X C P” and
“f PCY, then S CY” , respectively (that is why
the relation is called an inheritance relation). This
interpretation is more general than the pure exten-
sional “including” interpretation.

Under such an interpretation, we can see that the
positive evidence for “S C P” consists the common
instances and common properties of S and P, while
the negative evidence consists of S’s instances which
are not shared by P and P’s properties which are not
shared by S. In such a system, a green tie is no longer
a piece of evidence for “Ravens are black-thing”, and
the negating of a term (to get “non-raven” or “non-
black-thing”) is not even a valid operation.

3.2 Truth value

Now the measurement function F' mentioned above
can be intuitively defined as counting: Ideally, if the
system checked S’s instances n times in past, and in
m times the instance turned out also to be in P, then
F(K$) = m, and F(Ks) = n. Symmetrically, if it
checked P’s properties n times, and in m times the
property happened to be S, too, then F(K3) = m,
and F(Ks)=n.

The “counting” form of truth value is good for cer-
tain purpose, but it is not always make sense to test
a statement in such a way, and we often prefer a rel-
ative measurement as (extended) truth value, such
as some kind of probability. It is easy to see that
from above discussion we can use m/n as a relative
measurement, which is the frequency of successful in-
heritance between the subject and predicate. We’ll
refer it as f, and take its value in [0,1].

Though f can be used to compare which statement
comparatively gets more positive support from avail-

able knowledge, it provides no information for how
the ratio should be modified when future evidence
For this reason, we need another value to
measure the system’s confidence about the current
frequency of the statement, that is, how stable it is
in the future. Under AIKR, it make no sense to es-
timate the range that f can be in the infinite future
— it can be anywhere in [0,1], since there is no limi-
tation on the amount of coming positive or negative
evidence. But it is still make sense to talk about the
near future, that is, when a constant amount of new
evidence is coming. Therefore, the confidence of a
statement (referred as c) is defined as the ratio of the
current emount of evidence to the future emount of
evidence, that is: ¢ = n/(n+k). Here k is a constant
in the system, indicating that by “new evidence in
near future” it means to check the inheritance rela-
tion for k& more times (k > 0, but not necessary to
be an integer). We say this ratio can be used as a
measurement of confidence, since if ¢ is pretty big,
it means we have tested the statement many times,
therefore our opinion about it is quite stable, no mat-
ter what will happen in the near future.

In this way, it is possible to provide a unified rep-
resentation and interpretation for the various types
of uncertainties ([Bhatnagar and Kanal 86]): ran-
domness mainly corresponds to estimate f from an
extensional point of view (by considering common
instances of the two term); fuzziness (or represen-
tativeness, typicality) mainly corresponds to estimate
f from an intensional point of view (by considering
common properties of the two term); and ignorance
corresponds to the estimation of c.

Moreover, we can exactly indicate the interval that
f can be in the near future: if all of the k tests give
negative evidence, f will be as low as a = m/(n+k);
if all of the k tests give positive evidence, f will be
as high as z = (m+k)/(n+k). Anyway, it will be in
the interval [a, z] in the near future. Defined in this
way, we get z—a =k/(n+ k) = 1 — ¢, which tell us
that the confidence ¢ can also be understood as the
complement (to 1) of the width of the interval: the
narrower the interval, the more confident the system
is about the frequency of the statement.

Now, we have three different forms of truth value,
and there are one-to-one mappings among them,
which are shown in Table 1.

To have different, but closely related forms and in-
terpretations for truth value have many advantages:

comes.

e It give us a better understanding about what the
truth value really means in NARS, since we can

[[{m,n} [<fie> | [a, 2] I
{m, n} m = ki m = k25
n=kiz n:k%
<fie> | f=2 f=1=
:n”ﬁ c=1—(z—a)
[a, 2] = |a=fc
z—:’;T'I'f z=1-¢c(1-1)

Table 1: Different forms of truth value and their relationships

explain it in different ways. The mappings also
tell us the interesting relations among the various
ways of uncertainty measurement.

It provides a user-friendly interface: if the en-
vironment of the system is human users (as the
case of NARS-2.2), the uncertainty of a state-
ment can be represented in different forms, such
as “I’ve tested it n times, and in m of them it
was true”, “Its past success frequency is f, and
its stability in the near future is ¢”, or “I’m sure
that its success frequency with remain in the in-
terval [a, 2] in the near future”. Using the map-
pings in the above table, we can maintain an
unique truth value form as internal representa-
tion (in NARS-2.2, we use the < f, ¢ > form),
and translate the other two into it in the inter-
face.

It make the designing of inference rules easier.
For each rule, there are functions calculating the
truth value of the conclusion(s) from the truth
values of the premises, and different functions
correspond to different rules. For some rule, it is
easler to choose a function if we treat the truth
values as “countings”, while for another rule, we
may prefer to treat them as “ratios” or “inter-
vals”. No matter what form and interpretation
is used, the information carried is actually the
same.

It is easier to compare the NARS approach to
various other approaches for uncertain reasoning
(see [Bhatnagar and Kanal 86] and [Spies 89]),
such as f vs. probability ([Pearl 88]), f vs. degree
of membership ([Zadeh 85]), ¢ vs. higher-order
probability ([PaaB91]), [a, 2] interval vs. probabil-
ity interval ([Weichselberger and Péhlmann 90]),
[@,] interval vs. [Bel, Pl] interval ([Shafer 76]),

and so on. The comparisons cannot be done in
this paper, and I only want to point out that all
the approaches mentioned above make various
constraints on their working environment, which
assume certain kind of sufficient knowledge or re-
sources. According to previous discussion, there
approaches lead to semi-axiomatic systems.

3.3 Degree of belief

All of the above defined measurements in NARS are
completely based upon the system’s past experience,
without any assumption about what will happen in
the future. However, we often need to choose among
competing judgments in terms of which is most likely
to be true in the future, or to bet on their truth.
For models that use a single number to represent the
uncertainty of a judgment, such as probabilistic logic
and fuzzy logic, it is simple — we can simply compare
the relevant numbers. However, for NARS, we need
to somehow summarize the pair of numbers (whether
as {m, n}, < f, ¢ >, or [a, z]) into a new measure-
ment, and use it to represent prediction. Let’s call it
degree of belief, and referred as d.

Though success frequency is important for predic-
tion, we cannot simply use f as d, since f may be
unstable. If we have only tried an experiment once,
and it succeeded, usually we are not 100 percent sure
that it will succeed again when repeated. Intuitively,
d can be defined as the expectation of f in the near
future, because in this way we also take its possible
variance into account. Since no matter what hap-
pens, f will be within [a, z], therefore it is natural
for us to use the unbiased expectation (a + z)/2 as
d’s value.

Using the mappings among different forms of truth
value, we can get some interesting results about d.

When d is represented in the “ratio” form, we get

d—0.5

f—0.5

Since ¢ < 1, d seems always more “conservative”
(more close to the middle point) than f, while ¢ indi-
cates the ratio that f is “compressed” to the middle
point to become d. When c¢ is very small, d will be
within the neighborhood of 0.5, in spite of what f
is — corresponding to the “little evidence” situation;
when ¢ is very big, d will be within the neighborhood
of f — corresponding to the “much evidence” situa-
tion, where f, d, @, and z are almost equal to each
other. However, different from probability theory, in
NARS it is not assumed that there are limitations for
f or d when the system get more and more knowl-
edge. On the other hand, it is not assumed that the
system’s beliefs are consistent.

When d is represented in the “counting” form, we
get

STEY

m+
n+k
This formula, when k& = 2, leads us to the famous
“Law of Succession” of Laplace, that is, after m suc-
cesses in n trials, the probability of the next success
should be (m + 1)/(n+ 2) ([Good 83]).

If we let our k parameter (that is, what we mean by
“the near future”) vary, what we get is a continuum,
which is very similar to Carnap’s A-continuum ([Car-
nap 52]). The bigger the k is, the more “cautious”
the system is — it takes more evidence to reach a
certain level of confidence. Therefore, k is one of the
personality parameters of the system.

These relations suggest that this approach of uncer-
tainty measurement and interpretation may lead us
to a unification of some other approaches that come
from different motivations, and this work is closely
related to, but not included by, the previous study of
probability theory and inductive logic.

3.4 NARS-2.2’s grammar

In NARS-2.2, there is another interpretation about
the inheritance relation “be” between two terms,
which intuitively corresponding to the membership
relation “€” in set theory, with an extension of its
interpretation to including intensional factors. In
NARS, the statement “S € P” can be identically
rewritten as “{S} C P”. In this way, we can dis-
tinguish “to be a kind of” and “to be a member
of”. As a result, NARS can handle singular terms,

which were omitted by Aristotle ([Lukasiewicz 51]).
To make things simple, we can transfer between the
“c” relation and the “C” relation in the user inter-
face of the system, and only have the “C” relation
in the internal representation. Now, in NARS-2.2, a
term can be a word or a singleton set of a term.

A judgment, as the basic unit of knowledge, is a
statement with an attached truth value. Each judg-
ment represents the system’s opinion about to what
extent a term can be used as another term, and all
the reasonings in the system are about the “can-be-
used-as” relation. In this way, NARS shares some
common spirit with the Copycat project ([Hofstadter
and Mitchell 92]) and the Tabletop project ([Hofs-
tadter and French 92]).

NARS-2.2 accepts two types of questions from its
environment:

1. “Yes/no” question (or “recognition”), which has
the form of a statement. To answer such a ques-
tion means to give it a truth value with the high-
est confidence, according to the knowledge of the
system. In other words, the system is asked to
assign a (as stable as possible) truth value to the
given statement.

2. “What” question (or “recall”), which has the
form of a statement where one of the two terms
is replaced by a question mark. To answer such
a question means to find a term to substitute
the question mark, which will make the state-
ment has the highest degree of belief, according
to the knowledge of the system. In other words,
the system is asked to make a best guess about
which term can make the statement true.

Finally, Table 2 shows the formal grammar of
NARS-2.2’s interface language, where the truth-value
can be represented in three ways:

1. {m, n}, where m is a non-negative real number,
n 1s a positive real number, and n > m;

2. < f, ¢ >, where f €[0,1], and ¢ € (0, 1); or
3. [a, z], where 0 < a<z<1l,and 1 >z —a.

Beyond these valid truth values, there are two lim-
itation points that need to be mentioned:

Null evidence: This is represented by n = 0, or ¢ =
0, or z—a = 1. It means that the system actually
know nothing at all about the statement;

< judgment > =
< question >

< statement >< truth-value >
< statement > | < query >
? < be >< predicate > | < subject >< be >?

< letter > | < letter >< word > | < word > - < word >

< query > =
< statement > = < subject >< be >< predicate >
< subject > = < term >
< predicate > = < term >
<term > u= < word> |{<term >}
< word > =
< letter > = alb|---|y|z
<be> u= Cle€
Table 2:

Total evidence: This is represented by n — oo, or
¢ = 1, or z = a. It means that the system al-
ready know everything about the statement —
no future modification of the truth value is pos-

sible.

Under AIKR, there is no need for the system to
represent the first type of “knowledge”, and impossi-
ble to have the second type. But, as limitation points,
they can help us to design and understand truth val-
ues and related functions, and they are useful in fu-
ture extensions of NARS.

4 Inference Rules

By inference, the system can modify its knowledge,
derive new knowledge and answer questions according
to available knowledge.

In NARS-2.2, there are two major types of infer-
ences: forward (from two judgments to a new judg-
ment) and backward (from a question and a judgment
to an answer or a new question). In both cases, the
two premises (two judgments, or one judgment and
one question) must share a common term to get a
conclusion (judgment or question). Due to AIKR, the
conclusions in each step of inference are only based on
the information provided by the premises, therefore
may be revised or refused in the future.

4.1 Revision

Under AIKR, it is possible (actually it is usually the
case) for NARS to be inconsistent in the sense that
at a certain time, there are two co-existent judgments

Grammar of NARS-2.2’s interface language

which share the same statement, but attach different
truth values to it. One reason for this to happen
is: due to insufficient knowledge, old knowledge may
conflict with new knowledge. Another reason is: due
to insufficient resources, the system cannot find all
potential conflicts among its current knowledge.

It is not to say that such inconsistency is not pro-
In NARS, inconsistent judgments have the
following effects:

cessed.

e unlike in first order predicate logic, where any
conclusion can be derived from a pair of propo-
sitions which only differ in there truth values, in
NARS an inconsistency is a local problem that
not all results are affected;

e as soon as such an inconsistence is found by the
system, a revision rule is used to solve it locally,
that is, to get a conclusion that summarize the
two premises.

If the two premises are
S C P{ml, nl}
S C P{mz, nz}

(where the truth values are represented in the count-
ing form), and the two premises are independent to
each other (that is, no evidence is repeatly counted
in the two premises), then it is natural to let the con-
clusion be

SCP{m1+m2, TL1—|—TL2}

. In this way, the system can resolve inconsistence,
and accumulate evidences about a statement gradu-
ally and incrementally.

Independence between judgments in NARS-2.2 is
defined by the following three principles:

1. All input judgments (provided by the environ-
ment) are independent to each other, as long as
they enter the system at different times.

. If judgment J; is derived from the set of input
judgments S1, and J; is an input judgment, then
J1 and J, are independent to each other if and
only if J5 isn’t in S.

. If J; and J, are derived from S; and S; (both
are set of input judgments) respectively, then Jy
and J, are independent to each other if and only
if S1 and S5 have no common element.

According to the definition, it is necessary to record
a complete derivation history for every judgment to
determine whether two arbitrary judgments are inde-
pendent to each other, but this will violate ATKR. As
a result, only a constant part of the “family tree” can
be recorded for each judgment, and it is impossible to
accurately indicate each input judgment’s contribu-
tion to the truth value of the judgment at hand. That
means the system’s decisions about independence of
the premises are not always correct, and when two
judgments are not independent to each other, it is
hard to say how the truth values should be modified.
It is also true for human beings: we cannot always
correctly recognize and handle correlated evidence.

There are two more issues should be mentioned:

(1) As long as two judgments are independent, they
are merged, no matter how the truth values are es-
timated in them: either by directly comparing the
properties or instances of the two terms, or by some
indirect methods. As a result, the truth value, when
represent in the counting form {m, n}, is only used
as a measurement — it doesn’t say the system has ac-
tually tested the statement n times, and it was true
in m of them. What it means is: the system’s be-
lief about the statement is as strong as it has been
tested for n times, and it was true in m of them.
On the other hand, evidence from property compar-
isons and instance comparisons are usually mixed,
since they are equally useful to suggest a future in-
heritance relation between the two terms. This will
provide an explanation for the results of some psy-
chological experiments, such as why people often do
not clearly distinguish representativeness from prob-
ability ([Tversky and Kahneman 74]).

(2) Since what the system counted is how many
times a term can be used as another according to the

system’s past experience, repeated input will be con-
sidered as independent, even if they have the iden-
tical form, and have (known or unknown) common
source in the environment. In fact, the truth value of
a statement is about the frequency of certain “psy-
chological events” (the extent that one term can be
used as another), rather than about certain “phys-
ical reality”. For example, to some Australian, the
judgment “Swans are black” may have a higher fre-
quency than “Swans are white”, even though they
know that globally and physically, most swans are
white. If they are not writing a report in ornithol-
ogy, they have good reason to base their knowledge
on their personal environment.

4.2 Syllogism

As a term logic, the basic inference rule of NARS is
a extended syllogism.

When two premises share exactly one term, there
are three cases:

1. the shared term is the subject of one premise and

the predicate of the other,

2. the shared term is the subject of both premises,

3. the shared term is the predicate of both premises.

Following Peirce’s definition, they are referred as
deduction, induction, and abduction, respectively.

4.2.1 Deduction

Deduction is the way that the inheritance relations
are transferred by the means of the shared term. For-
mally, there are two premises

MCP<f]_,C]_>

SCM<f2:C2>

and from them
SCP< fie>

is inferred as a conclusion.

To determine the value of f and ¢, we can set up
several constraints based on our interpretation about
the truth values:

1. When and only when f; = fo = 1, f = 1. That
means the conclusion have no negative evidence
if and only if the two premises have no negative
evidence.

10

When and only when f; or f5 is 0, f = 0. That
means if all evidence for a premise is negative,
no positive knowledge can be gotten for the con-
clusion.

When f; = fo = 0, ¢ = 0. That is, from two
totally negative premises “M is not P” and “S
is not M”, we get no information about whether
S and P have shared instances or properties.

¢ < min{ey, ca}. That is, the confidence of the
conclusion is less than either of the premise’s.

When fl = €1 =]-: < f,C >=< f2,62 >: a'nd
symmetrically, when fo = ¢c; = 1, < f,e >=<
f1,¢1 >. That means, when f; = ¢; = 1, there is
a “ideal inheritance” relation between M and P.
As a result, P completely inherits M’s relation
with S.

When and only when ¢; = ¢z = 1 and one of f;
and f5 is 1, ¢ = 1. That means, for the conclu-
sion to approaching “total evidence”, there must
be an “ideal inheritance” in the premises, and
the other premise must also approaching “total
evidence”.

In NARS-2.2, the following functions are used,
which satisfy the above constraints:

f

c

fifa
(fi+ fa— fif2)cica

Deductions in term logics (such as in NARS) differs
fundamentally from those in predicate logics (such
as in first order predicate logic). In predicate logic,
whether a premise can imply a conclusion is totally
determined by their truth values. This is the root of
the infamous implication paradoz: a true proposition
can be derived from any proposition, and any propo-
sition can be derived from a false proposition. On
the contrary, deductions (as well as inductions and
abductions) in a term logic require the two premises
to share a common term, therefore the premises and
the conclusion must be semantically related. On the
other hand, the semantic relation is detected and pro-
cessed syntactically by checking for a common term.

4.2.2 Induction

Induction is the way that the inheritance relations are
established by comparing the instances (represented

11

by the shared term) of the two unsheared terms. For-

mally, there are two premises
M C P < fl: C1 >

MCS<f2:C2>

and from them
SCP< fie>

is inferred as a conclusion.

According to the interpretation of the truth value,
we know that M can contribute to the conclusion no
more than be counted as an “unit evidence” (that is,
to make n = 1 for the conclusion). To what extent M
is a piece of evidence for the conclusion depends on
whether the premises have a high confidence value,
and whether M is really in S. If M is not in S, then
it is not a related evidence for “S C P”. (A green
tie is not a piece of evidence for “Ravens are black-
thing”.) Therefore, I choose n = facica. From the
mappings in Table 1, we can determine ¢ form n by
the formula ¢ = n/(n + k).

For f, it seems the most natural guess is fi: here
we generalize M ’s relation with P to S’s relation with
P.

As a result, we get

f = h
c — facica
facicatk

Obviously, by interchanging the premises, we can
get a symmetric inductive conclusion

PcsS<f,d>

Generally, inductive conclusions are generated in
pairs, but usually with different truth values.

Inductions in NARS has a distinctive feature: the
induction rule not only generate the inductive conclu-
sion, but also evaluate it at the same time, while in
previous study of induction, both in the field of ma-
chine learning and in the field of inductive logic, the
generating (or searching, discovering) and the evalu-
ating (or conforming, testing) of inductive hypothe-
ses are traditionally treated as different phrases of a
induction procedure, and carried by different mecha-
nisms ([Michalski 83] and [Carnap 50]).

4.2.3 Abduction

Abduction is the way that the inheritance relations
are established by comparing the properties (repre-
sented by the shared term) of the two unsheared term.

Formally, there are two premises
P C M < fl: C1 >

SCM<f2:C2>

and from them
SCP< f,e>

is inferred as a conclusion.

In NARS-2.2, inheritance relations about prop-
erties and inheritance relations about instances are
treated in a completely symmetric way. As a result,
we can directly get the functions for abduction from
the functions for induction:

f = r
c — ficiea
T ficieatk

“Abduction” in NARS has a different meaning
from what the word means in the field of machine
learning. Originally, abduction was defined by Peirce
as one of the three types of syllogism (as in NARS),
but it was described as “only justified by its ez-
plaining an observed fact” ([Peirce 32]). Later, as
predicate logic replaced term logic as the dominant
logical language, “abduction” has been used to re-
fer to explaining reasoning in predicate logic, as the
case in machine learning study ([Falkenhainer 90] and
[Michalski and Kodratoff 90]).

Since k is a positive constant, the confidence of
a conclusion gotten directly from abduction (or in-
duction) is less than 1/(1 + k) (in NARS-2.2, k is
2, so ¢ < 1/3), while the confidence of a deductive
conclusion can have 1 as limitation. Therefore, the
generally accepted difference between deduction and
induction/abduction still exists in NARS: as amplia-
tive reasoning, inductive/abductive conclusions are
usually weaker (less confident) than deductive conclu-
sions ([Peirce 32]), that means they are more likely
to be changed by new evidence. These conclusions
can become stronger by merging with consistent judg-
ments through revision. For example, from “Doves
are birds” and “Doves are flyers”, the system can in-
duce “Birds are flyers”, but with a low confidence.
Then, the system can get a similar conclusion from
“Swans are birds” and “Swans are flyers”. When the
two “Birds are flyers” meet, they will merge into a
stronger (with a higher confidence) “Birds are fly-
ers”, since the two premises are independent to each
other (See Section 8 and Appendix for details).

12

[2\ [MCP(t) | PCM{t) |
SCM(ty) || SC P(Faeq) | SC P(Fapa) ‘
P C S(fara)
M C S(t2) || S C P(Fina)
P C S(find) | P C S(faed) ‘

Table 3: Extended syllogism

4.2.4 The new syllogism

As a summary, we get the syllogism table (Table 3).
In the table, (1) and (t3) are the truth values of
the premises; (Fged), (Fasa), and (Fing) represent-
ing the truth value calculated by the functions for
deduction, abduction, and induction, respectively;
fded, favd, and finqg are functions gotten by inter-
change t; and t3 in Fyeq, Fopg4, and Fi, 4, respectively.

Different from the functions in the revision rule, the
functions Fyeq, Fapg, and Fi, 4 are not yet completely
derived from the interpretation of the truth value.
There are many other functions that can satisfy the
constraints listed above. The functions are chosen
partially due to their simplicity. In future research,
these functions may be refined.

The syllogism of NARS differs from Aristotle’s
([Aristotle 89] and [Lukasiewicz 51]) in the following
aspects:

1. truth value is no longer binary,

2. deduction, induction and abduction are com-

bined,

truth value indicates not only shared instances
(extension), but also shared properties (inten-
sion).

In the first and third points, it differs from Peirce’s
syllogism, too ([Peirce 32] and [Feibleman 46]).

A distinctive feature of NARS is the implementa-
tion of deduction, induction, and abduction in a uni-
fied format, as well as the complete symmetry of in-
duction and abduction. There are other efforts in Al
to combine different types of inference, but it seems
none of them can lead to such a beautiful relation.

These three rules, working together with the revi-
sion rule, are responsible for the forward inferences in
NARS-2.2. All the new conclusions/conjectures are
generated by the syllogism first, then modified by the
revision rule.

| J\Q ||[McP|PCM]
SCM@)] ScP|SCP
PCS
McS@) | scP
PcS | PcCS

Table 4: Backward inference rules

4.3 Backward inference

Due to AIKR, NARS cannot afford the resources to
exhaustively try all combinations of promises to de-
rive a desired conclusion. Instead, backward infer-
ence rules are provided to make the system work in
a goal-directed manner.

The backward inference rules of NARS are deter-
mined by the following principles:

1. A judgment “S C P[i]” is an answer of a ques-
tion @ if and only if @ has the form “S C P?,
“? C P”, or “S C?”.

A question @ and a judgment J can derive a
new question @’ if and only if an answer for @
can be derived from an answer for Q' and J, by
applying a forward inference rule.

In such a way, backward inference is just the “inver-
sion” of forward inference, and its usage is to “wake
up” the related judgments to answer the input (envi-
ronment provided) questions.

Following these principles, we can get a backward
inference rules table (Table 4). In the table, P can
be either a term or a question mark. Since questions
have no truth value, no function is attached with the
rules.

5 Behaviors in User Interface

5.1 Accepted tasks

NARS, like many other reasoning systems, needs to
carry out (at least) the following two types of basic
input tasks, which are named from the environment’s
point of view:

Telling: As an open system, it needs to accept new
knowledge told by the environment. The system
can either simply store the new knowledge some-
where in its memory, or do some spontaneous
forward inference to get derived knowledge.

13

Asking: The system can use its available knowledge
to answer questions asked by the environment.
Answers can be found either by matching the
question directly with related knowledge, or by
backward-forward inference.

5.2 Working mode

In a full-axiomatic reasoning system, the tasks are
processed in a sequential and deterministic way:

waiting for user to input a new task,
get a task,

process that task,

report result,

reset the working memory,

waiting for user to input a new task,

The characteristics of such a working mode, as im-
plied by the definition of computation, are:

1. There is a unique initial state where and only
where the system can accept input tasks, that
means the tasks are processed in a one-by-one
way. If a task arrives when the system is still
busy with another task, the new task has to wait.
Even if the interruption mechanism is taken into
consideration, the picture is fundamentally the
same.

. The system can be referred as a function that
maps input tasks to output results, that means
it always provide the same result for the same
task, no matter when the task is processed.

. The resources spent on a task is a constant,
which mainly depend on the complezity of the
involved algorithm and the amount of relevant
knowledge, but independent to when the task is
processed.

. There are some predetermined final states where
the system will stop working on a task, no mat-
ter whether there are other tasks waiting to be
processed.

However, under AIKR, NARS cannot work in such
a mode. As a real-time system, tasks can show up
at any time, and all have deadlines with them, that
means the system cannot use a constant time on each
task — the time that can be spent is mostly deter-
mined by the environment, not by the system. The
system even cannot determine the “resources budget”

when the task is accepted, since such a budget will
be influenced by unpredictable future events: maybe
some new tasks will show up.

As a result, NARS has to work in a controlled con-
current mode, which is defined as:

1. The system works simultaneously on many tasks
in a time-sharing way, no matter how many pro-
cessors are there (under AIKR, we cannot as-
sume we can assign a processor to each task and
subtask). The system can accept input tasks at
any time, and begin to work on them immedi-

ately.

The processing of each task is divided into many
atomic steps, which is the scheduling unit of pro-
cessor time, and should take an approximately
constant time to be carried out. If in such a step
the system find a good result for a input task,
the result will be reported to the environment.

Each task will be assigned a priority, which is dy-
namicelly adjusted according to how urgent the
task is, whether a good answer has been found,
whether it is promising, how many other tasks
are there, and so on.

. The probability that a task in chosen for pro-
cessing is determined by its relative priority.
As a result, different tasks are processed asyn-
chronously, that is, at different speeds.

Some tasks with low priority may be deleted
from the waiting list due to limited space.

5.3 Characteristics

Such a working mode make NARS’s behaviors in
its interface quite different from other reasoning sys-
tems’:

(1) The environment will attach an wrgency value
and a duration value to each input task. The former
indicates the task’s priority in time-sharing, the latter
indicate the deadline for a result. After the deadline,
the environment will no longer need a result for it. To
make things simple, both values can be represented in
a relative scale, and the system can provide defaults
if no specific value is provided.

(2) There is no unique “initial state” where the
system is waiting for new tasks, as in Turing Machine
and other computation models. Though the system
as a whole has a initial state, a task can be accepted
at many different states.

14

(3) In NARS, not only the subtasks of a task are
processed in parallel, even different input tasks are
processed in this way, too. That means, after a new
task is accepted by the system, even with the highest
urgency, it is still not guaranteed that the system
will spend all its resources on it. Some time may
still be used to process previous tasks, and results for
different tasks will be reported in an unpredictable
order. Generally, all tasks (including subtasks) are
competing for the system’s resources all the time.

(4) Almost all results are partial in the sense that
only part of the system’s knowledge are involved dur-
ing the derivation of the result. Under AIKR, the
system simply doesn’t have the time/space resources
to provide global result for each task.

(5) NARS is non-monotonic in the sense that it
can overturn a previously reported result. After a
partial result are reported for a task, the task is usu-
ally not deleted, but only decrease its priority in the
competition. Therefore, it is possible for the system
to “change its mind” due to new knowledge or further
consideration.

(6) There is no “final state”. For some tasks, if
their urgency are too low, it is possible for them to
be completely ignored. If a partial result is reported
for a task, usually neither the system nor a human
user can predict whether there will be a better result
to be reported later, if more knowledge is took into
consideration. It is undecidable whether an answer
is “THE” answer for the question, since it depend
on events that happen in future, such as whether the
system can get new knowledge related to the task or
whether more time can be spent on it.

(7) After the deadline of a task is passed, the sys-
tem will stop reporting results for it. But it doesn’t
mean the system has stopped working on it and its
subtasks. Instead, these tasks now become the sys-
tem’s. When resources are still available, the sys-
tem will work on them for its own benefit — “Maybe
these questions will appear again in the future. Who
knows? So I'd better still spend some time on them”.
As the system become more and more complicated,
it will become more and more eutonomous, that is,
the processing of its own tasks will strongly effect the
system’s behavior.

(8) Usually, the deleting of a task from the system
is mainly determined by considerations on resources
(“I no longer have time to spend on this trivial/hard
task”), rather than by logical decisions (“I have com-
pletely solved this problem” or “I’'m sure I cannot
solve it anyway”). Even after such a deleting, the

(sub)tasks that derived previously from the deleted
task may still be active in the system — they are
also autonomous in the sense they are processed for
their own sake, not as means to achieve other ends.

(9) Since the processing context of every task is
constantly changed by the existing of other tasks, the
system can no longer be referred as a function that
deterministically mapping an input task to an output
result. Usually, if the same task is given to the sys-
tem at different times, the processing procedures and
results will be more or less different. On the other
hand, it is possible for the system to either provide
no result or more than one results.

In summary, though the system can still be im-
plemented in a von Neumann digital computer, the
processing of a task can no longer be described as
computation ([Kugel 86]).

6 Memory Structure and In-
ference Control

6.1 Chunk, task and knowledge

From the above discussions, we know that the pro-
cessing of a task in NARS is divided into atomic
steps, and in each step a inference rule is used to
derive conclusions from two premises. Here we meet
another nice property of term logic, that is, all infer-
ences require that the two promises share a common
term. Therefore, it is natural to set up a chunk for
each term, then distribute all judgments and ques-
tions into chunks according to the terms that appear
in them as subject and predicate. Now each chunk
becomes a independent storage/processing unit, so
to make parallel distributed processing inherent to
NARS.

Under AIKR, it is impossible for all of the judg-
ments and questions in the system (or even in a
chunk) to be candidate of premise in each step of
inference. To properly focus the attention of the sys-
tem, all the judgments and questions are divided into
two categories, task and knowledge, according to the
following principles:

1. All questions are tasks;

2. All judgments are knowledge;

All new knowledge (environment provided or
system generated) also have a copy served as a
task.

15

By this division, what we get is:

1. a small set of tasks, which are active, kept for a
short time, and closely related to questions and
new knowledge; and

a huge set of knowledge, which is passive, kept
for a long time, and not necessarily related to
current questions and new knowledge.

Now, we can think the memory and working space
of NARS as a set of chunks, and each chunk consists
of a set of tasks and a set of knowledge.

6.2 Atomic step

The atomic step of NARS can be briefly described as
the following sequence of operations:

to choose a chunk,

to choose a task from that chunk,

to choose a piece of knowledge from that chunk,
to use the task and knowledge to do inference,
to send the new tasks to corresponding chunks.

With different combination of the task and knowl-
edge, the inference may be one of the following:

e wake up — if the task is a question, and the
knowledge happen to be an answer to the ques-
tion, a copy of the knowledge is generated as a

new task;
e backward inference;
e revision; or
e syllogistic inference.

The later three have been introduced earlier. Un-
like many other systems, NARS doesn’t decide what
type of inference is used to process a task when the
task is accepted, but works in a data-driven way, that
is, 1t is the task and knowledge that happen to be
picked up that decide what type of inference will be
carried out.

6.3 Resources distribution

As mentioned above, under AIKR it is impossible to
process the tasks to their logical end (such as find
all possible answers for a question, or find all implied
conclusions for a piece of new knowledge). We can
neither afford resources to do it, nor can we recognize

such a logical end. Therefore, we have to settled for
partial solutions, that is, only use part of the system’s
knowledge to process a task. That doesn’t mean any
result is equally good. To use the knowledge and re-
sources as efficiently as possible, the system should
pay more attention to the most urgent and premis-
ing tasks, and using the more importent and relevant
knowledge to process them.

To be concrete, the basic idea is to assign relative
priorities to chunks (where they are called activity),
tasks (where they are called urgency), and knowledge
(where they are called importance), then distribute
the system’s resources accordingly. NARS-2.2 use a
probabilistic algorithm to make the choice. Roughly
speaking, if the ratio of priorities of two items (chunk,
task or piece of knowledge) is 7, then r is also the ra-
tio of their probabilities to be chosen at the current
time. After each atomic step, the priorities of the in-
volved chunks, tasks and knowledge will be adjusted
according to the results of the step.

There is a set of functions that responsible for the
priority calculations.

The wurgency of an input task is assigned by the
environment, and the urgency of a system generated
task is calculated from several factors, such as how ur-
gent its parent task is, how important and confident
its parent knowledge is, what type of relation is there
between it and its parents (deduction is a strong re-
lation, while abduction and induction are weak), and
so on. On the other hand, the urgency of a task will
decay as more time has been spent on it.

The activity of a chunk is positively proportional
to the sum of urgencies of the tasks in that chunk.

The importance of a piece of knowledge is adjusted
after each step of inference where the knowledge is
used according to how urgent the generated tasks are,
which indicate how useful the knowledge is to the
system.

With all these parameters adjusted dynamically,
some tasks are processed faster, and some knowledge
is more accessible, while the others are relatively for-
gotten by the system. Because the storage space is
limited, chunks, tasks and knowledge with low prior-
itles may also be forgotten permanently.

The control strategy used in NARS shares some
properties with the parallel terraced scan strategy in-
troduced in [Hofstadter and Mitchell 92] and [Hofs-
tadter and French 92].

16

6.4 Network interpretation

As another interesting property, NARS can also be
interpreted as a network ([Wang 92]). We can see
each term as a node, and each statement as a directed
link between two terms, and the corresponding truth
value as the weight of the link. There are active links
(tasks) and passive links (knowledge). Priorities are
defined among nodes (as activity), active links (as
urgency), and passive links (as importance). In each
atomic step, an active link interacts with a adjacent
passive link to generate new links or to change the
weights of existing links, and different types of infer-
ence correspond to different combinations of the two
links. After each step, related priorities are adjusted.

Such a network is similar to the Slipnet as in [Hof-
stadter and Mitchell 92] and [Hofstadter and French
92] since they are dynamically adjusted, and it shares
many properties with the subsymbolic paradigms
([Smolensky 88] and [Holland 86]), such as self-
organization, parallel processing, nondeterministic-
ity, distributed representation, and so on.

At the first glimpse, the internal representation
seems to be local, since the knowledge “Swans are
birds” is stored explicitly in the link that between
node swan and node bird. However, when the system
is told about that, the judgment is treated both as a
passive link (to be set up between the related nodes)
and as an active link (to actively interact with other
links), therefore, it will have effects in other nodes and
links. On the other hand, when the system is asked
“Are swans birds?”, it will not only search match-
ing link between node swan and node bird, but also
try to answer the question by inference from avail-
able knowledge, and other nodes and links may be
involved in the process.

Since in NARS deduction, induction and abduc-
tion are closely related, all premises can be rebuilt
from the conclusions to some extent. For example, if
initially we have judgments Ji:

M C P(t1),
and Js:

S C M (t2),
we can deduce J3:

S C P (t3).

On the other hand, if J; is no longer accessible in a
later time, the system still can get Ja:

M C P (ts)

by induction from J; and Js. Ji’s confidence value
will be much smaller than J;’s, but it will still keep
some of Ji’s information.

As aresult, the internal representation become dis-
tributed to certain extent in the sense that

e input task may have non-local effects,
e output result may have non-local sources, and

e local information damage (by forgetting or hard-
ware causes) may be partially recovered from in-
formation kept in other part of the system.

When the system has a big enough knowledge base,
no task can be actually processed by accessing all
of the knowledge. Only certain pieces of knowledge
in certain chunks are involved, that means there is
knowledge that within the system’s memory but can-
not be recalled at some situations. On the other
hand, the “meaning” of a term to the system, that
is, the knowledge associated with it by the system, is
fluid and context dependent ([Wang 92]). For exam-
ple, in the processing of task A, term swan is only
used in the sense “Swans are birds”, while in the pro-
cessing of task B, it is only used in the sense “Swans
are swimmers”.

7 Implementation

NARS-2.2 is implemented in Scheme. All source
codes occupy about 30K memory. In the following I’ll
introduce some technical details that not mentioned
above.

7.1 Representation and interpretation

To make things simple, in NARS-2.2 we only use the
< f, ¢ > form of truth values in the internal represen-
tation as well as in the user interface. All other forms
of truth value (counting, interval, or verbal) should
be translated into this form by human users.

According to the interpretation of the truth value,
we make the following conventions to correspond ver-
bal form of truth values provided by users in natural
language to NARS’s formal representation of truth
value:

e Positive judgments without qualifiers (like
“Birds are animals”), as well as with univer-
sal qualifiers (like “all”), are give a truth value
< 1, 0.9 >, and the corresponding negative judg-
ments are given a truth value < 0, 0.9 >.

17

e “Some” is translated into < 1, 0.3 >, and the
corresponding negative judgments are given a
truth value < 0, 0.3 >.

are translated to <
0.9, 0.9 >, and the corresponding negative judg-
ments are given a truth value < 0.1, 0.9 >.

e “Normal” and “usual”

At the current stage, I don’t intend to set up a com-
plete and accurate mapping between verbal truth val-
ues and numeral truth values. As long as the above
conventions are intuitively reasonable and used con-
sistently, they are good enough for the current pur-
pose.

7.2 Inference rules

The k parameter appearing in the induction rule and
the abduction rule is 2. That means, in NARS-2.2,
“in the near future” is interpreted as “after the next
two pieces of evidence show up”.

Before the applying of the revision rule, it is neces-
sary to check whether the two premises are indepen-
dent to each other. A “postmark” mechanism is used
for this purpose. Each piece of input judgment is au-
tomatically assigned a unique postmark (an integer)
when accepted by the system. In each inference step,
the conclusion get a postmark list by interweaving
its parents’ (the premises’) postmark lists, then cut
it to a certain length. In NARS-2.2, the maximum
length of postmark list is 4. Therefore, if two judg-
ments have a common grandparent, they must have
a common postmark. Before revision, two premises’
postmark lists are compared. The promises are con-
sidered independent to each other if and only if their
postmark lists have no common elements. This mech-
anism is only an approximation, but it is good enough
in most cases.

There is a special rule used to recognize results that
should be reported to the environment. For each in-
put task, a piece of pseudo-knowledge is inserted into
the corresponding chunk(s), and it is used to check
possible results and to record the best result that has
been reported. When a telling task is matched with
the pseudo-knowledge, it will be reported if it is bet-
ter than the recorded result. The pseudo-knowledge
will be forgotten by the system after a period cor-
responding to that input task’s duration (which is
specified by the environment). After that, no more
result is reported about the input task.

7.3 Memory structure

The memory of NARS-2.2 consists of a active chunk
table with a maximum capacity of aj X a,, and a dor-
mant chunk list with a maximum capacity of d;. Ac-
tive chunks participate in time-space resources com-
petition, while dormant chunks compete for space
only.

In the current version of NARS, the parameter ay
is set to 80, @, to 2, and d; to 100. That means the
activity of a chunk is an integer in {1, - - -, 80}, and at
each activity level there are most 2 chunks. If a chunk
is inserted into a full level of the table, one of the 2
chunks that previously there will be moved to a lower
level. Especially, a chunk in level 1 will be moved
to the head of the dormant chunk list. If overflow
happens to the dormant chunk list, the chunk in the
tail will be deleted from the system. The overflow
handling (or forgetting) mechanism is necessary, since
under AIKR a system’s storage space is limited.

A chunk can also be accessed by its name, that is,
the common term shared by all tasks and knowledge
in that chunk.

Chunk (active or dormant) consists of a task table
and a knowledge table. The task table’s maximum
capacity is up X Uy. In NARS-2.2 T let up = 20
and u,, = 3. That means the urgency of a task is an
integer in {1, - - -, 20}, and at each urgency level there
are most 3 tasks. There is also a overflow handling
mechanism, which is similar to the active chunk table
with the exception that a task removed from level 1
will be deleted from the system.

The knowledge table is further divided into 4 sub-
tables, and each of them have a maximum capacity
of i3, X 7. In NARS-2.2 I let 7, = 60 and 7, = 2.
That means the importance of a piece of knowledge
is an integer in {1, ---, 60}, and at each importance
level there are most 2 pieces of knowledge. There is
also a overflow handling mechanism, which is identi-
cal to the task table. For a chunk whose name is S,
the four subsets are for knowledge whose statement
has the form “S Cc W”, “X C §”, “S C {Y}”, and
“{Z} C 57, respectively.

Totally, NARS-2.2 can handle no more than 80 x
2+ 100 = 260 chunks, with no more than 20 x 3 = 60
tasks and 4 X 60 x 2 = 480 pieces of knowledge in
each chunk.

7.4 Atomic step

Each atomic step of NARS-2.2, as a time scheduling
unit, is consists of the following operations:

18

choose a chunk: As discussed before, the choice is
based on the activities of the chunks.

choose a task from that chunk: As discussed
before, the choice is based on the urgencies of

the tasks.

choose a subtable of knowledge: The

choice, which is made within the same chunk,
is based on the type of task and the total impor-
tance of knowledge in each subtable. Each task
is processed in a chunk in two stages: For new
knowledge, the system at first check for possible
revisions locally, then do syllogistic inferences.
For new questions, the system at first check for
possible matching with knowledge, then do back-
ward inference. In syllogistic and backward in-
ferences, deduction has a higher priority than in-
duction and abduction.

choose knowledge from the subtable: To speed
up inferences, as well as to provide a inhibitional
mechanism among tasks, in each atomic step sev-
eral (< 4 in NARS-2.2) pieces of knowledge is
used to process a task.

do inferences: Use the task and each piece of
knowledge as premises to get conclusions. Each
conclusion is a new task.

adjust the priorities: The the involved chunk,
task and knowledge are re-evaluated. The ad-
justing functions are given by the control strat-
egy of the system.

send the new tasks to corresponding chunks:
Each task is then insert into the task table of the
related chunk. If it’s a “telling” task, a copy of it
is also inserted into the corresponding subtable
of knowledge. In this way, the related chunks
are activated according to the urgency of the
tasks that they received, and chunks can coop-
erate with each other to solve problems.

7.5 Control strategy

Here is, briefly, how the priorities are determined and
adjusted in NARS-2.2:

The activity of a chunk is proportional to the sum
of the urgencies of the tasks in the chunk at current
time.

The urgency of an input task is determined by the
user.

The urgency of a derived task is the scaled product
of:

e the urgency of its parent task,
e the importance of its parent knowledge,
e the confidence of its parent knowledge, and

e a inference type parameter, which is 1 for deduc-
tion and 2/3 for induction and abduction.

After an atomic step, the task which is processed
in the step will decrease its urgency proportionally to
the sum of the urgencies of the derived tasks in that
atomic step.

The importance of a piece of knowledge is initially
proportional to the urgency of the task that bring
the knowledge to the chunk. Then, after each time
it is used in inference, its importance is adjusted ac-
cording to the urgency of the derived tasks, that is,
whether the knowledge is “useful” in solving the cur-
rent problem.

7.6 User interface

The user interface of NARS-2.2 provides the following
commands for user:

initialization: The memory is reset to empty.

save(file-name): The complete context is saved to

the specified file.

return(file-name): The complete context is recov-
ered from the specified file.

run-instruction(instruction): An instruction is
either an integer to indicate the number of
atomic steps to be carried, or an input task, with
its urgency and duration, to be inserted into the
corresponding chunk(s).

run-program(program): A program is a sequence
of instructions, which will be excused one by one.
It will make the test of the system faster and
easler.

display utilities: They are used to show the prior-
ity distributions within the memory or within a
specific chunk for the purpose of debugging and
monitoring.

19

parameters adjustment: There is a set of param-
eters that specifying aspects of the system, such
as the size of a chunk, the decay speed of knowl-
edge, the k& parameter that appear in the inter-
pretation, and so on. They can be adjusted by
a human designer/user between one run of the
system and another run, so the system’s “per-
sonality” can be tuned to some extent.

8 An Example

Different from expert systems, NARS is a domain-
independent reasoning system. It can accept any
task, as long as representable in its interface lan-
guage. The following example has been used to test
the system, and the complete experiment results are
in the Appendix.

In this example, the system is provided with knowl-
edge about birds, then use the knowledge to answer
questions. The instructions are read from a data file.

(1) Background knowledge
After loading the system and initialize its memory,
the system is provided with the following knowledge:

Doves are birds.

Normal doves are flyers.
Doves are not swimmers.
Some doves are white.

Some doves are not white.
Swans are birds.

Normal swans are flyers.
Normal swans are swimmers.
Normal swans are white.
Penguins are birds.

Penguins are not flyers.
Normal penguins are swimmers.
Birds are animals.

After a piece of knowledge is inserted, the sys-
tem is given some time to digest it, that is, to do
some spontaneous inferences. We can see that the
system can find some inconsistence among the in-
puts, and some revision results are reported. For
example, “dove C white < 1, 0.3 >” and “dove C
white < 0, 0.3 >” are explicitly inconsistent with
each other, so they are summarized into “dove C
white < 0.5, 0.462 >". From the knowledge about
dove and swan, the system guess that normal birds
are flyers, but such a guess is implicitly inconsis-
tent with the knowledge about penguin. As a result,

“penguin C flyer < 0, 0.9 >” is slightly modified to
“penguin C flyer < 0.063, 0.906 >”. At the same
time, the degree of belief of “bird C flyer” is notably
decreased, but since the inductive conclusion is not a
input knowledge, its revision is not reported.

(2) Deduction

Now the system is told:
Then, when asked to find a specific instance of “ani-
mal”, the system answers “Colomba”. To get the an-
swer, the system need (at least) to use three pieces of
its knowledge to do two steps of deduction. The con-
fidence of the conclusion is lower than any premises’,
so it is easier to be revised by future evidence.

“Colomba 1s a swan.”

(3) Induction

When asked “Are birds flyers?”, the result’s truth
value is < 0.6, 0.548 >. The answer is gotten by in-
ducing from three pieces of evidence (dove, swan, and
penguin) independently, then merging the conclu-
sions together through revision. For the symmetric
question “Are flyers birds?”, the answer’s truth value
is more positive but less confident (< 1.0, 0.421 >),
since only two pieces of positive evidence are ob-
served. Each of the results are reported twice, since
the tasks are processed both in chunk bird and chunk
flyer. Generally, results from different chunks are
not necessarily to be the same.

(4) Abduction

The system is provided with knowledge “Cigno is
white” and “Cigno is a flyer”, then is asked “Is Cigno
a dove?”, “Is Cigno a swan?”, “Is Cigno a penguin?”,
“Is Cigno a bird?”, and “Is Cigno a animal?”. Ac-
cording to our interpretation, “Is Cigno a X?” ac-
tually means “to what extent {cigno} inherit X’s
properties and X inherit {cigno}’s instances?” These
questions are answered by abduction in the sense that
the system compare {cigno}’s properties with prop-
erties of dove, swan, and so on, to see to what ex-
tent they are matched. This type of task can also
be referred as “analogy”, “classification”, or “high
level perception” in different contexts. From the re-
sults, we see that the order of the degree of belief
of the results is (decreasingly): swan, bird, animal,
dove. “Is Cigno a penguin?” doesn’t get an answer.
As mentioned previously, it is not guaranteed that
every question will eventually get an answer from
the system. We can also see that the confidence of
“cigno € dove” is increased when more evidence is
processed.

20

(5) Non-monotonic reasoning

The system is told “Tweety is a bird”, then asked
“Is Tweety a flyer?”. Without further knowledge,
the answer is “tweety € flyer < 0.6, 0.493 >” (with
a degree of belief 0.549 — a little more than 0.5),
which can be translated into something like “I guess
it is”. Then the system is told “Tweety is a pen-
guin”. With the previous question still active, the
system changes its mind, and report something like
“Tweety is very unlikely to be a flyer” (formally,
“tweety € flyer < 0.063, 0.815 >", with a degree
of belief 0.142). Here we can see why I said earlier
that there is no final answer for a question. All results
are defaults in the sense that it is always possible for
the system to change its mind.

The whole testing takes about 1.5 minute on a
SPARC station 1. The results are context sensitive,
in the sense if we change the order of the instructions,
or change the time interval between the input tasks,
the results will be slightly different.

From this experiment we can see that NARS can
carry out several types of inference, and they are com-
bined to process tasks. For example, the inductive
conclusion “Most birds are flyers” can later be used
as a premise in deduction. On the other hand, what
type of inference is used to process a task depends on
the type of the task and available knowledge.

I also tried to use “The Jets and The Sharks” prob-
lem ([McClelland and Rumelhart 88]) to test the pre-
vious version of the system, and showed that the
system can carry out functions similar to those of
a connectionist network, such as retrieval by name
(through matching questions to knowledge), retrieval
from partial description or noisy description (through
abduction), spontaneous generalization (through in-
duction), as well as damage recovery (due to dis-
tributed representation) ([Wang 93]).

9 Limitations and Extensions

I’ll distinguish three types of limitations for NARS-
2.2:

1. limitations that can be removed in the future
versions of the system,

2. limitations that may or may not be removed in
the future versions of the system, and

3. limitations that cannot be removed in the future
versions of the system.

9.1 Short-term limitations

NARS-2.2 is an intelligent reasoning system, in the
sense that it is an adaptive system working under
ATKR. It is, at the same time, a finite system, a real-
time system, an ampliative system, an open system,
and a self-organized system. However, this doesn’t
mean it cannot be made “more intelligent”. Actu-
ally, according my working definition of intelligence,
a system can increase its intelligence by extending its
interface language, applying new inference rules, in-
creasing its resources efficiency, self-organizing at a
higher level, and so on.

The interface language of NARS-2.2 is very prim-
itive, since only the “C” and “€” relations between
simple terms can be represented. In the next version,
I’ll try to set up a complete “first order term-oriented
language”, which will include the following major ex-
tensions:

e Define the similarity (or equivalence) relation
“=" as the third inheritance relation between
two terms. “S = P” is identical to “S C P and
P C 5”. Additional inference rules are needed
to manage inferences involving the similarity re-
lation.

e A term may be compound, that is, when S and
T are terms, SUT (unton), SUT (intersection),
and S — T (difference) are valid terms. Addi-
tional inference rules are needed to manage in-
ferences involving the composing and decompos-
ing of compound terms. In the new version, the
system should be able to automatically generate
new terms that can efficiently abstract its knowl-
edge.

e Relations will be defined as Cartesian products of
terms, and the image of a term under a relation
will also be defined. New inference rules will be
introduced to process these structures. In this
way, the system can represent and use knowledge
like “John and Mary is a couple” and “Mary is
John’s wife”.

Beside the extensions of the language and the re-
lated rules, there will be other improvement in the
new version:

e NARS-2.2’s control strategy is too simple to deal
with complex problems. Some refinments are

21

needed to improve the system’s time-space ef-
ficiency. The ideas that will lead to the improve-
ment will mainly come from psychological evi-
dence and theories, for example, NARS can learn
a lot from the psychological study on memory
and attention.

e The system’s user interface need to be re-
designed to become more user-friendly, and to
provide a more vivid picture about how the sys-
tem works.

Since I already have some comparatively clear ideas
about how to overcome these limitations of the cur-
rent system, they are short-term limitations that only
apply to NARS-2.2, but not to future versions of the
system. The new version should be completed by the
middle of 1994.

9.2 Long-term limitations

Even after the implementation of the new version in-
troduced above, that are still many important and
interesting things that NARS cannot do. The follow-
ing are some of them.

Higher order judgments: It’s easy to extend the
first order term-oriented language to higher or-
der: we only need to allow a statement or judg-
ment to be used as a term. In this way, the sys-
tem can represent knowledge like “John knows
that penguins are birds” and “If Mary is John’s
wife, then Ana is Bob’s wife”. What is hard
is to set up inference rules for these higher or-
der judgments. It seems that all the old rules
(those for first order judgments) are still valid,
but there should be something specially for the
higher-order judgments.

Procedural knowledge: If we allow a term to rep-
resent an operation or an event, such as “to tell”
or “to move”, then it is possible for the system
to represent procedural knowledge, and to use
them in planning. But at current time it is still
not clear how to extend a term logic to do this.

Sensory-motor subsystem: The ability to deal di-
rectly with the physical world is not required in
my working definition of intelligence, but if a sys-
tem has sensory-motor mechanism, its interface
language will be greatly extended, therefore will
be more intelligent than a system that only have
a symbolic language interface. However, such

an extension need to use higher order judgments
and procedural knowledge, therefore it is more

difficult.

Natural language interface: Semantically,
NARS-2.2’s interface language is already more
similar to natural language than many other rea-
soning systems, since the meaning of a term or a
judgment is determined by available knowledge,
therefore is fluid and context-sensitive. However,
to make NARS handle natural language is still a
distant goal.

Meta-level self-organizing: All of NARS-2.2s (or
in the near future, NARS-3’s) self-organizations
are in the domain knowledge level. It can gen-
erate new judgments and new terms, and it also
can adjust truth values of judgments and pri-
orities of chunks, tasks and knowledge to build
and modify its knowledge hierarchy, but it can-
not change the system’s personality parameters
(such the size of a chunk), inference rules (such
as how to revise a judgment), or control strategy
(such as to change its forgetting rate). These
meta-level self-organizations require higher or-
der judgments, procedural knowledge, as well as
knowledge about the system itself.

Local axiomazition: Even though I claim that in-
telligence typically happens under AIKR, it is
not contradict with the fact that human beings
can locally axiomize a specific domain by as-
suming sufficient knowledge and resources. In
this way, it is possible for the system to use
numbers and other mathematical configurations,
make counterfactural assumptions, design algo-
rithms, and so on. For such knowledge, we can
let their confidence to be 1, that means they are
conventions made by the system, so will not be
directly used to predict future events, and there-
fore cannot be refused by new evidence. How to
coordinate these analytical knowledge with the
system’s other empirical knowledge is still an
open problem.

Since I don’t have clear ideas about how to extend
NARS to do these things yet, they will remain to be
NARS’s limitations for a long period, and at the same
time become my goals in the future years. However,
I still have reasons to believe that it is better to solve
these problems from a non-axiomatic point of view,
rather than from a full-axiomatic or semi-axiomatic

22

point of view, since all these problems are closely re-
lated to NARS’s working definition of intelligence,
that is, to adapt under AIKR. Therefore, what I'm
doing now is a necessary step toward these goals.

9.3 Permanent limitations

There are limitations that cannot be removed in the
NARS project, since they are fundamentally inconsis-
tent with NARS’s working definition of intelligence.

e Since NARS works under AIKR, it is impossi-
ble for it to have the properties that only a full-
axiomatic system can have, such as consistency,
completeness, and decidability. When NARS is
used to solve practical problems, it cannot guar-
antee that its results are all correct or optimal.

From a theoretical point of view, NARS is not
designed to be an accurate model of human rea-
soning, but to be a reasoning system that has
intelligence (according its working definition of
the concept). The system should follow the same
principles with human mind. However, it is not
necessary to have the same internal structure and
mechanism with human brain, since its hardware
is fundamentally different. Moreover, since it ex-
perience is different from a human being’s, it is
not necessary (though still possible) to have the
same external behaviors with human mind, such
as exactly reproduce some psychological data or
pass a certain type of Turing test.

From a practical point of view, NARS is not de-
signed to solve certain domain problems. It is
not an expert system or other type of computer
application system. It is intelligent, not because
it can solve problems that no (or few) people can
solve (though it is possible in the future), but
because it works in a human way. It will make
not only human achievements, but also human
mistakes.

These limitations are easier to deal with than the
previous ones — we can just ignore them. But they
are still limitations in the sense that if someone is
looking for a computer model for there purposes, then
NARS shouldn’t be a candidate, since it is designed
to achieve other goals.

10 Conclusions

The most important ideas in NARS that distinguish
it from other AI systems and cognition models can
be summarized as the following:

1. Tts working definition of intelligence, which
stresses the insufficiency of knowledge and re-
sources;

2. Its term-oriented language, which represents do-
main knowledge in the form of inheritance rela-
tions between terms;

3. Its measurement and interpretation of truth
value of a judgment, which covers several types
of uncertainty;

4. Tts inference rules, in which deductive, inductive,
abductive, revisive, and backward inferences are
combined in a uniform way;

5. Its controlled concurrence working mode, which
allows the system to work in real time;

6. Its chunk-based memory structure, which pro-
vides a fluid, dynamic, and context-dependent
way to organize knowledge.

All these ideas are closely related with each other,
so it is almost impossible to understand or use some
of them without understanding or using the others.

From NARS-2.2’s practice, I hope to show that it
is possible to establish a fully formalized reasoning
system under the assumption that its knowledge and
resources are usually insufficient to process its tasks.
Though relatively simple, NARS-2.2 is indeed a finite
system, a real-time system, an ampliative system, an
open system, and a self-organized system. It doesn’t
claim to always find correct or optimum answers for
questions, but its behavior is similar to the common
sense reasoning of human mind in many aspects.

The study of artificial intelligence, with all its her-
itage from mathematical logic and computation the-
ory, is still closely bound to the assumption of suffi-
cient knowledge and resource. Given the properties
of most AI domains, AIKR is often treated by Al
researchers as restrictions on the implementation of
a theory of intelligence, rather than on the theory
itself. As a result, many “intelligent systems” can
solve practical problems, but can only do so under
tmpractical conditions, that is, with well-organized
domain knowledge provided by knowledge engineers
and enough resource that can be used for brute-forced

23

search/calculation. What we call intelligent behav-
iors in human beings seldom happen in such a situa-
tion.

However, what should be blamed are not the ideas
of symbolization, formalization, and logic (as sug-
gested by [Dreyfus 92], [Lucas 61], [Searle 84], and
others), but the ideas of aziomazition and computa-
tion. It is true that at a low level, NARS is still
implemented through a aziomatic computational sys-
tem, but itself cannot be reduced into such a system
at the level where it communicates with its environ-
ment. Symbolic systems, especially logical reasoning
systems, still have advantages in reproducing high-
levels intelligent behaviors.

Acknowledgement

I thank David Leake and Steve Larson for their help-
ful comments on the draft of the paper.

References

[1] Aristotle (1989). Prior Analytics. Hackett Pub-
lishing Company.

[2] Bhatnagar R. and Kanal L. (1986). Handling un-
certain information. In Kanal, N. and Lemmer,
J. (eds.) Uncertainty in Artificial Intelligence.
North-Holland.

[3] Carnap, R. (1950). Logical Foundations of Prob-
ability. University of Chicago Press.

[4] Carnap, R. (1952). The Continuum of Inductive
Methods. University of Chicago Press.

[5] Cherniak, C. (1986). Minimal Rationality. The
MIT Press.

[6] Dreyfus, H. (1992). What Computers still Can’t
Do. The MIT Press.

[7] Falkenhainer, B. (1990). A unified approach to
explanation and theory formation. In Shavlik, J.
and Dietterich, T. (eds.) Readings in Machine
Learning. Morgan Kaufmann Publishers.

[8] Feibleman, J. (1946). An Introduction to Peirce’s
Philosophy. Harper and Brothers Publishers.

[9] Good, I. (1983). Good Thinking: The Founda-
tions of Probability and Its Applications. Univer-
sity of Minnesota Press.

[10]

[11]

[12]

[21]

[22]

Hofstadter, D. (1979). Gédel, Escher, Bach: an
FEternal Golden Braid. Basic Books.

Hofstadter, D. and French, R. (1992). Probing
the emergent behavior of Tabletop, an architec-
ture uniting high-level perception with analogy-
making. In Proceedings of the Fourteenth Annual
Conference of the Cognitive Science Society.

Hofstadter, D. and Mitchell, M. (1992). The
Copycat project: a model of mental fluidity
and analogy making. To appear in Holyoak, K.
and Barnden, J. (eds.) Connectionist and Neu-
ral Computation Theory, Volume 2: Analogical
Connections. Ablex Publishing Corporation.

Holland, J. (1986). Escaping brittleness. In
Michalski, R. et al. (eds.) Machine Learning II.
Morgan Kaufmann Publishers.

Kugel, P. (1986). Thinking may be more than
computing. Cognition 22.

Lucas, J. (1961). Minds, machines, and Godel.
Philosophy 36.

Lukasiewicz, J. (1951). Aristotle’s Syllogistic:
From the Standpoint of Modern Formal Logic.
Oxford University Press.

McClelland, J. and Rumelhart, D. (1988). Ezplo-
rations in Parallel Distributed Processing. MIT
Press.

Michalski, R. (1983). A theory and methodol-
ogy of inductive learning. In Michalski, R. et
al. (eds.) Machine Learning. Morgan Kaufmann
Publishers.

Michalski, R. and Kodratoff, Y. (1990). Re-
search in machine learning. In Kodratoff, Y. and
Michalski, R. (eds.) Machine Learning III. Mor-
gan Kaufmann Publishers.

PaaB, G. (1991). Second order probabilities for
uncertain and conflicting evidence. In Bonissone,
P. et al. (eds.), Uncertainty in Artificial Intelli-
gence 6. North-Holland.

Pearl, J. (1988). Probabilistic Reasoning in Intel-
ligent Systems. Morgan Kaufmann Publishers.

Peirce, C. (1932). Collected Papers of Charles
Sanders Peirce (Vol. 2). Harvard University
Press.

24

[23]

[24]

[25]

[26]

[27]

[32]

Reiter, R. (1987). Nonmonotonic reasoning. An-
nual review of computer science 2.

Russell S. and Wefald, E. (1991). Do the Right
Thing. The MIT Press.

Searle, J. (1984). Minds, Brains and Science.
Harvard University Press.

Shafer, G. (1976). A Mathematical Theory of Ev-
idence. Princeton University Press.

Smolensky, P. (1988). On the proper treatment
of connectionism. Behavioral and Brain Sciences
11.

Spies, M. (1989). Syliogistic Inference under Un-
certainty. Psychologie Verlags Union.

Tversky, A, and Kahneman, D. (1974). Judg-
ment under uncertainty. Science 185.

Wang, P. (1986). A Reasoning System That Can
Deal with Uncertainty. Master Thesis, Peking
University.

Wang, P. and Hsu, C. (1987). A discovery-
oriented logic model. Proceedings of the Second
International Conference on Computers and Ap-
plications (Beijing), IEEE press.

Wang, P. (1992). First Ladies and Fluid Log-
ics. Technical Report (No. 62) of the Center for
Research on Concepts and Cognition, Indiana
University.

Wang, P. (1993). Non-Axiomatic Logic (Version
2.1). Technical Report (No. 71) of the Center for
Research on Concepts and Cognition, Indiana
University.

Weichselberger, K. and Péhlmann, S. (1990).
A Methodology for Uncertainty in Knowledge-
Based Systems. Springer-Verlag.

Zadeh, L. (1985). Syllogistic reasoning in fuzzy
logic and its application to usuality and reason-
ing with dispositions. JEEE Transactions, SMC-
15.

Appendix
Notes:

1. The lines lead by “>>>” are instructions, and the lines lead by “<<<” are reported results.

2. The character “%” is used to indicate “C”, and the character “@” is used to indicate “c”.
Chez Scheme Version 4.0a
Copyright (c) 1991 Cadence Research Systems
> (load '"nmars")
> (set-bg)
>>> NEW TASK [urgency=15, duration=3]: dove % bird <1, 0.9>
>>> 4 ATOMIC STEPS
>>> WNEW TASK [urgency=15, duration=3]: dove % flyer <0.9, 0.9>
>>> 10 ATOMIC STEPS
>>> WEW TASK [urgency=15, duration=3]: dove % swimmer <0, 0.9>
>>> 10 ATOMIC STEPS
>>> NEW TASK [urgency=15, duration=3]: dove % white <1, 0.3>
>>> 10 ATOMIC STEPS
>>> NEW TASK [urgency=15, duration=3]: dove % white <0, 0.3>

>>> 40 ATOMIC STEPS

<<< RESULT: dove % white <0.5, 0.462> d = 0.5
<<< RESULT: dove % white <0.5, 0.462> d = 0.5
<<< RESULT: dove % white <0.5, 0.462> d = 0.5
<<< RESULT: dove % white <0.5, 0.462> d = 0.5

>>> NEW TASK [urgency=15, duration=3]: swan % bird <1, 0.9>
>>> 20 ATOMIC STEPS
>>> WNEW TASK [urgency=15, duration=3]: swan % flyer <0.9, 0.9>

>>> 20 ATOMIC STEPS

25

>>> NEW TASK [urgency=15, duration=3]: swan J% swimmer <0.9, 0.9>
>>> 20 ATOMIC STEPS
>>> WNEW TASK [urgency=15, duration=3]: swan % white <0.9, 0.9>
>>> 100 ATOMIC STEPS
>>> WEW TASK [urgency=15, duration=3]: penguin % bird <1, 0.9>
>>> 40 ATOMIC STEPS
>>> WNEW TASK [urgency=15, duration=3]: penguin % flyer <0, 0.9>
>>> 40 ATOMIC STEPS

<<< RESULT: penguin % flyer <0.063, 0.906> d = 0.104
>>> NEW TASK [urgency=15, duration=3]: penguin % swimmer <0.9, 0.9>
>>> 100 ATOMIC STEPS
>>> WEW TASK [urgency=15, duration=3]: bird % animal <1, 0.9>
>>> 300 ATOMIC STEPS
(ded)
>>> NEW TASK [urgency=10, duration=3]: colomba @ swan <1, 0.9>
>>> 200 ATOMIC STEPS
>>> WEW TASK [urgency=10, duration=3]: ? @ animal
>>> 300 ATOMIC STEPS

<<< RESULT: colomba @ animal <1.0, 0.729> d = 0.864
(ind)
>>> NEW TASK [urgency=10, duration=3]: bird % flyer
>>> 200 ATOMIC STEPS

<<< RESULT: bird % flyer <0.6, 0.548> d = 0.555

<<< RESULT: bird % flyer <0.6, 0.548> d 0.5565
>>> NEW TASK [urgency=10, duration=3]: flyer % bird

>>> 250 ATOMIC STEPS

26

<<<

<<<

> (abd)

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

NEW

200

NEW

300

NEW

250

<<<

<<<

<<<

NEW

250

<<<

<<<

NEW

250

NEW

250

<<<

<<<

NEW

400

<<<

RESULT: flyer % bird <1.0, 0.421> d

RESULT: flyer % bird <1.0, 0.421> d

TASK [urgency=20, duration=3]: cigno @
ATOMIC STEPS
TASK [urgency=20, duration=3]: cigno @
ATOMIC STEPS
TASK [urgency=15, duration=5]: cigno @
ATOMIC STEPS
RESULT: cigno @ dove <1, 0.132> a =
RESULT: cigno @ dove <1, 0.132> a =
RESULT: cigno @ dove <1, 0.267> a =
TASK [urgency=15, duration=5]: cigno @
ATOMIC STEPS
RESULT: cigno @ swan <1.0, 0.415> d
RESULT: cigno @ swan <1.0, 0.415> d
TASK [urgency=15, duration=5]: cigno @
ATOMIC STEPS
TASK [urgency=15, duration=5]: cigno @
ATOMIC STEPS
RESULT: cigno @ bird <1.0, 0.379> d
RESULT: cigno @ bird <1.0, 0.379> d
TASK [urgency=15, duration=5]: cigno @
ATOMIC STEPS

RESULT: cigno @ animal <1.0, 0.341>

27

0.71

0.71

white <1, 0.9>

flyer <1, 0.9>

dove

0.566

0.566

0.634

swan

0.708

0.708

penguin

bird

0.69

0.69

animal

d = 0.67

<<< RESULT: cigno @ animal <1.0, 0.341> d = 0.67
> (om)
>>> WEW TASK [urgency=20, duration=3]: tweety @ bird <1, 0.9>
>>> 200 ATOMIC STEPS
>>> NEW TASK [urgency=20, duration=50]: tweety @ flyer
>>> 200 ATOMIC STEPS
<<< RESULT: tweety @ flyer <0.6, 0.493> d = 0.549
<<< RESULT: tweety @ flyer <0.6, 0.493> d = 0.549
>>> NEW TASK [urgency=20, duration=3]: tweety @ penguin <1, 0.9>

>>> 100 ATOMIC STEPS

<<< RESULT: tweety @ penguin <1.0, 0.904> d = 0.952
<<< RESULT: tweety @ flyer <0.063, 0.819> d = 0.142
<<< RESULT: tweety @ penguin <1.0, 0.904> d = 0.952

28

