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Abstract. Non-Axiomatic Logic (NAL) is designed for intelligent rea-
soning, and can be used in a system that has insufficient knowledge and
resources with respect to the problems to be solved. This paper reports
the result of a case study that applies NAL in medical diagnostics, and
the logic is compared with binary logic and probability theory.
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1 Problem and Background

In a broad sense, “reasoning” is a cognitive process in which new pieces of
knowledge (or beliefs) are derived from existing ones. In this process, the input,
output, and intermediate results are specified as sentences of a language in which
the words correspond to concepts. The process consists of a sequence of steps,
each of which is an instance of a general pattern (rule or schema) that has
justification. Therefore, a reasoning system can be considered as following a
“logic,” which consists of the following components:

Language, which specifies the format or pattern of the sentences recognizable
and acceptable by the system,

Rules, which describes the form of conclusions that can be derived from given
premises in the system,

Semantics, which provides interpretation for the language and justification for
the rules.

A system following or implementing such a logic also needs a memory to store
the knowledge and to provide a working space, as well as a control strategy to
select the rule(s) and premise(s) of each step. For a reasoning system to solve
practical problems, domain knowledge should also be provided.

From the viewpoint of Artificial General Intelligence (AGI), reasoning sys-
tems are interesting not only because reasoning is arguably a necessary capability
of any intelligent system, but also because such a system provides a clear sepa-
ration between the domain-independent design of the system (that is, the logic
and control mechanism) and its domain-specific content (the knowledge). The
design is “general-purpose”, since the system can be given different knowledge
to gain expertise in various domains, without changing the design.
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This idea is not new to AI. The first wave of practical applications that made
AI an industry was the knowledge-based expert systems [8]. However, though
such expert systems have been successfully built for certain domains, the tech-
niques have not grown to other domains as expected. Among the issues raised,
robustness and scalability are prominent; that is, most of the expert systems fail
to deal with unexpected situations with affordable time-space resources.

A major reason of this failure may be found in the theoretical foundation of
these systems. At the current time, the two major theories on reasoning are math-
ematical logic and probability theory. Mathematical logic [3, 17] is often applied
in AI the form of non-monotonic logic [4] or description logic [2]. Probability
theory and statistics have also been used in AI as a model of reasoning, as in
Bayesian Network [6]. Though both theories have achieved great successes in
many fields, neither of them was designed to capture all major aspects of human
reasoning. Mathematical logic was created to provide a theoretical foundation
for mathematics, so it focuses on the type of inference used in proving mathe-
matical assertions — symbolic binary deduction that derives theorems from a
set of axioms or postulates. Probability theory models uncertainty in reasoning
by treating the degree of belief as a probability distribution over a closed belief
space, and reasoning on this space is carried out according to the axioms of
probability theory. In both theories, the conclusions are restricted by the ini-
tial assumptions, and the derivation process may demand resources that are not
affordable in practical applications.

What we want are reasoning systems that are not only justifiable according to
certain rational principles, but also work in realistic situations, by using available
knowledge and resources to derive the best conclusions the system can get. We
hope that the capability and performance of the system will be comparable to
that of a human being, though it is not necessary (or even desired) for the
concrete behaviors of the system to be identical to that of the human beings.

2 NAL Overview

Non-Axiomatic Logic, or NAL, was designed to be a logic system that can be
used when a system has insufficient knowledge and resources, that is, the perfect
solution to a problem is beyond the knowledge scope and resource capacity of
the system [9, 13]. In such a situation, a rational solution is the one that is best
supported by the available evidence that the system can find with the available
resources. Since this logic has been described in previous publications (see the
first author’s website1), in this paper it is only briefly introduced.

Like other modern logical systems, NAL uses a formal language, Narsese,
to represent its knowledge. In Narsese, each term is the name of a concept. In
the simplest case, we can use English nouns or noun phrases for terms, such
as “patient” or “flu-patient.” Unlike conventional reasoning systems, where the
meaning of a concept is taken to be the objects in the world it refers to, the

1 http://www.cis.temple.edu/∼pwang/
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meaning of a term in NAL is determined by what the system knows about it,
that is, its conceptual relations with other terms that have been experienced by
the system.

In Narsese, the most basic conceptual relation is inheritance, symbolized
as “→.” For example, “Flu-patient is a type of patient.” is expressed as the
statement “flu-patient→ patient,” where “flu-patient” is the subject term, and
“patient” is the predicate term. In general, an inheritance statement states that
the subject is a special case of the predicate and the predicate is a general case
of the subject; or, in other words, the subject represents certain instances of the
predicate, and the predicate represents certain properties of the subject.

To represent an individual instance (corresponding to a proper noun in En-
glish) and an elementary property (corresponding to an adjective in English), an
extensional set and intensional set are used, respectively. For example, “John
is a patient” is represented in Narsese as “{John} → patient,” and “Patients
are sick” as “patient→ [sick].” Here, terms like {John} and [sick] are not sim-
ple terms anymore, but rather compound terms, formed by certain operators
from other terms. Other compound terms correspond to the intersection, union,
difference, etc., of terms, such as (doctor ∩ patient) (“doctor and patient”) ,
(doctor∪patient) (“doctor or patient”), and (doctor−patient) (“doctor but not
patient”).

If the relation between terms A and B cannot be directly represented as
inheritance or its variants, but a term R whose meaning is empirically decided,
then in Narsese it can be expressed as “(A × B) → R,” with a compound
term as subject. Intuitively, it states that “The relation from A to B is a type
of R.” For example, “John is Mary’s son” can be expressed as “({John} ×
{Mary}) → son-of .” The same sentence can also be expressed as “{John} →
(⊥ son-of � {Mary})” and “{Mary} → (⊥ son-of {John} �)”, where the symbol
‘�’ indicates the location of the subject in the relation.

Statements are also defined as compound terms, and using them, Narsese can
represent very complicated sentences. The complete grammar of Narsese can be
found at [13] and the project website.

Assuming insufficient knowledge, in NAL “truth” is a matter of degree, in-
dicating the evidential support a statement gets from available evidence. For
statement “flu-patient → patient,” a common instance or property of the two
terms provides a piece of positive evidence, since as far as it is considered, the
statement is true. On the other hand, if an instance of “flu-patient” is not an in-
stance of “patient,” or a property of “patient” is not a property of “flu-patient,”
it is negative evidence for the statement.

For a statement, if the amounts of positive and negative evidence are mea-
sured by real numbers w+ and w−, respectively, then the ratio w+/(w+ + w−)
naturally represents one aspect of the uncertainty of the statement, that is, the
proposition of available evidence that supports the statement. This ratio is called
“frequency” in NAL. Since new evidence comes into the system from time to
time, a frequency value may change over time. To measure the stability of a fre-
quency value, the amount of available evidence w (w = w++w−) is compared to
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a constant amount of future evidence k (with 1 as the default value), and the ratio
w/(w+k) is called the “confidence” of the statement (so this word is used differ-
ently from the “confidence interval” in statistics). The 〈frequency, confidence〉
pair forms the truth-value of a statement in NAL. Defined as above, a truth-
value is not determined according to whether the statement corresponds to a
fact in a model, but what the system knows about the statement. Together with
the previous definition of meaning, this definition of truth forms the core of the
experience-grounded semantics of NAL, which is fundamentally different from
the model-theoretic semantics used in traditional logical systems.[13]

When this logic is applied to a practical situation, the truth-value of the
knowledge initially given to the system is determined by the user according
to the above semantics. If the knowledge comes from statistical data, then the
amount of evidence can be directly measured as the sample size, which in turn
decides the truth-value. If the knowledge comes in qualitative form, conventions
are used to assign quantitative truth-values. For example, in the current imple-
mentation a normal affirmative sentence gets the default truth-value 〈1.0, 0.9〉,
which correspond to w+ = 9 and w− = 0.

According to experience-grounded semantics, each inference rule should have
an associated truth-value function to determine the truth-value of the conclusion
according to the type of inference and the truth-values of the premises. This is
the case because in each inference step, the evidence of the conclusion comes
from the premises only, and the other knowledge in the system is not directly
involved. The design of the NAL truth-value functions is discussed in [9, 13] and
other previous publications on the project, so in the following we only list a few
typical rules with their truth-value functions, without explaining why they are
designed in the current form.

The deduction rule specifies how the transitivity of inheritance is extended
into multi-value statements. It takes “M → P 〈f1, c1〉” and “S →M 〈f2, c2〉” as
the premises, and derives “S → P 〈f1f2, f1f2c1c2〉” as the conclusion. So, given
“patient → [sick] 〈1, 0.90〉” and “{John} → patient 〈1, 0.90〉,” the rule derives
“{John} → [sick] 〈1, 0.81〉” (“John is sick”).

The induction rule evaluates an inheritance statement by checking a common
instance of the two terms. It takes “M → P 〈f1, c1〉” and “M → S 〈f2, c2〉” as
the premises, and derives “S → P 〈f1, f2c1c2/(f2c1c2 + k)〉” as the conclusion.
Given “{John} → [sick] 〈1, 0.90〉” and “{John} → patient 〈1, 0.90〉,” the rule
derives “patient→ [sick] 〈1, 0.45〉” (“Patients may be sick”).

The abduction rule evaluates an inheritance statement by checking a common
property of the terms. It takes “P → M 〈f1, c1〉” and “S → M 〈f2, c2〉” as the
premises, and derives “S → P 〈f2, f1c1c2/(f1c1c2+k)〉” as the conclusion. Given
“patient → [sick] 〈1, 0.90〉” and “{John} → [sick] 〈1, 0.90〉,” the rule derives
“{John} → patient 〈1, 0.45〉” (“John may be a patient”).

Therefore, induction and abduction can be seen as “inverse deduction,” in
different ways [7], while inductive and abductive conclusions usually have lower
confidence values than deductive conclusions, given the same truth-values of the
premises.
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The revision rule summarizes evidence from different sources for the same
statement to get a more confident conclusion. It takes “S → P {w+

1 , w1}” and
“S → P {w+

2 , w2}” as the premises, and derives “S → P {w+
1 + w+

2 , w1 + w2}”
as the conclusion. Here the truth-values are given as the amounts of evidence,
which can be converted to and from the 〈frequency, confidence〉 pair. If from
different bodies of evidence statement “{John} → [sick]” gets two different
truth-values 〈1, 0.90〉 and 〈0, 0.80〉, respectively, then the revised conclusion has
the truth-value 〈0.69, 0.93〉.

NAL contains other inference rules (and truth-value functions), which are
described in [13] and other previous publications, but will be omitted here.

3 Testing Cases and Results

With the preparation of the previous sections, now we can describe our testing
of NAL in the context of medical diagnosis. This domain is picked, both because
of its great practical importance and its historical relation with AI applications.
Since NAL is a normative model of reasoning, its design decisions cannot be
directly evaluated and justified by comparing them with human psychological
data, but by checking against the fundamental assumptions of the model [16].
Even so, it still makes sense to test such a system in a practical situation, to verify
the applicability of its assumptions and the correctness of the implementation.

Especially, in this project we are interested in evaluating the expressive power
of Narsese and the inferential power of NAL. That is, compared to the diagnosis
process of a typical human doctor, whether all the domain knowledge can be
expressed in Narsese, and whether all the usual inference steps can be formalized
in NAL. Given this focus, the testing is done semi-automatically. In each step, the
system is given a few Narsese sentences as premises and some derived conclusions
are selected as the premises of the following steps, until a desired result is reached.
In this way, the memory and control mechanism is excluded, so as to make the
process simple and focused.

All the finished testing cases can be accessed from the first author’s website.
In the following, a few sample cases are described in an edited version, to omit
the implementation details.

Case 1. The system is given the following Narsese sentences as initial knowl-
edge (the following English translations only roughly show their meaning):
(1) {John-Doe} → [runny-nose] — “John Doe has a runny nose.”
(2) [runny-nose]→ [flu-symptom] — “Runny nose is a flu symptom.”
(3) flu-patient→ [flu-symptom] — “Flu patients have flu symptoms.”
(4) ({Tamiflu} × flu-patient)→ treatment — “Tamiflu is a treatment for flu
patients.”

As mentioned before, all declarations without an explicit truth-value will get
the default value 〈1, 0.90〉 when accepted by the system.

From (2) and (1), the deduction rule derives
(5) {John-Doe} → [flu-symptom] 〈1, 0.81〉 — “John Doe has flu symptoms.”

From (3) and (5), the abduction rule derives
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(6) {John-Doe} → flu-patient 〈1, 0.42〉— “John Doe seems to be a flu patient.”
As mentioned before, (4) can be rewritten as

(7) flu-patient→ (⊥ treatment {Tamiflu} �)
From (7) and (6), the deduction rule derives

(8) {John-Doe}→ (⊥treatment{Tamiflu}�) 〈1, 0.34〉 — “John Doe may get
Tamiflu for treatment.”

In this way, the system reaches a diagnosis and a treatment suggestion,
though the confidence values of the conclusions are quite low, caused by the
use of non-deductive rules and the small amount of evidence.

Case 2. In addition to the initial knowledge of Case 1, assume the system
also knows the following:
(9) {John-Doe} → [sore-throat]
(10) [sore-throat]→ [flu-symptom]

Then from them, by deduction, the system can also gets
(11) {John-Doe} → [flu-symptom] 〈1, 0.81〉

Though this conclusion looks identical to (5), it comes from a distinct body
of evidence. Now the revision rule can take (5) and (11) as evidence, and gets
(12) {John-Doe} → [flu-symptom] 〈1, 0.90〉

Using (12) in the place of (5) in Case 1, the following conclusions on diagno-
sis and treatment will both have higher confidence values than those obtained
without the “sore throat” evidence. Similarly, adding more evidence for an in-
termediate conclusion will eventually increase the confidence of the final results.

Case 3. When a symptom appears in more than one type of sickness, the
quantitative truth-value in the related knowledge will make a difference in the
competing conclusions. For example, assume the system knows (1), “John-Doe
has a running nose,” and the following information.
(13) flu-patient→ [runny-nose] 〈0.90, 0.95〉
(14) cold-patient→ [runny-nose] 〈1.00, 0.95〉
(15) allergy-patient→ [runny-nose] 〈1.00, 0.80〉

From them, the abduction rule derives, respectively,
(16) {John-Doe} → flu-patient 〈1, 0.43〉
(17) {John-Doe} → cold-patient 〈1, 0.46〉
(18) {John-Doe} → allergy-patient 〈1, 0.42〉

Therefore, from the available evidence, “cold” is the most confident diagnosis.
Case 4. When a conclusion has negative evidence, its frequency will be

decreased, though it will not be simply rejected as “false.” When the alternatives
are even less likely, such a conclusion can still be considered as the most likely
one. For example, if the system knows three symptoms of flu
(19) flu-patient→ [runny-nose] 〈0.90, 0.99〉
(20) flu-patient→ [headache] 〈0.75, 0.99〉
(21) flu-patient→ [sore-throat] 〈0.60, 0.99〉
while a patient only shows two of them
(22) {John-Doe} → [runny-nose]
(23) {John-Doe} → [headache]
(24) {John-Doe} → [sore-throat] 〈0.00, 0.90〉
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then the conclusion is
(25) {John-Doe} → flu-patient 〈0.73, 0.67〉

Here the frequency value is more similar to a “degree of membership” as
discussed in fuzzy logic [18, 11] than a probability value in the usual sense —
John Doe is still judged to be a flu patient, though not a typical one.

Case 5. Even if there are lot of statistical data, a direct application of
probability theory can still be difficult. For example, a patient may belong to
two categories A and B, and they have different risks to have disease D [5]. In non-
monotonic logic, a similar “multiple inheritance” problem is called the “Nixon
Diamond” [8]. In NARS, the two competing conclusions can be merged by the
revision rule [10]. When the two conclusions are equally strong, the conclusion
does not favor either of the two. For example, from the following given knowledge,
(26) {John-Doe} → [runny-nose]
(27) {John-Doe} → [chest-pain]
(28) [runny-nose]→ flu-patient
(29) “If someone has chest pain, then that person usually does not has flu.”2

the conclusion is
(30) {John-Doe} → flu-patient 〈0.50, 0.90〉

However, when truth-values are explicitly specified, the premises usually do
not provide exactly the same amount of positive and negative evidence for the
conclusion, and in that case the system will have a non-trivial opinion, as in the
following version of the same example:
(26’) {John-Doe} → [runny-nose] 〈1.00, 0.99〉
(27’) {John-Doe} → [chest-pain] 〈1.00, 0.80〉
(28’) [runny-nose]→ flu-patient 〈0.90, 0.99〉
(29’) “If someone has chest pain, then that person usually does not has flu.”
〈0.80, 0.99〉
(30’) {John-Doe} → flu-patient 〈0.81, 0.90〉

Case 6. In NAL, all domain knowledge can be revised by new evidence, and
the system can learn new beliefs, concepts, and skills. Actually, here “learning”
and “reasoning” are carried out by the same underlying process, though the
former word focuses on the long-term effect of the process, while the latter on
the individual steps. For example, from
(31) {John} → [runny-nose]
(32) {John} → [fever]
NAL derives a conclusion
(33) {John} → ([runny-nose] ∩ [fever]) 〈1.00, 0.81〉

Here ([runny-nose] ∩ [fever]) may be a new concept that never existed in
the system before. When a new concept is created, usually the system can-
not fully determine its usefulness in summarizing experience. After all, from
(31) and “{John} → [back-pain],” the system can also create a new concept
([runny-nose] ∩ [back-pain]), which seems accidental. What the system does is

2 The Narsese representation of this sentence uses variable term, negated statement,
and implication copula, and therefore is beyond the scope of the previous NAL
Overview. For how these items are formally defined, see [13].
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to give each concept (either given or created) a priority value, which will then
be adjusted according to the usefulness of the concept. In this way, concepts
like ([runny-nose] ∩ [fever]) will gradually become part of the system’s stable
knowledge since it captures a repeatedly appearing pattern, while concepts like
([runny-nose]∩ [back-pain]) will be gradually forgot. In this way, NAL not only
specifies how the system learns and creates new statements, but also how it
learns and creates new terms and concepts.

4 Comparison and Discussion

Since NAL has been compared to mathematical logic [10, 15], probability theory
[12, 15], fuzzy logic [11], etc., in the theoretical assumptions and properties, in
this paper we only compare the approaches from a practical point of view.

NAL works with insufficient knowledge, which has the following implications:

– Knowledge can be uncertain, and the uncertainty can be randomness, fuzzi-
ness, ignorance, and so on, or a mixture of them.

– Knowledge does not need to be consistent, as defined either in mathematical
logic or in probability theory. The system can handle competing or conflicting
conclusions by considering their evidential support.

– The evidence can arrive from time to time, and the system revises its beliefs
according to the available evidence. In this sense, NAL is non-monotonic,
though it is very different from the binary “non-monotonic logics.”

– NAL does not assume that a truth-value will eventually converge to an
“objective” truth or a probability value.

– The system is open to knowledge of any content, as long as it can be expressed
in Narsese. There is no “possible world” or “sample space” defined by a
constant set of statements or terms.

– The system is called “non-axiomatic,” because there is no “axiom” among
domain knowledge. The truth-value of a statement is always revisable by
new evidence. All domain knowledge can be learned, rather than built into
the system.

– Though more evidence is preferred, the system still produces a conclusion
when the amount of evidence is less than desired, by making guesses and
hypotheses, and marking their reliability with the confidence measurement.

To be used with insufficient resources, NAL has the following features:

– Each inference step is an independent local operation, meaning that only a
few sentences are involved as premises and conclusions, and the step does not
directly depend on the other knowledge or activities in the system. Therefore,
such a step only requires a small constant amount of time and space.

– A complete problem-solving process (such as from patient symptoms to diag-
nosis and treatment) consists of a number of inference steps. However, since
a problem usually can be solved in many different ways, in NAL the process
does not follow a predetermined algorithm, but is handled in a case-by-case
manner [14].
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– The resource cost for a given problem is not a constant, but depends on
the current context, that is, what relevant beliefs are there, in what order
they are considered, how much resource the problem has obtained in the
competition with co-existent problems and activities, etc. Therefore, NAL
makes “anytime” responses [1].

– The system is scalable to large amounts of knowledge and complicated prob-
lems, not because these factors do not make the system’s algorithm in-
tractable, but because NAL does not exhaustively search all possibilities
when solving a problem. Instead, it only considers a “reasonable” amount of
them, depending on the amount of available resources.

These properties are usually not possessed fully by reasoning systems based
on traditional theories. However, it is not claimed that NAL is always superior
than mathematical logic or probabilistic logic. Actually it is the opposite: wher-
ever the knowledge/resource demands of a traditional model can be satisfied, it
usually works better than NAL. It is when those demands cannot be satisfied,
that NAL works better than illegally applying a traditional model, providing
random responses, or simply giving up.

Compared to the traditional models of reasoning, NAL is closer to human
reasoning. However, NAL is not designed as a descriptive model of human rea-
soning, so it does not have to fit the human data in all details. What is hoped
is that it follows the same principle as human intelligence, so their working pro-
cesses and capabilities should be similar to each other. Since human reasoning is
not accurately defined, there is no way to exactly evaluate the similarities and
difference between a formal model and human reasoning. What we can say about
NAL is that in this testing project, we have not found any domain knowledge
that cannot be expressed in Narsese, nor a common inference schema or pattern
that cannot be captured by NAL’s rules.

5 Conclusions

Non-Axiomatic Logic (NAL) specifies valid inference steps under the assumption
of insufficient knowledge and resources. Here “valid” means best supported by
available evidence, that is, the evidence the system can collect under the existing
resource restriction. Such a logic is fundamentally different from traditional log-
ical models, where “valid” usually means “deriving absolute truth from absolute
truth.”

Therefore, compared with other logical models, NAL makes weaker assump-
tions about what knowledge the system has and how much resources are afford-
able, and so can be applied to situations outside the applicable scope of the
traditional models.

The recent testing in medical diagnosis shows that NAL can properly express
the knowledge in that domain, as well as carry out the inference steps of a typical
doctor. Though the system is not mature enough for actual applications yet, the
potential of this technique is profound.
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From an AGI point of view, the reasoning system approach has the advantage
of clearly separating the domain-specific knowledge from the general-purpose
logic and control mechanism. Furthermore, the notion of “reasoning” can be
naturally extended to include some notions that are traditionally described as
outside the scope of reasoning, such as learning, problem solving, and decision
making. In this way, NAL provides a unified theory and model of intelligence.
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