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Abstract: Logic should return its focus to valid reasoning in real-world situations.
Since classical logic only covers valid reasoning in a highly idealized situation,
there is a demand for a new logic for everyday reasoning that is based on more
realistic assumptions, while still keeps the general, formal, and normative nature of
logic. NAL (Non-Axiomatic Logic) is built for this purpose, which is based on the
assumption that the reasoner has insufficient knowledge and resources with respect
to the reasoning tasks to be carried out. In this situation, the notion of validity has to
be re-established, and the grammar rules and inference rules of the logic need to be
designed accordingly. Consequently, NAL has features very different from classical
logic and other non-classical logics, and it provides a coherent solution to many
problems in logic, artificial intelligence, and cognitive science.
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1 Logic and Everyday Reasoning

1.1 The historical changes of logic

In a broad sense, the study of logic is concerned with the principles and forms of
valid reasoning, inference, and argument in various situations.

The first dominating paradigm in logic is Aristotle’s Syllogistic [Aristotle, 1882],
now usually referred to as traditional logic. This study was carried by philosophers
and logicians including Descartes, Locke, Leibniz, Kant, Boole, Peirce, Mill, and
many others [Bocheński, 1970, Haack, 1978, Kneale and Kneale, 1962]. In this tra-
dition, the focus of the study is to identify and to specify the forms of valid reasoning
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in general, that is, the rules of logic should be applicable to all domains and situa-
tions where reasoning happens, as “laws of thought”.

In syntax, traditional logic is a term logic, with the following features:

Categorical statements: Each statement contains a subject term and a predicate
term (each representing a category), and they are linked by a copula (representing
a relationship of generalization).

Syllogistic rules: Each inference rule takes two premises (both are categorical
statements) sharing a common term, and produces a conclusion (also a categori-
cal statement) between the other two terms.

In semantics, traditional logic has the following features:

Binary truth-value: Each statement is either true or false, exclusively, as de-
manded by the Law of Non-contradiction and the Law of Excluded Middle.

Correspondence theory of truth: “To say of what is that it is not, or of what is
not that it is, is false, while to say of what is that it is, and of what is not that it is
not, is true.” [Aristotle, 2005]

Validity as truth-preserving: An inference rule is valid if and only if it always
derives true conclusions from true premises.

Consequently, this type of logic focuses on the most salient form of reasoning, bi-
nary deduction.

Even though this tradition had made great contributions, its limitations became
unacceptable when a symbolic logic was needed in the study of the foundation
of mathematics, and consequently Frege, Whitehead, and Russell established first-
order predicate calculus [Frege, 1999, Whitehead and Russell, 1910], which is now
usually referred to as classical logic. This logic is similar to traditional logic in the
semantic features listed above, but has very different syntactic features:

Function–argument statements: Each proposition contains a function and a
number of arguments,1

Truth-functional inference rules: Each rule has premises and a conclusion that
are only related in truth-value, not necessarily in content.

Consequently, this logic is not a “term logic”, but a “predicate logic”. Furthermore,
it is a “mathematical logic” – not only is its form mathematical, but also its subject
matter, as it was designed primarily to provide a logical foundation for mathematics
[Haack, 1978, Kneale and Kneale, 1962]. The most important form of reasoning in
mathematics is theorem proving, and in this process theorems are derived from ax-
ioms and definitions, following well-defined inference rules. To serve this purpose,
Frege took a very strong “anti-psychologism” position, and argued that logic should
study “the laws of truth” rather than “the laws of thought”. As a result, logicians
have moved away from everyday reasoning process, and focused their attention on
abstract formal systems, which often has little to do with actual thinking in the hu-
man mind.

1 Now the “function” is usually called “predicate”, though it should not be confused with the
“predicate term” in term logic, since they are very different in major aspects.
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Though the majority of post-Fregean logicians accepts the anti-psychologism
position, and no longer builds logic systems according to the human reasoning pro-
cess in any sense, they nevertheless sometimes apply the logic systems to situations
outside mathematics, under the implicit assumption that mathematical knowledge
is human knowledge in the “purest” form, so valid reasoning in mathematics sets
up an ideal case for the other domains to approximate. It is intuitively acceptable
to treat reliable knowledge as “axioms”, so as to reveal their implications as “theo-
rems”. Accordingly, psychologists, linguists, and many other researchers have been
trying to apply mathematical logic into their study.

For instance, when explaining human reasoning process, there are two competing
schools in psychology: the “mental logic” school [Braine and O’Brien, 1998] and
the “mental model” school [Johnson-Laird, 1983]. Though these two schools have
very different opinions on how humans reason, both theories actually come from
classical logic, and their difference is just that the former selectively adopts the
inference rules of classical logic, while the latter selectively adopts the semantic
theory of classical logic. In all the related discussions, one question is rarely asked:
if classical logic was not designed as a normative model of human reasoning at all,
why to use it to judge the validity, or to explain the mechanism, of human reasoning?

Actually, it is well documented that the reality of human reasoning systematically
differs from the prescription of classical logic. One example is Wason’s Selection
Task [Wason and Johnson-Laird, 1972]: when human beings are asked to check the
truthfulness of a statement, they often go after confirming evidence, while “accord-
ing to (classical) logic” only counter-evidence matters. This result is widely cited as
evidence of the “illogical” or “irrational” nature of human thinking.

Similar cases can be found in other domains. Popper’s claim that a scientific
theory can only be falsified, but never verified [Popper, 1959] is based on the asym-
metry between falsification and verification of a universal proposition in predicate
calculus, just like in Wason’s Selection Task. As soon as a scientific theory is taken
to be such a proposition, the conclusion follows. In linguistics, Montague attempted
to provide a semantic theory for natural languages using the semantic model devel-
oped for mathematical logic [Montague, 1970]. It has not been very successful in
practical applications, though nevertheless is still widely taken as a cornerstone of
formal semantics in linguistics.

Artificial Intelligence (AI) comes into this discussion with a different goal:
instead of explaining the human mind, here the main task is to build “think-
ing machines” [Turing, 1950, Feigenbaum and Feldman, 1963]. There have been
many debates on the objective and methodology of AI [Kirsh, 1991, Wang, 2008],
and among them there is the “logicist AI” school [Hayes, 1977, McCarthy, 1988,
Nilsson, 1991]. In a broad sense, this approach suggests to identify the “laws of
thought” that govern human thinking, formulate them as a logic, and then imple-
ment the logic in a reasoning system, so as to make computers to “think like a
human”. Since here the application domain is not restricted to mathematics, it has
been clear from the very beginning that classical logic is not the proper tool for the
job, and the difficulty is on formalizing everyday, real-world, and commonsense rea-
soning [McCarthy, 1989]. Even so, classical logic has been taken as a starting point
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in many AI proposals. For example, Hayes suggested to formalize “Naive Physics”
[Hayes, 1979] in first-order logic, and for several decades the CYC project has been
formalizing human “common sense knowledge” in various domains in a variant of
first-order predicate calculus [Lenat, 1995].

In summary, in AI and cognitive science (CogSci), “logic” has returned to its
original subject matter, that is, reasoning in all domains, or in everyday reasoning,
though the most common tool used is still the logic developed for a special type of
reasoning in a special domain, that is, theorem proving in mathematics.

1.2 Issues in everyday reasoning

Is there any fundamental difference between “the logic of theorem proving” and “the
logic of everyday thinking”? After all, mathematical logic has achieved great suc-
cess in mathematics, computer science, and many other fields [Halpern et al., 2001].
Why can’t it provide a normative model for reasoning in general?

This is a much-discussed topic [Birnbaum, 1991, Haack, 1996, McDermott, 1987,
Minsky, 1990, Stenning and van Lambalgen, 2008], and a number of issues have
been raised to show the limitations of mathematical logic when applied to everyday
reasoning. Though the issues are explored under different considerations, each of
them more or less shows a difference between the demand of classical logic and the
reality of human thinking.

Though the existence of such differences are widely acknowledged, there are
diverse attitudes on how to interpret them, where the opinions can be roughly clas-
sified into three schools:

Radical: “The difference shows a fundamental limitation of logic, and provides
evidence for the conclusion that the human mind does not follow any logic. The
logical approaches toward AI is doomed to fail.”

Liberal: “The difference shows a fundamental limitation of classical logic, though
it is still possible to be resolved within the framework of logic, by certain non-
classical logic. Logical AI is still feasible if a proper logic is used.”

Conservative: “The difference shows no limitation of classical logic at all, be-
cause the problem is ill-defined, unjustified, or beyond the scope of logic. Logical
AI is still feasible if classical logic is used properly.”

In the following, several major issues are briefly described, together with the
non-classical logic systems proposed, either in logic or in AI. The corresponding
“radical” and “conservative” responses are not presented here, though they will be
addressed later in the article.

Uncertainty: In everyday reasoning, a statement is usually neither absolutely true
nor absolutely false, but somewhere in between. Furthermore, since an intel-
ligent system should be able to compare different possibilities, a three-valued
logic (where a statement can be “uncertain”) is not enough, and some type of nu-
merical measurement of the uncertainty is often needed. Solutions to this issue
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include various forms of probabilistic logic [Nilsson, 1986, Adams, 1998] and
fuzzy logic [Zadeh, 1983].

Relevance: Classical logic suffers from the notorious “paradox of material im-
plication” – the “implication” defined in the logic does not match the intu-
itive meaning of “if–then”, and it leads to various “logically correct” but intu-
itively problematic inference, where the premises and conclusions are uncon-
nected in their contents. This issue triggered the development of relevance logic
[Anderson and Belnap, 1975]. The problem has additional significance in AI, be-
cause no system can afford the computational resources to generate all the “true-
but-useless” conclusions.

Openness: In everyday reasoning, the system cannot evaluate the truth-value of
statements according to a constant set of axioms, but has to open to new evi-
dence, which may challenge the existing beliefs. To work in these situations, one
may depend on some “default rules” to get tentative conclusions in the absence
of counter-evidences, and to revise these conclusions when counter-evidences
show up. This is what non-monotonic logics attempt to do [McCarthy, 1989,
Reiter, 1987]. Furthermore, if some contradictions cannot be resolved instantly,
the logic has to tolerant them and to be paraconsistent [Priest et al., 1989].

Amplification: Classical logic only covers deduction, but there are also induction,
abduction, analogy, and other types of inference that play crucial roles in ev-
eryday reasoning. These types of inference are often called “ampliative”, since
their conclusions seem to include knowledge that are not in the premises, which
make them useful when the system has to solve problems beyond its knowl-
edge scope. However, since these types of inference are not “truth-preserving” in
the traditional sense, their validity has been a controversial topic, and many dif-
ferent solutions have been proposed, including various forms of inductive logic
[Kyburg, 1970, Flach and Kakas, 2000].

Though the above-mentioned non-classical logics differ greatly in their details,
they share the methodological assumption that the limitations of classical logic can
be overcome in a divide-and-conquer manner. Each non-classical logic typically
addresses one of the limitations, by extending or revising classical logic in cer-
tain aspect, while keeping the other classical features [Haack, 1996, Gabbay, 2007,
Russell and Norvig, 2010]. Such an approach is intuitively appealing, but it leaves
the theoretical question unanswered: how should these logics be coordinated in real-
world situations?

This question has special significance for the emerging field of Artificial Gen-
eral Intelligence (AGI), which distinguishes itself from the mainstream AI by
stressing the general-purpose nature of intelligence [Goertzel and Pennachin, 2007,
Wang and Goertzel, 2007]. As the general-purpose nature of logic is exactly what
AGI demands, there are AGI approaches that are fully or partially based on logic
[Bringsjord, 2008, Goertzel et al., 2008, Gust et al., 2009, Wang, 2006]. Even so,
what type of logic is suitable for AGI is still a topic under debate.

It may seem that the AGI researchers should wait for the logicians to design
proper logical models for their tasks, and then implement them into computer sys-
tems, rather than trying to build new logics by themselves. It is not the case, because
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AGI researchers often approach the problem of reasoning from special perspectives
and with special considerations, so they may be able to explore opportunities that
have not been considered by logicians.

Given the nature of the field, an AGI system needs to handle all the above issues
in reasoning (and more), and there are two overall strategies:

Integration: The system uses multiple techniques (and some of them are log-
ics), and its overall function is achieved by the coordination of these techniques
[Goertzel, 2009].

Unification: The system uses a single logic, though other techniques (and some
of them are logics) can be used as optional tools to achieve the system’s overall
function [Wang, 2004b].

The following description will introduce a concrete example of the unification strat-
egy, and later compare it with the integration strategy.

1.3 Different types of logic

If everyday reasoning indeed has a logic, it must be able to handle the issues listed
previously that cannot be properly treated by classical logic. Before getting into
the details, let us first analyze the working environment of everyday reasoning by
comparing it with that of theorem proving.

Reasoning is a process in which new knowledge is derived from existing knowl-
edge, and this process costs computational resources, mainly processing time and
memory space. Though the above description uses computer terminology, similar
things can be said for the human mind. Now let us compare these two types of
reasoning with respect to their assumptions on knowledge and resources.

Theorem proving occurs in an axiomatic system, where the set of axioms is pre-
determined, and each axiom is assumed to be true. The task of reasoning is to reveal
the logical implications of the axioms, the theorems. To “prove” a theorem means
to find a reasoning process that starts at the axioms and ends at the theorem, and in
each step of the process a reasoning rule is used, with some axiom(s) and/or proven
theorem(s) as premise(s). Whether a theorem is proven has nothing to do with the
resources the process takes, as far as they are finite.

For a logic to be used in theorem proving, it is necessary for it to be sound, in
the sense that all of its inference rules are valid as defined by its semantics, where
validity means truth-preserving, that is, only deriving true conclusions when the
premises are true. A related property of the axiom–theorem set is consistency, that
is, contradiction free. It is also highly desired for a logic to be complete, meaning
that all the truths in the domain can be proved as theorems by the logic. When all
these properties are satisfied, the set of truth and the set of axioms and theorems
coincide, and the logic fully satisfies our need.

If a reasoning system has all these features, I call it a “pure-axiomatic reason-
ing system”, and say that it is based on the assumption of “sufficient knowledge
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and resources”, since all relevant knowledge needed for the system to do its job is
all embedded in its axioms at the beginning, and the system can afford the time–
space required for its theorem-proving activity. I will call the logic governing this
reasoning system a “pure-axiomatic logic” or simply “axiomatic logic”.2

Compared to theorem proving, everyday reasoning serves a fundamentally dif-
ferent function for cognitive systems. Reasoning is needed to provide guidance for
us to deal with the current situation and to prepare for the future situations, accord-
ing to what we already know. However, since our empirical knowledge comes from
past experience, there is no logical guarantee that they will always correctly predict
the future, as argued by Hume [Hume, 1748]. Even though some knowledge is sta-
ble enough to be taken as “truth”, it and its logical implications are still far from
enough to answer the challenges we must face, not to mention that there are time-
restrictions on how soon the answers are needed, so not all possible alternatives can
be considered.

This real-world restriction has been referred to as “AIKR”, for “Assumption of
Insufficient Knowledge and Resources” [Wang, 1995, Wang, 2011]. Concretely, this
assumption consists of three parts:

Finite: At any moment, the system only has a constant amount of computational
capacity (the number and speed of processors, the size of memory and storage,
etc.).

Real time: Tasks may appear at any moment, and each has time requirements at-
tached (as deadline, urgency level, etc.).

Open: A task may have novel content, such as new evidence that conflicts with the
existing beliefs, or new problem that is beyond the system’s current knowledge
scope.

It is not hard to recognize that AIKR is a restriction under which everyday rea-
soning is carried out, and we also hope AGI systems to work in such situations.
Classical logic cannot be applied in such an environment, even approximately, sim-
ply because many major factors here are not (and should not be) under consideration
in theorem proving at all.

If a reasoning system has to work in such an environment, what kind of “logic” it
has to follow? If we take the “liberal” position, and believe that reasoning activities
in such a situation still can show certain rationality, we have to conclude that even
though various non-classical logics have been moving in this direction, they have not
moved far enough from classical logic, in that each of them accepts AIKR partially,
rather than completely. For this reason, they can be referred to as “semi-axiomatic
logics”, while what we need for everyday reasoning is a “non-axiomatic logic” that
is designed to completely accept AIKR.

One common objection to this analysis is to deny the possibility of such a “non-
axiomatic” logic – some people will agree to call such a system “a bunch of heuris-
tics” or “rule-based”, but disagree to call it a “logic”. This response brings us back

2 Please note that “axiomatic logic” does not mean that all the inference rules of the logic are
derived from some axioms. Axiomatization at the meta-level (among inference rules) is not the
same as that at the object-level (among domain knowledge).
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to the fundamental notions: (1) What is “logic”? — It is the study of valid inference;
(2) What is a valid inference rule? — It must be truth-preserving; (3) What is truth?

Now we have reached the core of this discussion. Classic logic is based on
a correspondence theory of truth [Haack, 1978]. When the logic is designed and
analyzed, the truth-value of a statement is defined with respect to a model, using
a model-theoretic semantics [Barwise and Etchemendy, 1989]. However, when the
logic is used in a reasoning system, the truth-value of a statement is decided with
respect to its relation with the axioms or premises with established or assumed truth-
fulness, according to a proof-theoretic semantics [Schroeder-Heister, 2006]. To ap-
ply such a logic to a concrete domain means that there is domain knowledge whose
truthfulness can be trusted, and all required conclusions can be derived from such a
reliable foundation.

In everyday reasoning, on the contrary, by definition no such a basis can be found.
All knowledge, including the initially given premises, may be challenged by future
evidence, and the system does not know enough to perfectly solve all problems. No
matter what the system does, its conclusions will be fallible. If validity is understood
as “producing infallible conclusions”, then the system cannot have this property
when dealing with all the problems it has to face.

The common answer is to say that the above task is beyond the scope of logic,
and what humans do in this situation only have psychological, but no logical, expla-
nation [Hume, 1748, Popper, 1959]. What is missed by this answer is the possibility
of another type of logic, based on a different sense of validity and truth. After all,
we have the intuitive feeling that even when it is impossible to get infallible con-
clusions, some inference rules still seem more “reasonable” than the alternatives,
and there can be vague consensus among human beings on what conclusions were
“reasonable” given the derivation context, though these conclusions later turned out
to be wrong when compared with further information.

A new form of rationality, relative rationality, has been proposed [Wang, 2011],
by which a “rational” solution is the best one the system can found under the current
knowledge–resource restriction. This idea resembles Simon’s “bounded rationality”
and some other ideas [Simon, 1957, Good, 1983, Cherniak, 1986, Anderson, 1990,
Russell and Wefald, 1991, Gigerenzer and Selten, 2002]. What makes this new ap-
proach different is that it is instantiated by a formal logic designed to completely
accept AIKR, and the logic has been mostly implemented in a computer system
[Wang, 1995, Wang, 2006, Wang, 2013].

2 An AIKR-based Logic

NAL (Non-Axiomatic Logic) is the logic part of NARS (Non-Axiomatic Reasoning
System), an AGI project aimed at a thinking machine that is fully based on AIKR
(Assumption of Insufficient Knowledge and Resources) [Wang, 2006]. Since the
details of NAL has been described in many publications, especially [Wang, 2013],
in this chapter it is not fully specified, but used as an example of a new type of logic.
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Using NAL as a concrete case will help us to clarify the issues in the study of logic
addressed previously.

2.1 Validity and semantics

A key feature of NAL is its “experience-grounded” semantics [Wang, 2005], which
realizes the notion of relative rationality. According to this semantics, the truth-
value of a statement measures the support the statement gets from the available
evidence collected from the system’s experience. Since evidence can be either pos-
itive (agreeing with the statement) or negative (dusagreeing with the statement), a
binary truth-value will not be informative enough for the system to choose among
competing statements. Instead, a numerical representation becomes necessary.

Under this definition of truth-value, the “validity” of an inference rule of NAL
still means “truth preserving”, that is, the truth-value of the conclusion generated by
the rule should correctly measure the evidential supported provided by the premises
(with their own truth-values), without considering the other knowledge the system
has. Unlike in a correspondence theory of truth, such a truth-value is not determined
according to the “state of affairs” in the world or a model.

Since in a valid inference step the premises must provide evidence for the con-
clusion, they must be relevant in content. Therefore NAL cannot use the traditional
“truth-functional” inference rule, where if a proposition in the premise or conclusion
of a valid step is replaced by another one with the same truth-value, the inference
remains valid. In NAL it is no longer the case because the evidence supporting one
statement may not support the other statement to the same extent merely because
the two statements have the same truth-value.

Experience-grounded semantics is very different from model-theoretic seman-
tics. It bears some similarity to proof-theoretic semantics [Schroeder-Heister, 2006]
in spirit, though in NAL the reasoning process is no longer a “proof” that decides
the truth-value of the conclusion conclusively. Instead, in NAL the truth-value of a
conclusion is evaluated in each step inconclusively, since it can always be revised
by further consideration with new evidence. Therefore in NAL “truth” is fundamen-
tally subjective and changeable, though by no means arbitrary. Such a truth-value
is in coherent with AIKR, since it only depends on available evidence that comes
from the system’s past experience, and is obtained using the resources allocated to
the relevant reasoning tasks.

To be compatible with such a semantics, the formal language of NAL must allow
the evidence of a statement to be naturally defined and measured.

NAL uses a formal language Narsese for internal representation and external
communication. Narsese is an “term-oriented language”, also known as “categori-
cal language”, as exemplified by Aristotle’s logic [Aristotle, 1989]. Different from
the “function–arguments” format of classical logic, a sentence in a term-oriented
language has the format of “subject–copula–predicate” format, as mentioned previ-
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ously. In the simplest situation, a term is just an internal identifier of a category or
concept. In the following description, English common nouns are used as terms.3

The most basic copula of NAL is “inheritance”, expressed by ‘→’. In its idealized
form, it is a binary relation between terms, and is defined by being reflexive and
transitive. The intuitive meaning of inheritance statement “S→ P” is that “S is a
specialization of P”, and equivalently, “P is a generalization of S”. In this way the
intuitive meaning of Narsese statements like “raven→ bird” and “water→ liquid”
can be understood.

From a given (finite) set of inheritance statements, called the system’s “ideal-
ized experience”, some other inheritance statements can be derived according to the
transitivity of the copula. Formally, the transitive closure of the idealized experience
forms the system’s “knowledge”, or “truths”. For a given term T in the system’s ex-
perience, the set of its known specializations (plus itself) is called its extension, T E ,
and the set of its known generalizations (plus itself) is called its intension, T I . For
example, if “water→ liquid” is in the system’s experience, then water ∈ liquidE

and liquid ∈ waterI . It can be proved that “S→ P” if and only if SE ⊆ PE , as well
as PI ⊆ SI .

Now we can move from binary statements to multi-valued statements by using
the former to define the latter. For a statement “S→P”, its positive evidence consists
of the terms in E+ = (SE ∩PE)∪ (PI ∩ SI), because as far as these terms are con-
cerned, the statement is correct; the negative evidence of the statement consists of
the terms in E−= (SE−PE)∪(PI−SI), because as far as these terms are concerned,
the statement is incorrect.

The amount of positive, negative, and total evidence are defined as w+ = |E+|,
w− = |E−|, and w = w++w− = |SE ∪PI |, respectively. The truth-value of the state-
ment is represented by a pair of real numbers 〈 f ,c〉 in [0,1]× (0,1), where f is the
frequency, defined as w+/w, that is, the proportion of positive evidence among all
evidence, and c is the confidence, defined as w/(w+ k), that is, the proportion of
current evidence among all evidence after the coming of new evidence of amount k,
where k is a constant parameter. In the following discussion, we take k = 1, that is,
the current evidence is compared with a unit amount to indicate how much evidence
the system already has on the statement.

Given this extension of truth-value, whether a term is in the extension or intension
of another term is also a matter of degree. A statement with truth-value is called a
judgment, and judgment “S→ P〈 f ,c〉” indicates that S is in the extension of P, and
P is in the intension of S, both to the extent measured by 〈 f ,c〉. The meaning of a
term is determined by its extension and intension, i.e., the system’s knowledge on
its relations with other terms.

Now we can see why the semantics of NAL called “experience-grounded”: given
an idealized experience, the truth-value of the statements and the meaning of the
terms are all determined accordingly. Since experience stretches in time, truth-value
and meaning may change, and not necessarily converge, since no restriction is made
on the content of the system’s future experience.

3 This usage does not suggest that such a term will have the same meaning as what the word means
to an English speaker, but that their meanings have overlap to certain extent.
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The way truth-value and meaning are defined is not how they are actually ob-
tained when the logic is used. Under AIKR, the actual experience is a stream of
Narsese judgment. The derived judgments are generated by the inference rules, each
with a truth-value indicating the evidence provided by the premises. Here the func-
tion of the semantics is to interpret the input and output judgments, as well as to
guide the design of the inference rules. No knowledge, given or derived, has the
status of an “axiom”, that is, with a known and invariable truth-value. This is why
NARS and NAL are called “non-axiomatic”.

2.2 Basic inference rules

As a term logic, an inference rule of NAL typically takes two premises that share a
common term, and generates a conclusion between the other two terms. To be con-
crete, let us say that the first premise is between M and P with truth-value 〈 f1,c1〉,
the second premise is between M and S with truth-value 〈 f2,c2〉, and the conclusion
is “S→ P〈 f ,c〉”, where f and c are calculated from the truth-values of the premises
by a truth-value function.

The truth-value function is designed by first treating all the involved quantities as
Boolean variables that only take values in {0, 1}. Then, Boolean functions are estab-
lished among these variables according to the semantics. Finally, the Boolean func-
tions are extended into real-number functions using the product triangular norm:

not(x) = 1− x, and(x,y) = x× y, or(x,y) = not(and(not(x),not(y)))

The most straightforward rule is the deduction rule:

{M→ P〈 f1,c1〉, S→M 〈 f2,c2〉} ` S→ P〈 f ,c〉

This rule extends the transitivity of the inheritance copula from the binary case to
the general (multi-valued) case. Here the binary inheritance relation can be seen as
a special case of the multi-valued version when f is 1 and c is converging to 1. So
the truth-value function of this rule is given by

f = and( f1, f2), c = and( f1,c1, f2,c2)

Following the insight of Peirce [Peirce, 1931], the induction rule and the abduc-
tion rule are obtained by switching the conclusion of the deduction rule with each
of its premises, respectively. After renaming the terms and variables, they are:

Induction: {M→ P〈 f1,c1〉, M→ S 〈 f2,c2〉} ` S→ P〈 f ,c〉

Abduction: {P→M 〈 f1,c1〉, S→M 〈 f2,c2〉} ` S→ P〈 f ,c〉

Unlike deduction, these two rules are invalid in their binary form (i.e., when the
truth-values are omitted and all the statements involved are taken to be “true”). How-
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ever, in NAL they are valid, as they exactly correspond to the extensional component
and the intensional component of evidence of the conclusion, respectively. Accord-
ing to the definition of evidence, for induction and abduction we have, respectively

Induction: w+ = and( f1,c1, f2,c2), w− = and(not( f1),c1, f2,c2)

Abduction: w+ = and( f1,c1, f2,c2), w− = and( f1,c1,not( f2),c2)

Induction and abduction are “weak inference”, since in their conclusion w < 1, so
c < 0.5 (when k = 1). On the other hand, deduction is “strong inference”, since the
confidence of its conclusion takes 1 as the upper bound. In this way, the traditional
“deductive inference vs. non-deductive inference” distinction is still made in NAL,
though it is quantitative, in that the conclusions of deduction are “stronger” (less
sensitive to new evidence) than those of induction and abduction.

When the same statement is supported by disjoint bodies of evidence, there will
be two truth-values for the same statement. Whenever such a pair of judgments is
located, the revision rule of NAL generates a conclusion that is based on the pooled
evidence. The following truth-value function comes from the additivity of amount
of evidence:

w+ = w+
1 +w+

2 , w− = w−1 +w−2 , w = w1 +w2

The revision rule is the only inference rule in NAL whose conclusion has a higher
confidence value than those of the premises. Through this revision process, judg-
ments become stronger by merging with each other, and evidence from different
sources is accumulated.

With the above rules, NAL can be used to answer questions. For an “yes/no”
question on statement “S→ P”, the choice rule picks a matching judgment with the
highest confidence value; for an “what” question of the form “S→ ?” or “?→ P”,
this rule picks a matching judgment with the highest expectation value e, where
e = c( f −0.5)+0.5.

When a question cannot be directly answered by available judgments, the syllo-
gistic rules can be used for backward inference to derive questions from the existing
questions and relevant judgments, under the condition that the answers of the derive
questions can contribute to answers of the original questions.

2.3 Layered structure of NAL

In the current design [Wang, 2013], NAL is introduced in 9 layers, NAL-1 to NAL-
9. Each layer extends the grammar rules, semantics, and inference rules to increase
the expressive and inferential power of the logic, while respecting AIKR.

NAL-1 has been mostly described above. It is the simplest non-axiomatic logic,
where the language includes inheritance statements between atomic terms, the se-
mantics is experience-grounded, and the main inference rules are deduction, induc-
tion, abduction, revision, and choice.
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Restricted by the chapter length, the other layers are only briefly described in the
following. For the details, see [Wang, 2013].

NAL-2 introduces a similarity copula, ‘↔’, as a symmetric version of inheri-
tance. In its binary form, S↔ P is defined as (S→ P)∧ (P→ S), and the evidence
of either inheritance statement is taken as evidence of the similarity statement.

With two copulas, the syllogistic rules of the system have three new forms.

• The comparison rule is a weak rule like induction and abduction, except that its
conclusion is a similarity statement, obtained by comparing the two terms with a
third term in their extension or intension;

• The analogy rule uses a similarity statement to carry out term substitution in an
inheritance statement;

• The resemblance rule extends the transitivity of the similarity copula from binary
to multi-valued.

These two copulas form a conceptual hierarchy, with inheritance for the “verti-
cal” relations, and similarity for the “horizontal” relations. NAL-2 also introduces
two special types of term to indicate the “floor” and “ceiling” of this hierarchy, re-
spectively. An extensional set {T} cannot be further specialized, and an intensional
set [T ] cannot be further generalized. For example, {Aristotle} (“Aristotle-like”)
represents the concept whose extension is fully specified by a single instance, and
[black] (“black things”) represents the concept whose intension is fully specified by
a single property. The term in the set roughly correspond to a proper noun and an
adjective in English, respectively.

NAL-3 introduces compound terms, each of which is formed by a connector and
a few component terms. In particular, in this layer four set-theoretic compounds are
defined, together with the inference rules that compose and decompose them.

The compound term (T1∩T2) is the extensional intersection of terms T1 and T2,
and a composition rule is

{M→ T1 〈 f1,c1〉, M→ T2 〈 f2,c2〉} `M→ (T1∩T2)〈 f1 f2,c1c2〉

The compound term (T1−T2) is the extensional difference of terms T1 and T2, and
a composition rule is

{M→ T1 〈 f1,c1〉, M→ T2 〈 f2,c2〉} `M→ (T1−T2)〈 f1(1− f2),c1c2〉

These compositional rules are not exactly “syllogistic”, because they do not build
new relations among the given terms. However, since they still demand the premises
to have a common term, they can be considered as syllogistic in a broader sense of
the notion.

There are also intensional intersection and intensional difference that are defined
symmetrically to the above two compounds, and in them the common term is in
the intention of the other terms. Furthermore, extensional set and intensional set are
extended to allow any number of components.

NAL-4 transforms various conceptual relations into the inheritance relation. For
example, if there is an arbitrary relation R between A and B, it can be expressed in
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Narsese as (A×B)→ R, where the subject of the inheritance statement is a product
of A and B. The same information can be equivalently expressed as A→ (R/ �B)
and B→ (R/A�), where the predicate is an extensional image with an indicator ‘�’
for the position of the subject in the relation. There is also an intensional image that
can equivalently represent R→ (A×B) as (R\�B)→ A and (R\A�)→ B.

In this way, NAL can express and process arbitrary relations, while the inference
rules are still only defined on the two copulas. The other conceptual relations are
represented as terms, with experience-grounded meaning. On the contrary, copulas
are not terms, and their meaning is fully specified by the inference rules, indepen-
dent of the experience of the system.

NAL-5 allows a statement to be handled as a term. NAL treats verbs like “know”
and “believe” as a relation between someone and a statement, and let the meaning
of the relation be acquired from the system’s experience, rather than to define their
meaning within the logic, like in epistemic logic [Hendricks and Symons, 2015].

Two statement-level copulas are introduced at this level. Implication (⇒) means
“can be derived from”, and equivalence (⇔) means “can derive each other”. Since
they are isomorphic to the term-level copulas inheritance (→) and similarity (↔),
respectively, many inference rules in the lower levels can be mapped into this level.
For example, the statement-level deduction rule has the form of

{M⇒ P〈 f1,c1〉, S⇒M 〈 f2,c2〉} ` S⇒ P〈 f ,c〉

and its truth-value function is the same as the deduction rule of NAL-1.
This level also introduces statement connectors negation (¬), conjunction (∧),

and disjunction (∨). Though their intuitive meaning is the same as in propositional
logic, in NAL they are not defined by truth tables. The truth-value of (¬S) is ob-
tained by switching the positive and negative evidence of S. Conjunction and dis-
junction are defined as isomorphic to extensional intersection (∩) and intensional
intersection (∪), respectively. The inference rules on them are defined accordingly.

NAL-6 introduces variable terms into NAL. A variable term does not identify
a concept, but serves as a “symbol” of another term, so it may identify different
concepts in different situations. For instance, statement “($x→ P)⇒ ($x→ Q)”
expresses “Whatever in the extension of P is also in the extension of Q”, where $x is
an independent variable representing an arbitrary term in PE . Similarly, statement
“(#x→ P)∧ (#x→ Q)” expresses “There is something in the extensions of both
P and Q”, where #x is a dependent variable representing an anonymous term in
PE ∩QE .

Many inference rules of NAL-5 can be extended to handle variable elimination,
introduction, and unification in NAL-6 by adding a substitution step before or after
the applying of the NAL-5 rule.

Using variable terms, NAL can carry out hypothetical inference on abstract con-
cepts, then apply the result to different concrete situations by interpreting the vari-
ables differently. In particular, NAL can serve as the meta-logic of an arbitrary logic,
by representing the axioms and theorems of the latter as terms, and the inference
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rules of the latter as implication statements. In this way, NARS can have axiomatic
or semi-axiomatic subsystems, outside the restriction of AIKR.

NAL-7 directly supports temporal inference on events, which are statements
with time-dependent truth-value. At this layer, two primitive temporal relations, se-
quential and parallel, are embedded into Narsese by combining with connectors
(like conjunction) and copula (like implication). When the inference rules are given
premises with temporal attributes, the temporal factor and the logical factor are han-
dled independently, then the conclusion is determined by both results.

NARS also uses an internal clock (with its reasoning cycle as unit) to get a sense
of “subjective time”. The system not only can reason “about time”, but also “in
time”, as the present will gradually become about the past, while the future will be-
come the present. In this aspect, NAL is very different from conventional temporal
logics [Vila, 1994], which assume the reasoning system itself is working outside the
stream of time, by treating the tense of a proposition as its intrinsic attribute.

NAL-8 specifies procedural inference. Using the idea introduced by logic pro-
gramming [Kowalski, 1979], certain terms can have a procedural interpretation
by associating with executable programs. In NAL, an operation has the form of
op(a1 . . .an), where op is the operator that is associated to a program, and (a1 . . .an)
is a list of arguments that are the input and output of the program. When an opera-
tion is involved in reasoning, it is treated as statement (a1× . . .×an×SELF)→ op,
and treated like the other statements. Here SELF is a special term representing the
system itself, as an operation logically is a relation among the system and the argu-
ments.

Before this layer is added, NAL can handle two types of inference tasks: to absort
a judgments and to answer a questions. At this layer, a third type is added: to achieve
a goal. A goal is a statement that the system desires to realize. Each event E has a
desire-value attached, which is defined as the truth-value of E ⇒ D, where D is
a virtual term representing the desired situation. In this way, the desire-values are
conceptually transformed into truth-values, and are handled accordingly.

When the desire-value of an event is high enough, the system may make the
decision to turn it into a goal to be actively pursued. A goal may generate derived
goals via backward inference, and this process can repeat recursively until each
derived goal is either an executable operation, or already satisfied (as far as the
system knows). After the actual execution of these operations, the system revises its
related knowledge according to the feedback or observation to reflect the changes.

NAL-9 enables the system to perceive and control itself via a set of mental oper-
ations that can sense and act on the system itself under the control of the inference
process. Since this layer makes no change in the grammar rules, semantics, and in-
ference rules, it can be considered either as an extension of the logic or as part of
the implementation of the logic, so it will not be further described here.
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2.4 Computer implementation

As the logic followed by NARS, NAL specifies what can be expressed in the sys-
tem and what can be derived by the system. As a computer system, NARS has the
following major parts:

• an input/output interface that realizes the grammar rules of Narsese,
• an inference engine that realizes the inference rule of NAL,
• a memory structure that contains the judgments, questions, and goals,
• a control strategy that selects premises and rules in each inference step.

All the above components are designed under AIKR, implemented in an open
source project4, and discussed in various publications [Wang, 2006, Wang, 2013,
Hammer et al., 2016]. Since this chapter focuses on NAL, the above parts of NARS
will not be discussed here.

3 Discussion and Comparison

The previous section provides a summary of NAL, as defined in [Wang, 2013]. With
this preparation, now we can analyze several fundamental issues in logic.

3.1 Logic and valid reasoning

When challenging the Aristotelian tradition of logic, the “mathematical logic”
paradigm changed the study of logic fundamentally. Though the fruitfulness of this
change is undoubtable, it also has the undesired effect of leading the study away
from its original and general objective, that is, to provide normative models for
reasoning processes in various situations. Instead, most of the works have been fo-
cused on the reasoning in mathematics, especially in theorem proving. Even in the
field of “philosophical logic”, which covers non-mathematical reasoning, mathe-
matical logic is still widely taken as the norm [Grayling, 2001]. Consequently, the
reality of human reasoning has been largely ignored, with the justification of anti-
psychologism.

Many researchers have expressed their disapproval of this situation, and argued
for a closer relationship between logic and human thinking. In recent years, rep-
resentative opinions can be found in [Gabbay and Woods, 2001, Gaifman, 2004,
Hanna, 2006, Stenning and van Lambalgen, 2008]. This is also the driving force for
the various non-classical logics to move away from classical logic.

NAL has been driven by a similar motivation, though it has gone much further
than the previous non-classical logics. Instead of remedying one limitation of clas-

4 At https://github.com/opennars/opennars/.
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sical logic, NAL challenges the universality of the traditional definition of validity
in reasoning. The reason to redefine a well-accepted notion is that what is “valid”
should be judged according to the role reasoning plays for the reasoner.

As discussed previously, theorem proving serves the role of revealing the hidden
implications of axioms in a constant and closed system, so “valid reasoning” means
“truth-preserving” in the sense that whenever the axioms are applicable in a situa-
tion, so do the theorems. Therefore the traditional notion of validity is indeed the
right choice for mathematical logic.

On the other hand, “everyday reasoning” (or call it “commonsense reasoning”,
“evidential reasoning”, “real-world reasoning”, “empirical reasoning”, and so on)
happens as an adaptive system’s attempt to predict the future according to the past.
Since in the real world the future will never be exactly the same as the past, this
prediction cannot be faultless. Therefore the traditional notion of validity is inappli-
cable in such a process. However, it does not mean that there cannot be normative
model here. Not all changes in a system qualify to be considered as “adaptive”. As
the selective result of the evolution process, the regularity observed in human think-
ing must represent certain form of optimality. In a relatively stable environment
(which changes slower than the system’s behaviors), the best strategy is to behave
as if the current situation is like the past, even though it is known that this strategy
will not always make correct productions.

Except in axiomatic systems, our judgments about truth are all evidence-based.
Even in cases where we feel that we are directly checking a statement again the real-
ity, we are actually checking the statement again a description of the reality, which
not only depends on the reality as it is, but also depends on our sensory organs
and our interpretation of the sensory input, which in turn depends on our concep-
tual repository, motivation, attention, and other factors. It is for this reason that in
NAL “truth-value” is defined as “evidential support”. Accordingly, valid inference
rules are “truth-preserving” in the sense that the conclusion is based on the evidence
provided by the premises.

In this sense, the non-deductive rules of NAL are truth-preserving, rather than
“ampliative”. Taking enumerative induction as an example. From “Tweety is a bird”
and “Tweety flies” to derive “All birds (in the universe) fly” is ampliative (as the
conclusion says more than the premises), but to derive “There is a bird that flies
(as far as I know)” is not. The latter can be represented as “Bird flies 〈t〉” where
t numerically represents something like “confirmed once”, so that the conclusion
does not say more than what is provided by the premises, as far as the truth-value
“〈t〉” is attached to the conclusion. In NARS, the really “ampliative” step is not
this type of inference, but the system’s usage of this conclusion when answering
the question “Will the next bird I meet be able to fly?” – what is hoped is a sure
answer, but the system can only provide its belief, which has limited evidential
support and is fallible. However, it is exactly this response that let the system open
to novel problems for which no sure solution can be found. It is a property of truly
intelligent systems, which is not possessed by conventional computer systems.

What is called “everyday reasoning” in this chapter is similar to what is tradi-
tionally labeled as “inductive reasoning”, which has been widely characterized as
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“ampliative”, so is “falsifiable” and therefore “invalid”. The practice of NAL shows
that under proper treatment, this type of reasoning (which is not limited to induc-
tion) can be justified according to a different notion of validity. Compared to the-
orem proving, which has been properly formalized in mathematical logic, the type
of logic exemplified by NAL is closer to the need of AI and CogSci. Though fun-
damentally different from classical logic, NAL qualifies to be called a “logic”, just
like non-Euclidean geometry is fundamentally different from Euclidean geometry,
but still qualified to be called a “geometry”.

3.2 Defining evidence

To establish a logic for evidential reasoning, the definition of “evidence” plays a
crucial role.

This topic has been studied for many year in various domains. What observations
will increase or decrease our belief on a general statement like “Ravens are black”?
In first-order predicate calculus, this statement is formalized as “(∀x)(Raven(x) ⊃
Black(x))” and an intuitive criterion, “Nicod’s Criterion”, is to take an object c as
confirming (positive) evidence if Raven(c)∧Black(c) is true (i.e., a black raven),
and as opposing (negative) evidence if Raven(c)∧¬Black(c) is true (i.e., a non-
black raven). If Raven(c) is false, c (a non-raven) provides no evidence for the
statement. However, as revealed by Hempel [Hempel, 1943], “(∀x)(Raven(x) ⊃
Black(x))” is logically equivalent to “(∀x)(¬Black(x) ⊃ ¬Raven(x))” so, the two
statements should have the same evidence. As according to Nicod’s Criterion a non-
black non-raven (such as a red apple or a white sock) is confirming evidence of the
latter, it should also confirm the former. This result challenges Nicod’s Criterion, as
well as our intuition.

As analyzed in [Wang, 2009], according to Nicod’s Criterion “Ravens are black”
and “Non-black things are not raven” have the same negative evidence (non-black
ravens), but different positive evidence (black ravens and non-black non-ravens,
respectively). Since in NAL a truth-value depends on both positive and negative
evidence, the two statements do not have the same truth-value, so are not equiva-
lent. They are indeed equivalent in classical logic, because there “true” means “no
negative evidence”, and positive evidence does not matter.

The same difference between everyday reasoning and mathematical reasoning
can be found in the well known psychological experiment “Wason’s Selection Task”
[Wason and Johnson-Laird, 1972]. When required to select cases to evaluate the
truthfulness of a given general statement, people tends to select potentially con-
firming cases, while “according to logic” they should only select potentially discon-
firming cases.

In the discussion about how scientific statements are evaluated, Popper argued
that since they are universally quantified propositions, they cannot be verified by
confirming examples, but can only be “falsified” by counter-examples. He went
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further to propose “hypothetical-deduction” as a general methodology of science,
and interpreting “conforming” as “eliminating potential falsification”.

Though the above debates happen in logic, psychology, and philosophy, respec-
tively, they can all be reduced to the same question: when the truthfulness of a
general statement is evaluated by checking concrete cases, should we only consider
negative cases, or also positive ones?

According to the previous analysis, my conclusion given to all these debates is
simple and clear: there are two types of domains using two different types of logic.
In mathematics, usually only negative evidence matters. A mathematical hypothesis
can be turned into a theorem only by proofs, not by confirming cases, no matter
how many of them have been found. On the other hand, a hypothesis in an empirical
science or everyday life can gradually evolved into a “law” with the accumulation
of confirming evidence, as formalized in NAL.

To define truth-value as evidential support, another requirement for the inference
rules is that the premises and the conclusion to be related in content, rather than
merely in truth-value. While most relevant logics attempt to achieve this by revising
predicate logic, NAL solves this issue using a more elegant solution provided by
term logic, that is, by formalizing all inference rules as extended syllogism, where
the the premises and the conclusion have shared terms. Though the similarity of
Aristotle’s syllogistic and modern relevance logic has been noticed by many logi-
cians [Steinkrüger, 2015], few people has suggested that modern relevance logics
should be designed as a term logic.

To replace the predicate logic framework by the term logic framework is not
merely a change in notations, but a change in opinion on the nature of reasoning or
inference. In propositional calculus and predicate calculus, an inference process is
a chain of steps, in each of which the truth-value of a conclusion is decided purely
according to its truth-functional relation with the premises. In a term logic, on the
other hand, inference is primarily based on the transitivity of the copula, from which
the truth-value relation between premises and conclusions is derived. In such a logic,
the semantic relevance among premises and conclusions is a necessary consequence,
not a property that needs to be added in by special mechanisms.

The basic form of copula in NAL, inheritance, plays no special role in predicate
logic. Though it can be defined as a special predicate name, the basic inference
rules are not based on it, but on the truth-value relations among propositions. This
arrangement is allowed, even preferred, in mathematics, but unsuitable in everyday
reasoning. This explains why in AI many logic-based systems make the additional
arrangement to give the “is-a” relation a special treatment, such as in description
logic [Baader et al., 2003], though few of them completely bases its reasoning on
this relation and its variants, as in NAL.

Since induction, abduction, and analogy are invalid in theorem proving, but can
be interpreted as evidential inference and conceptual substitution, they are more
naturally formalized in term logic. However, because of the dominance of predicate
logic in the field, in recent years they are usually formalized in the framework of
predicate logic [Flach and Kakas, 2000]. This treatment directly leads to the con-
sequence that they can only be used for hypothesis generation, but not hypothesis
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evaluation, mainly because the notion of evidence cannot be properly defined in
predicate logic, where all logical relations are specified as purely truth-functional.

3.3 Various types of uncertainty

To handle various types of uncertainty is a major motivation for certain non-classical
logics to be established. What makes NAL special on this aspect is that it attributes
several types of uncertainty to a common root (AIKR), and measures them uni-
formly (in truth-value).

Let us see a concrete example where a medical doctor evaluates whether a patient
p has a disease d.

One way to make such a judgment is to check if p has the the usual symptoms of
d. For each symptom si, in NAL the inference is from [d]→ [si] and {p} → [si] to
{p} → [d] by abduction. If there are n equally weighted symptoms, and p has m of
them but not the others, the n abductive conclusions can be merged by the revision
rule to get a summarized conclusion {p}→ [d] with a frequency m/n.

Here the situation is quite similar to the cases studied by fuzzy logic [Zadeh, 1965].
When the category [d] (patients of d) is not defined by a sufficient and necessary
condition, but specified by a set of properties (the symptoms), none of them is abso-
lutely necessary for an instance to belong to the category. Instead, the more proper-
ties an instance has, the higher is its degree of membership, or its level of “typical-
ness” in the category. Using NAL terminology, we can say that here the uncertainty
(i.e., m/n is usually neither 1 nor 0) comes from the diversity of the intension of [d],
since its properties si (i = 1, . . . ,n) do not describe the same set of instances.

On the other hand, the uncertainty measured by frequency can also come from
the diversity of the extension of [d], when some, but not all of its instances have a
property. If p belongs to a reference class c, and among n known instances of c, m
of them have d, we also have {p} → [d] with a frequency m/n, this time derived
from c→ [d] and {p} → c by deduction. This type of uncertainty is similar to the
“randomness” studied in probability and statistics.

In practical situations, both the extension and intension of a concept can be di-
verse, so randomness and fuzziness happen together. Furthermore, each time usually
only part of the extension or intension is considered, which leads to inconsistency
in judgments, that is, {p} → [d] gets different truth-values when derived in dif-
ferent ways. In NAL, this situation is handled by the revision rule, and when the
truth-value is supported by evidence from different sources, normally the evidence
is neither purely extensional nor purely intensional, but a mixture where the two
factors cannot be clearly separated.

The confidence value measures another type of uncertainty, ignorance. While
frequency is about “positive vs. negative” (evidence), confidence is about “past vs.
future” (evidence). Since the future is infinite in principle, only a constant amount
of it (measured by k) is used to compare to the past (the known). According to the
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experience-grounded semantics, a higher confidence does not mean “closer to the
truth” or “more likely to be confirmed”, but “less sensitive to new evidence”.

There are already several publications in which NAL is compared to the Bayesian
approach of uncertain reasoning [Wang, 2001, Wang, 2004a, Wang, 2009]. In sum-
mary, NAL does not require the knowledge for a consistent probability distribution
to be defined on all statements of interest, nor the resources for global updating when
new evidence comes. Instead, it merely uses whatever knowledge and resources
available to make the most reasonable judgment.

Using a numerical representation of uncertainty, NAL is more powerful than the
binary logics when handling uncertainty. For instance, unlike modal logic, NAL
does not divide statements into “necessarily true” and “possibly true”. Since it is
open to novel experience, all empirical statements are “possibly true” to various
degrees. On the other hand, analytical statements are “true within a theory”, which
is not a modality. In particular, NAL rejects the notion of “possible world”, since it
does not restrict its future experience to the descriptions of a given vocabulary.

Similarly, NAL is like a non-monotonic logic since it can “change its mind” in
light of new evidence. However, in NAL all empirical statements are revisable, while
in a non-monotonic logic the system can only change the truth-value of a hypothesis
(e.g., “Tweety can fly”), but not that of a default rule (e.g., “Bird can fly”), nor a
fact (e.g., “Tweety is a bird’). From a philosophical point of view, the separation of
these three categories are not easy to establish. In NAL, their difference is a matter
of degree.

3.4 Reasoning and learning

One major difference between an axiomatic system doing theorem proving and an
adaptive system doing evidential reasoning is that the former is a closed system
with fixed concepts and knowledge, while the latter is an open system with evolving
concepts and knowledge.

NARS can start with an empty memory, and let all domain knowledge come
from experience. Even though it is possible for the system to start with a preloaded
memory, all judgments in it are still revisable, and there is no fundamental dif-
ference between “innate” knowledge and “acquired” knowledge. All “object-level”
knowledge, e.g., knowledge expressed in Narsese, can be learned from experience,
including terms with their meaning and statements with their truth-value.

In this way, “reasoning” and “learning” correspond to two different ways to de-
scribe the same process: when the running process of the system is described step by
step, it is natural to be taken as reasoning, where each step follows a certain rule to
derive conclusion from premises; when the focus is on the long-term effects of the
process, it is natural to be taken as learning, where the system gradually acquires
beliefs and concepts [Wang and Li, 2016]. On the contrary, in the mainstream AI
and CogSci, reasoning and learning have been traditionally treated as two separate
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processes [Russell and Norvig, 2010, Wilson and Keil, 1999]; in the study of logic,
learning is rarely mentioned at all.

Of course, there is still restriction on what NARS can learn. The “meta-level”
knowledge of the system is innate and cannot be modified by experience. Such
knowledge includes the grammar rules of Narsese, the semantic principles deter-
mining truth-value and meaning, the inference rules of NAL, etc. For the system,
NAL is its “native” logic, which allows the system to learn other knowledge, includ-
ing “secondary” logics, that can be applied to solve problems in a domain-specific
manner. Even with the ability of self-awareness and self-control, NARS cannot fully
overwrite or rewrite its own “laws of thought”, though can supplement or augment
them using its acquired knowledge and skills about reasoning and learning.

When designing a logic for an adaptive system, a crucial decision is on what
to build into the system, and what to leave to learning. In NAL, this distinction
exactly follows the “object-level vs. meta-level” line, and the meta-level is de-
signed to be minimum while it still provides the necessary function. NAL takes
the inheritance copula as a cornerstone, which gives the system many impor-
tant features not available in other logics. On the other hand, it leaves the mean-
ing of many other notions, such as “to believe” and “to cause”, to be deter-
mined by experience, while these notions are often built-in as logical constants
[Hendricks and Symons, 2015, Williamson, 2007].

One important form of learning in NAL is the learning of new concepts. In tra-
ditional and classical logics, concepts pre-exist with intrinsic meaning, though can
be referred to in the logic using constant arguments or predicates. On the contrary,
in NARS, a concept can be “learned” in several senses:

• When a novel term (either atomic or compound) appears in the system’s experi-
ence, the system may create a concept in the memory to record the related expe-
rience if it is not already there. In this way, the system gets the concept directly
from the outside.

• When a novel term is generated by a compositional or decompositional rule and
there was no concept for it in the memory, it is a “creative idea” that the system
learned by recognizing a novel conceptual structure. In this way, the system gets
the concept from the inside.

• With the changes in the beliefs associated to a concept, the concept can gradually
change its meaning within the system. When the changes are significant enough,
it can be considered as a new concept, even though the term has been known to
the system.

Since NAL governs all the above processes, it can also be considered as a logic of
categorization [Wang and Hofstadter, 2006].
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3.5 Overall evaluation of NAL

In summary, NAL is a term logic with categorical sentences and syllogistic inference
rules, plus an experience-grounded semantics. NAL uniformly handles several types
of uncertainty (randomness, fuzziness, ignorance, inconsistency, etc.) and carries
out several types of inference (deduction, induction, abduction, revision, analogy,
etc.). The reasoning process is also responsible for learning, categorization, pattern
recognition, planning, and so on, so as to produce intelligence as a whole.

The objective of NARS, including NAL, is to provide a normative model for
reasoning in realistic situations for all intelligent systems, including humans and
computers. Accurately speaking, it is not a rival of classical logic, which regulates
reasoning in highly idealized situations, such as mathematics. However, classical
logic is often mistakenly applied in realistic situations, and NAL does provide an
alternative for those applications.

Designed with this aim, NARS has very different properties when compared with
the computational implementations of classic logic. By definition, NARS cannot
have the traditionally desired properties such as consistency (since new knowledge
may conflict with previous knowledge), soundness (since all predictions are falli-
ble), completeness (since there are always things the system does not know), and
decidability (since question-answering is context-sensitive, open-ended, and does
not follow a fixed algorithm). Nevertheless, these properties become what the sys-
tem attempts to approach (though never reach) – the system constantly resolves con-
flicts, corrects mistakes, absorbs new knowledge, and learns new skills. On the other
hand, NARS has properties that no traditional reasoning system can possess: adap-
tivity (it revises its beliefs according to new evidence), creativity (it can deal with
novel tasks), and flexibility (it manages its own resources according to the changing
demands).

Of course, NAL still inherits many ideas from classical logic, as well as from
Aristotelian logic, set theory, probability theory, etc., though its fundamental as-
sumptions make it unlike an extension of any of these theories. In a broad sense,
NAL is a “non-classical” logic, though its difference with classical logic is much
more broader and deeper than the existing non-classical logics. NAL addresses all
the issues listed previously (uncertainty, relevance, openness, and amplification) in
a unified manner, by treating them as issues coming from a common root, AIKR.

NAL is not a descriptive model of human reasoning, but a normative model that
is based on certain rational principles, though it is closer to a descriptive model
than the other normative models. This is because its fundamental assumption is
abstracted from the study of human reasoning, though when the model is designed
on this assumption, the process is analytical (according to logical analysis), rather
than empirical (according to psychological observations). This approach is based
on the hypothesis that the principles behind human reasoning is the best solution
the evolution process has found. What logic does is to express these principles in
a non-biological and non-anthropocentric form, so as to become applicable into
non-human systems. Such a model is not descriptive for human reasoning, because
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it ignores the factors that have no logical necessity in the process, though should
agree with the descriptive models on the major qualitative conclusions.

NAL is not claimed to be always better than the other logical systems for all
purposes. As a normative model, every logic is only applicable in situations where
its fundamental assumptions are satisfied. NAL is designed for the situations where
the system has insufficient knowledge and resources, with respect to the problems to
be solved. For a situation where the system’s knowledge and resources are sufficient,
the classical logic is usually better; for a situation where the system’s knowledge and
resources are insufficient in certain aspect, while still sufficient in the others, some
non-classical logic may be better.

NARS has the ability to learn, or even to create, a new logic for certain special
situations. With respect to these “acquired logics”, NAL is “built in” to the system,
as a “protologic” or “logical faculty” [Hanna, 2006], and the meta-logic of the ac-
quired logics. In the future, when a reasoning task is given, NARS can decide when
to use a logic it learned, and when to use its native logic.

4 Conclusion

It is the time for logic to return to its original goal to formulate the schemes of valid
inference, especially those applicable to realistic situations that intelligent systems
face on a daily basis, characterized by the insufficiency of knowledge and resources
in the systems, with respect to the tasks it must carry out.

Though classical logic has achieved great success in many domains, it was not
designed for reasoning in such a situation, and often should not be applied there.
Various non-classical logics have their applicable situations, but they have not
moved far enough from classical logic to resolve all of its issues together, so as
to provide a unified normative model of everyday reasoning.

What we need is a new logic (or new logics) that is explicitly and completely
based on the assumption of insufficient knowledge and resources. Concretely, it
means that the system must manage its own finite computational capacity, respect
the real-time requirement associated with each problem, open to unanticipated tasks,
and adapt to the changing environment. This is the normal situation in which human
reasoning works, as well as the situation where AI systems are desired to work.

It is possible to redefine validity for such a situation. Though by definition in this
environment it is impossible for a system to be infallible or flawless, validity can be
defined here as adaptivity, which means to choose the conclusion with the strongest
evidential support that the system can find using available resources. This validity
can be realized by truth-preserving inference rules, when truth-value is interpreted
as degree of evidential support.

To formalize such an inference process, there are reasons to believe that the
proper framework is closer to Aristotle’s than to Frege’s, though many ideas still
need to be borrowed from set theory, classical logic, non-classical logics, AI,
CogSci, etc.
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Implementing such a new logic in computers may eventually lead us to thinking
machines. Though many criticisms to the logicist AI school are legitimate, they are
usually targeting the specific type of logic used, rather than the notion of “logic” in
general. The issues raised in those debates (such as those on rigidity, brittleness, and
over-simplification) can be resolved by a logic like NAL.

Logic is one of the oldest branch of human wisdom, and has played crucial roles
in human history. By revitalizing it, we have reason to expect it to guide the intel-
lectual exploration again, this time both in humans and computers.
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