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Abstract

By analyzing the relationships among chance, weight of evidence and degree of belief,

it is shown that the assertion \chances are special cases of belief functions" and the

assertion \Dempster's rule can be used to combine belief functions based on distinct

bodies of evidence" together lead to an inconsistency in Dempster-Shafer theory. To

solve this problem, some fundamental postulates of the theory must be rejected. A

new approach for uncertainty management is introduced, which shares many intuitive

ideas with D-S theory, while avoiding this problem.

1 Introduction

Evidence theory, or Dempster-Shafer (D-S) theory, is developed as an attempt to generalize
probability theory by introducing a rule for combining distinct bodies of evidence [1, 7].

The most inuential version of the theory is presented by Shafer in his book A Mathe-
matical Theory of Evidence [7]. In the book, the following postulates are assumed, which
form the foundation of D-S theory.

Postulate 1: Chance is the limit of the proportion of \positive" outcomes among all out-
comes [7, pages 9, 202].

Postulate 2: Chances, if known, should be used as belief functions [7, pages 16, 201].

Postulate 3: Evidence combination refers to the pooling, or accumulating, of distinct bodies
of evidence [7, pages 8, 77].

Postulate 4: Dempster's rule can be used on belief functions for evidence combination [7,
pages 6, 57].

In this paper, we show, by discussing a simple situation, that there is an inconsistency
among the postulates. Then, we argue that though there are several possible solutions of
this problem within the framework of D-S theory, each of them has serious disadvantages.
Finally, we briey introduce a new approach that achieves the goals of D-S theory, yet is
still natural and consistent.
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2 A Simpli�ed Situation

In the following, we address only the simplest non-trivial frame of discernment � = fH;H 0g
(j�j = 1 is trivial). Since � is exhaustive and exclusive by de�nition, we have H 0 = �H (the
negation of H).

In such a situation, all the information about the system's beliefs can be represented by
a pair of real numbers on [0, 1]: the degree of belief and the degree of plausibility of fHg,
<Bel(fHg); P l(fHg)>, and the belief about �H can be derived from them. To simplify our
notation, in the following the two numbers are referred to as Bel and P l.

Bel and P l indicate the relationship between the hypothesisH and the available evidence.
When the system gets two distinct bodies of evidence, and they are measured by <Bel1; P l1>
and < Bel2; P l2 > respectively, then, after evidence combination, the pooled evidence is
measured by the following <Bel; P l> value, according to Dempster's rule (Postulate 4):

Bel =
Bel1P l2 +Bel2P l1 � Bel1Bel2

1� Bel1(1� P l2)� Bel2(1� P l1)

P l =
P l1P l2

1� Bel1(1� P l2)� Bel2(1� P l1)
(1)

To specify the meaning of \evidence combination", Shafer introduces weight of evidence,
w, with the following properties [7, pages 8, 88]:

1. w is a measurement de�ned on bodies of evidence, with respect to a subset of �, and
it takes values on [0; 1].

2. When two entirely distinct bodies of evidence are combined, the weight of the pooled
evidence (for the same subset of �) is the sum of the original ones.

Therefore, if we use w+ and w� to indicate the weight of evidence for fHg and f �Hg,
respectively, then in the current situation the combination rule must satisfy the following
relation (the Postulate 3):

w+ = w+
1 + w+

2

w� = w�1 + w�2 (2)

where the subscripts 1 and 2 indicate bodies of evidence before the combination, as in (1).
The intuition behind the introducing of weight of evidence and Postulate 3 is clear: we

cannot apply an arbitrary rule for evidence combination, unless it captures the common usage
of the notion, that is, by combination, the evidence is pooled or accumulated. Mathematically
speaking, a certain measurement of the evidence (call it weight) is additive during the process.

Of course, the rule cannot be applied anywhere. We need to make sure that no evidence
is repeatedly counted. This is what Dempster calls \independent sources of information" [1]
and Shafer calls \distinct body of evidence" [7].

According to D-S theory, belief functions are determined by available evidence. Given
(1) and (2), Shafer shows that the relationship between <Bel; P l> and <w+; w�> can be
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derived [7, page 84]:

Bel =
ew

+

� 1

ew+ + ew� � 1

P l =
ew

+

ew+ + ew� � 1
(3)

It is also possible to derive (1) from (2) and (3), or derive (2) from (1) and (3). Therefore,
the notion of evidence combination, the combination rule, and the relationship between
weight of evidence and degree of belief are mutually determined.

Generally, we have Bel � P l, or identically, Bel(fHg)+Bel(f �Hg) � 1. When Bel = P l,
Bel(fHg) become a probability function, because then Bel(fHg) + Bel(f �Hg) = 1. In [1],
Dempster calls such a belief function \sharp," and treats it as \an ordinary probability
measure." In [7], Shafer calls it \Bayesian," and writes it as Bel1(fHg).

From (3), it is clear that Bel = P l happens if and only if the weight of all evidence, w
(w = w+ + w�), goes to in�nite:

Bel1(fHg) = lim
w!1

Bel = lim
w!1

P l (4)

Shafer interprets the above relationship as indicating that probability functions is a subset
of belief functions [7, pages 19], and degree of belief converges to chance when the available
evidence goes to in�nite (Postulate 2), that is,

Bel1(fHg) = Pr(H) (5)

where Pr(H) is the chance, or aleatory probability, of H [7, pages 16, 33, 201].
In D-S theory, \chance" is used with its usual meaning as in statistics: for an experiment,

if t is the number of outcomes, and t+ is the number of outcomes that correspond to H, then
(Postulate 1)

Pr(H) = lim
t!1

t+

t
(6)

3 A Problem

From the above descriptions, D-S theory seems to be a reasonable extension of probability
theory, because it introduces a combination rule, and still converges to probability theory
when Bel(fHg) and P l(fHg) overlap.

To see clearly how D-S theory and probability theory are related to each other, consider
the situation where evidence for H is in the form of a sequence of experiment outcomes with
the following properties:

1. No single outcome can completely con�rm or refute H.

2. There are only two possible outcomes: one supports H, while the other supports �H.

3. The outcomes provide distinct bodies of evidence.
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Because there are only two types of evidence, we can assign two positive real numbers
w+

0 and w�0 as weights of evidence to an outcome supporting H and �H, respectively. After
t outcomes are observed, in which t+ outcomes support H and t� outcomes support �H
(t+ + t� = t), the weight of available positive, negative and total evidence (for H) can be
calculated according to Postulate 3:

w+ = w+
0 t

+;
w� = w�0 t

�;
w = w+ + w�:

When t goes to in�nity so does w, and vice versa. If t+=t converges to a limit Pr, then
according to Postulate 1 and Postulate 2, Bel and P l should also converge to Pr, to
become Bel1(fHg).

We can rewrite w+ and w� as functions of t and t+ in the relationships between belief
function and weight of evidence (3), which is derived from Postulate 3 and Postulate 4.
If we then take the limit of the equation when t (as well as w) goes to in�nity, we get

Bel1(fHg) = lim
w!1

ew
+

� 1

ew+ + ew� � 1

= lim
t!1

ew
+
0
t
+

� 1

ew
+
0
t+ + ew

�

0
t� � 1

=

8><
>:

0 if w+
0 Pr < w�0 (1� Pr)

1 if w+
0 Pr > w�0 (1� Pr)

1
1+e�

if w+
0 Pr = w�0 (1� Pr)

(7)

where � = limt!1(w
�

0 t
� � w+

0 t
+). The appendix contains the details in the last step.

This means that if Pr (the chance of H de�ned by Postulate 1) exists, then, by repeat-
edly applying Dempster's rule to combine the coming evidence (provided by the outcomes of
the experiment), both Bel and P l will converge to a point only when limt!1(w

�

0 t
��w+

0 t
+)

exists, and even in that case Bel1(fHg) is not Pr in most cases, but 0, 1, or 1=(1 + e�),
indicating qualitatively whether there is more positive evidence than negative evidence. The
conclusion Bel1 = 1=(1 + e�) is proven by Shafer himself [7, page 198]. However, he does
not relate it to chance.

Therefore, in contrary with the Postulate 2, Bel1(fHg) is usually di�erent from Pr(H),
unless Pr(H) happens to be 0, 1, or w�0 =(w

+
0 +w�0 ), and in the last case w�0 t

��w+
0 t

+ must
have a limit � that makes 1=(1 + e�) = Pr(H).

Therefore, though a Bayesian belief function is indeed a probability function in the sense
that Bel(fHg) +Bel(f �Hg) = 1; it is usually di�erent from the chance of H.

This inconsistency is derived from the four postulates alone, so it is independent from
other controversial issues, such as the interpretation of belief function, the accurate de�nition
of \distinct" bodies of evidence, and the actual measurement of weight of evidence. No
matter what opinions are accepted on these issues, as long as they are held consistently, the
previous problem remains. For example, the choice of w+

0 and w�0 can only determine which
chance value is mapped to the degree of belief 1=(1+e�) (so all the other values are mapped
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to 0 or 1 correspondingly), but cannot change the result that chance and Bayesian belief
function are usually di�erent.

A possible argument against the above demonstration is to interpret \distinct bodies of
evidence" in such a way that it is invalid to apply Dempster's rule in the previous situation.
For example, according to Smets, \distinctness" is not satis�ed in the present context because
of the existence of a underlying probability function Pr that create a link among the outcomes
of the experiment [13]. Accepting such an opinion, however, means that Postulate 2 is
rejected. How can we say that \chances are limits of belief functions," if it is always invalid
to take this kind of limits (by repeatedly applying Dempster's rule on the belief functions)?

The discrepancy also unearths some other inconsistencies in D-S theory. For example,
Shafer describes chance as \essentially hypothetical rather than empirical," and unreachable
by collecting (�nite) evidence [7, page 202]. According to this interpretation, combining the
evidence of two di�erent Bayesian belief functions becomes invalid or nonsense, because they
are chances and therefore not supported by �nite empirical evidence. If Bel11(fHg) and
Bel12(fHg) are di�erent, then they are two conicting conventions, and applying Dempster's
rule to them is unjusti�ed. If Bel11(fHg) and Bel12(fHg) are equal, then they are the same
convention made from di�erent considerations. In D-S theory, however, they are combined
to get a di�erent Bayesian belief function, except for some special points. Such a result is
counter-intuitive [18] and inconsistent with Shafer's interpretation of chance.

There are already many papers on the justi�cation of Dempster's rule [2, 5, 6, 11, 14, 19],
but few of them addresses the relationships among degree of belief, weight of evidence, and
chance. As a result, the mathematical properties of D-S theory are explored in detail, but
its usage of notions, such as \chance" and \evidence combination", lacks a careful analysis.
For instance, Postulate 2 is usually accepted because a Bayesian belief function is indeed
a probability function, but it is ignored that it is usually not equal to the chance, de�ned by
Postulate 1.

4 Possible Solutions

It is always possible to save a theory, if we do not mind to twist or rede�ne the involved
concepts. To solve the current problem, at least one of the four postulates in D-S theory
must be removed. In the following, let us check all four logical possibilities one by one.

It seems unpopular to reject Postulate 1, and rede�ne \chance" as limw!1(e
w
+

�
1)=(ew

+

+ ew
�

� 1), though this will lead to a consistent theory. The reason is simple: to use
\chance" for the limit of the proportion of positive evidence is a well accepted convention,
and a di�erent usage of the concept will cause many confusions.

How about Postulate 3? In the following, we can see that if the addition of weight of
evidence, during the combination of evidence from distinct sources, is replaced by multipli-
cation, we can also get a consistent theory.

Let us assume w+ = w+
1 w

+
2 and w� = w�1 w

�

2 when two Bayesian belief functions Bel11

and Bel12 are combined to become Bel1. Now, if we simply use the number of outcomes
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as weight of evidence, then from Postulate 1, Postulate 2, and the new postulate, we get

Bel1 = lim
w!1

w+
1 w

+
2

w+
1 w

+
2 + w�1 w

�

2

=
Bel11Bel12

Bel11Bel12 + (1� Bel11)(1�Bel12)
:

which is a special case of (1) (Postulate 4), when Bel11 = Bel1 = P l1 and Bel12 = Bel2 =
P l2 (for Bayesian belief functions).

Though we preserve consistency, the result is not intuitively appealing. For example, no
matter how the weight of evidence is actually measured, the combination of two pieces of
positive evidence with unit weight (w+

1 = w+
2 = 1) will get w+ = 1. That is, evidence is no

longer accumulated by combination (w+ may even be less than w+
1 , if w

+
2 < 1). This is not

what we have in mind when talking about evidence combination or pooling.
Another way to reject Postulate 3 is to remove the concept of weight of evidence from

D-S theory. Actually weight of evidence is seldom mentioned in the literature of D-S theory.
Shafer, in his later papers (for example, [9, 10]), tends to relate belief functions to reliability
of testimony and randomly coded message, rather than to weight of evidence. One problem
of such a solution is the loss of the intuition in the notion of \evidence combination". As
discussed before, by \combination", we usually mean \pooling", \accumulating", or \putting
together", and to introduce a measurement on evidence, which remains additive during
combination, is important for justifying that the \combination rule" is really carrying out an
operation on belief functions that corresponds to what we mean by \evidence combination"
in everyday language. Without such a measurement, the claim that a rule does \evidence
combination" is much less convincing. On the other hand, without weight of evidence, the
problem is still there. In the previous example, if we directly assign Bel and P l values to
the two types of outcomes (rather than assign weights of evidence to them, as we do in the
previous section), then use Dempster's rule to combine the belief functions, it can be proven,
in a similar way as (7) is proven, that Bel and P l usually do not converge to Pr. This is
the case because of the one-to-one correspondence between the weight of evidence and the
belief function.

The rejection of Postulate 2 seems more plausible than the previous alternatives. Very
few authors actually use Bel1(fHg) to represent the chance of H. Even in Shafer's classic
book [7], in which Postulate 2 is made or assumed at several places, Bel1 is not directly
applied to represent statistical evidence.

However, there is not a consensus in the \Uncertainty in AI" community that Bel1(fxg)
and Pr(x) are unequal. The following phenomena shows this:

1. According to many, if not all, textbooks and introductory papers, D-S theory is a
generalization of probability theory, and a chance can be used as a degree of belief.

2. The \lower-upper bounds of probability" interpretation for belief functions is still ac-
cepted by some authors [4].

3. Some other authors, including Shafer himself, reject the above interpretation, but they
still refer to a probability function as a special type (or a limit) of belief functions [9].
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4. Though some authors have gone so far to the conclusion that Bayesian belief functions
do not generally correspond to Bayesian measures of belief, they still view a belief
function as the lower bound of probability [18].

5. In the transferable belief model of D-S theory [11, 12, 13], Smets shows that it is possible
\for quanti�ed beliefs developed independently of any underlying probabilistic model,"
though he still believes that \it seems reasonable to defend the idea that the belief of
an event should be numerically equal to the probability of that event" [13].

Although it is possible to get rid of the inconsistency by give up the equality of Bel1(fxg)
and Pr(x), such a solution will make the relationship between probability theory and D-S
theory complicated.

If we accept Postulate 1, Postulate 3, Postulate 4, and the assumption that w+
0 =

w�0 = 1 (this is assumed only to simplify the derivation), then from (3), the proportion of
positive evidence of H can be represented as a function of Bel and P l, when Bel < P l, as

w+

w
=

logP l � log(P l �Bel)

logP l + log(1� Bel)� 2 log(P l� Bel)

Still, the relationship is not natural, and the ratio usually does not converge to the same
point with Bel and P l as evidence comes. As a result, a natural way to represent uncertainty
as proportion of positive evidence becomes less available in D-S theory. As shown before,
Bel(fHg) is more sensitive to the di�erence of w+ and w�, than to the proportion w+=w.
Pr(H), as the limit of the proportion, even cannot be represented. The knowledge \Pr(H) =
0:51" and \Pr(H) = 0:99" will both be represented as Bel(fHg) = P l(fHg) = 1, and their
di�erence will be lost.

If Postulate 2 were rejected, it would be invalid to interpret Bel and P l as \lower and
upper probability" [1, 3, 4, 12]. It is true that there are probability functions P (x) satisfying

Bel(fxg) � P (x) � P l(fxg) , for all x 2 �:

However, as demonstrated above, these functions may be unrelated to Pr(H).
For the same reason, the assertion that \the Bayesian theory is a limiting case of D-S

theory" [7, page 32] may be misleading. From a mathematical point of view, this assertion
is true, since Bel1(fHg) is a probability function. But as discussed previously, it is not the
probability, or chance, of H. Therefore, it is not valid to get inference rules for D-S theory by
extending Bayes theorem. In general, the relationship between D-S theory and probability
theory will be very loose.

It is still possible to put di�erent possible probability distributions into � and to assign
belief function to them, as Shafer did [7, 8]. For example, the knowledge \Pr(H) = 0:51"
can be represented as \Bel(fPr(H) = 0:51g) = 1." However, here the probability function
is evaluated by the belief function, rather than being a special case of it. The two are at
di�erent levels. As a result, the initial idea of D-S theory (to generalize probability theory),
no longer holds. From a practical point of view, this approach is not appealing, neither. For
instance, for any evidence combination to occur there must be �nite possible probabilities
for H at the very beginning. It is unclear how to get them.
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Finally, it is unlikely, though not completely impossible, to save D-S theory by rejecting
Postulate 4. For instance, we can say that Dempster's rule does not apply to evidence
combination, but can be used for some other purposes. Even so, the initial goal of D-S
theory will be missed. Another suggestion is to use Dempster's rule only on non-Bayesian
belief functions [13, 18]. However, the problem remains under the constraint, because in the
previous demonstration Dempster's rule is only applied to non-Bayesian belief functions to
make equations (3) true.

In summary, though it is possible for D-S theory to survive the inconsistency by removing
one of the postulates, the result is still unsatisfactory. Either the natural meaning of \chance"
or \evidence combination" must be changed, or the theory will fail to meet its original
purpose, that is, to extend probability theory by introducing an evidence combination rule.

5 An Alternative Approach

In spite of the problems, some intuitions behind D-S theory are still attractive, such as the
�rst three postulates, the idea of lower-upper probabilities [1], and the distinction between
disbelief and lack of belief [7].

From previous discussion, we have seen that the core of evidence combination is the
relationships among degree of belief, chance, and weight of evidence. The combination rule
can be derived from these relationships.

Let us continue with the previous example. Because all the measurements are about
H, we will omit it to simplify the formulas. Following the practice of statistics, for the
current example a very natural convention is to use the number of outcomes as the weight
of evidence, that is, to let w+

0 = w�0 = 1.
Because our belief about H is totally determined by available evidence, it may be un-

certain due to the existence of negative evidence. To measure the relative support that H
gets from available evidence, the most often used method is to take the frequency of positive
evidence: f = w+=w. According to Postulate 1, limw!1 f = Pr, that is, the limit of
f , if it exists, is the probability, or chance, of H. Therefore, we can refer to frequency as
probability generalized to the situation of �nite evidence.

However, when evidence combination is considered, f alone cannot capture the uncer-
tainty about H. When new evidence is combined with previous evidence, f must be reevalu-
ated. If we only know its previous value, we cannot determine how much it should be changed
| the absolute amount of evidence is absent in f . Though it is possible, in theory, to directly
use w and w+ as measurements of uncertainty, it is often unnatural and inconvenient [17].
Can we capture this kind of information without recording w and w+ directly?

Yes, we can. From the viewpoint of evidence combination, the inuence of w appears in
the stability of a frequence evaluation based on it. Let us compare two situations: in the �rst
w = 1000 and w+ = 600, and in the second w = 10 and w+ = 6. Though in both cases f is
0.6, its stability is quite di�erent. After a new outcome is observed, in the �rst situation the
new frequency becomes either 600=1001 or 601=1001, while in the second it is either 6=11 or
7=11. The adjustment is much larger in the second situation than in the �rst.

If the information about stability is necessary for evidence combination, why not directly
use intervals like [600=1001; 601=1001] and [6=11; 7=11] to represent the uncertainty in the
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previous situations?
Generally, let us introduce a pair of new measurements: a lower frequency, l, and a upper

frequency, u, which are de�ned as

l =
w+

w + 1

u =
w+ + 1

w + 1
: (8)

The idea behind l and u is simple: if the current frequency is w+=w, then, after combining
the current evidence (whose weight is w) with the new evidence provided by a new outcome
(whose weight is 1), the new frequency will be in the interval [l; u]. We use an interval
instead of a pair of points because the measurements will be extended to situations in which
the weights of evidence are not necessarily integers. In general, the interval bounds the
frequence until the weight of new evidence reaches a constant unit. For the current purpose,
the 1 that appears in the de�nitions of l and u can be substituted by any positive number
[17]. 1 is used here to simplify the discussion.

As bounds of frequency, l and u share intuitions with Dempster's P� and P �, as well
as Shafer's Bel and P l. However, they have some properties that distance them from the
functions of D-S theory and other similar ideas like lower and upper bounds of probability:

1. l � f � u, that is, the current frequency is within the [l; u] interval. Furthermore, it is
easy to see that f = l=(1� u+ l), so the frequency value can be easily retrieved from
the bounds.

2. The bounds of frequency are de�ned in terms of available evidence, which is �nite.
Whether the frequence of positive evidence really has a limit does not matter. The
interval is determined before the next outcome occurs.

3. limw!1 l = limw!1 f = limw!1 u = Pr. If f does have a limit Pr, then Pr is also
the limit of l and u. Therefore, probability is a special case of the [l; u] interval, in
which the interval degenerates into a point.

4. However, Pr, if it exists, is not necessarily in the interval all the time that evidence
is accumulating. [l; u] indicates the range f will be from the current time to a near
future (until the weight of new evidence reaches a constant), not an in�nite future.
Therefore, l and u are not bounds of probability.

5. The width of the interval i = u � l = 1=(w + 1) monotonically decreases during
the accumulating of evidence, and so can be used to represent the system's \degree of
ignorance" (about f). When w = 0, i = 1, because with no evidence, ignorance reaches
its maximum. When w ! 1, i = 0, because with in�nite evidence the probability is
obtained, so the ignorance (about the frequency) reaches its minimum, even though
the next outcome is still uncertain. In this way, \lack of belief" and \disbelief" are
clearly distinguished.

9



From the de�nitions of the lower-upper frequencies and Postulate 3, a combination rule,
from [l1; u1] � [l2; u2] to [l; u], is uniquely determined in terms of lower-upper frequencies,
when neither i1 = u1 � l1 nor i2 = u2 � l2 is 0:

l =
l1i2 + l2i1

i1 + i2 � i1i2

u =
l1i2 + l2i1 + i1i2
i1 + i2 � i1i2

: (9)

From (3) and (8), we can even set up a one-to-one mapping between the Bel-P l scale and
the l-u scale, when the weight of evidence w is �nite and j�j = 2. In this way, the combination
rule given by (9) is mapped exactly onto Dempster's rule (1). From a mathematical point
of view, the two approaches di�er only when w ! 1. Then Bel and P l converge to a
probability if and only if w� � w+ converges to a constant, but l and u converge to a
probability if and only if w+=w converges to a constant. The latter, being the probability
of H, is more helpful and important in most situations than the former is. In fact, Shafer
acknowledges the problem when he writes, \It is di�cult to imagine a belief function such
as Bel1 being useful for the representation of actual evidence [7, page 199]." However, the
result seems to be accepted without further analysis, since it follows from Dempster's rule.

Let us apply the paradigm to in�nite evidence. For practical purpose it is impossible
for a system to get in�nite evidence, but we can use this concept to put de�nitions and
conventions into a system. Beliefs supported by in�nite evidence can be processed as normal
ones, but will not be changed through evidence combinations.

According to the interpretation of the [l; u] interval, it is not di�cult to extend the new
combination rule (9) to the case of in�nite evidence:

1. When i1 = 0 but i2 > 0, the rule is still applicable in the form of (9), which gives the
result that l = l1 = u1 = u. Thus when uncertainty is represented by probability (a
point, instead of an interval), it will not be e�ected by combining its evidence with
�nite new evidence.

2. When i1 = i2 = 0, the rule cannot be used. Now the system will distinguish two cases:

(a) when l1 = l2 = u1 = u2 there are two identical probabilistic judgments, so
one of them can be removed (because it is redundant), leaving the other as the
conclusion; or,

(b) l1 6= l2, meaning there are two conicting probabilistic judgments. Since such
judgments are not generated from evidence collection but from conventions or
de�nitions, the two judgments are not \combined," but reported to the hu-
man/program which is responsible for making the conventions.

Here we are even more faithful to Shafer's interpretation of (aleatory) probability than
D-S theory is. Being \essentially hypothetical rather than empirical," probability cannot be
evaluated with less than in�nite evidence [7, page 201]. For the same reason, it should not
be changed by less than in�nite evidence.
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In summary, though many of the intuitive ideas of D-S theory are preserved, the problem
in D-S theory discussed above no longer exists in the \lower-upper frequency" approach.
The new method can represent probability and ignorance, and has a rule for evidence com-
bination. The new approach can hardly be referred to as a modi�cation or extension of D-S
theory, in part because Dempster's rule is not used.

This approach is used in the Non-Axiomatic Reasoning System (NARS) project. As an
intelligent reasoning system, NARS can adapt to its environment and answer questions with
insu�cient knowledge and resources [16, 17]. A complete comparison of NARS and D-S
theory is beyond the scope of this paper. By introducing the approach here, we hope to
show that the most promising solution for the previous inconsistency is to reject Postulate
4 and go beyond D-S theory.

6 Conclusion

A variety of authors have noticed that certain applications of D-S theory lead to counter-
intuitive results. However, the origin of the problem is studied insu�ciently.

Though D-S theory can be used to accumulate evidence from distinct sources, it es-
tablishes a unnatural relation between degree of belief and weight of evidence by using
Dempster's rule for evidence combination. As a result, the assertion that \probability is
a special belief function" is in conict with the de�nitions of \probability" and \evidence
combination."

The inconsistency is solvable within D-S theory, but such a solution will make D-S theory
either lose its naturalness (by using a concept in a unusual way), or miss its original goals
(by being unable to represent probability or to combine evidence).

Though the criticism of D-S theory to Bayes approach is justi�able, and the \lower-
upper frequency" approach is motivated by similar theoretical considerations [15], the two
approaches solve the problem di�erently.

The \lower-upper frequency" approach is not specially designed to replace D-S theory
in general, but it does suggest a better way to represent and process uncertainty. The new
approach sets up a more natural relation among the various measurements of uncertainty,
including probability. It can combine evidence from distinct sources. Therefore, it makes
the system capable of carrying out multiple types of inference, such as deduction, induction,
and abduction [16, 17].
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APPENDIX: Detailed derivation of (7)
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