
Case-by-Case Problem Solving

Pei Wang
Temple University, Philadelphia, USA
http://www.cis.temple.edu/∼pwang/

Abstract

Case-by-case Problem Solving solves each occurrence, or
case, of a problem using available knowledge and resources
on the case. It is different from the traditional Algorithmic
Problem Solving, which applies the same algorithm to all
occurrences of all problem instances. Case-by-case Prob-
lem Solving is suitable for situations where the system has
no applicable algorithm for a problem. This approach gives
the system flexibility, originality, and scalability, at the cost
of predictability. This paper introduces the basic notion of
Case-by-case Problem Solving, as well as its most recent im-
plementation in NARS, an AGI project.

Algorithmic Problem Solving
“Problem Solving” is the process to find a solution for a
given problem by executing some operations. For a certain
system at a certain moment, the set of executable operations
usually remains constant. Therefore, the task for the system
is to find a way to select proper operations and to execute
them in proper order for the given problem.

In computer science and AI, the dominant approach in
problem solving can be called “Algorithmic Problem Solv-
ing” (APS in the following). According to this approach,
first a problem is specified as a function that maps any in-
put (problem instance) of a certain type to the corresponding
output. Then, an algorithm is designed, which accomplishes
this function step by step, where each step is a well-defined
operation. Finally, the algorithm is implemented in a pro-
gramming language to become a computer program, which
will be able to let a computer routinely transform valid in-
put data into output data. A well-known description of this
approach can be found in (Marr, 1982).

Accurately speaking, in this approach “problem solving”
happens in two different levels:

1. When the problem refers to a problem type, or input-
output mapping, the solution is the corresponding al-
gorithm (conceptually speaking) or program (practically
speaking) that accomplishes the mapping. For example,
when the problem is “to sort sequences of comparable
items”, one solution is “quicksort”.

Copyright c© 2008, The Second Conference on Artificial General
Intelligence (AGI-09.org). All rights reserved.

2. When the problem refers to a problem instance, or in-
put data, then the solution is the corresponding output
data, according to the problem specification. For exam-
ple, when the problem is “to sort [3, 2, 4, 1]”, the solution
is “[1, 2, 3, 4]”.

So APS has two phases: at first a human solves a problem
by designing an algorithm for it, then a computer applies the
algorithm to solve concrete instances of the problem.

Computer science inherited APS from mathematics, and
has successfully applied and enhanced it to provide a the-
oretical and methodological foundation for the information
technology. Even so, this approach has its limitation:
• For some problems, no algorithm has been found. Even

worse, for some problems it can be proved that no algo-
rithm can be found. This is the issue of computability
(Davis, 1958).

• For some problems, all known algorithms require too
much time-space resources to solve every instances of the
problem in practical situations. This is the issue of com-
putational complexity (Cormen et al., 2001).
Beside the above issues that are well-known to computer

science, AI has taken the additional challenge of building
computer systems that require little human involvement in
the whole problem solving process. To be intelligent, a com-
puter system should have creativity and flexibility, which of-
ten means to be able to solve a problem for which it has not
been given an applicable algorithm.

Some people consider this task as impossible: if every-
thing a computer does follow some algorithm, how can it
solve a problem for which no algorithm is given in advance?
This opinion comes from a misconception, because a com-
puter may be able to solve a problem without a predeter-
mined algorithm for that problem, while in the whole pro-
cess the system still follow algorithms defined on other prob-
lems, not the one under consideration (Wang, 2007).

Obviously, when a computer system must solve problems
for which no algorithm is given in advance, then it can no
longer follow the APS approach. In computer science and
AI, many alternative approaches have been explored. This
paper will not provide a comprehensive survey on this topic.
Instead, it will concentrate on one approach, “Case-by-case
Problem Solving”, describe its up-to-date implementation in
an AGI system, and compare it with some of the alternatives.



CPS: the Basic Idea
Case-by-case Problem Solving (CPS) is a notion introduced
in contrast with Algorithmic Problem Solving (APS). This
notion was formed during the development of NARS, an
AGI project, and the basic idea has been described in pre-
vious publications (Wang, 1996; Wang, 2004), though not
bearing this name. Here the notion is briefly summarized
and explained.

NARS is an intelligent system designed according to the
theory that “intelligence” means “adaptation and working
with insufficient knowledge and resources”. Descriptions
of the whole project can be found in (Wang, 1995; Wang,
2006), and this paper only focuses on a certain aspect of the
system.

NARS accepts three types of task from the environment:
knowledge to be absorbed, questions to be answered, and
goals to be achieved. Each piece of new knowledge is turned
into a belief of the system, and is used in forward infer-
ence to derive or revise other beliefs; Each new question and
goal, which is what we usually call a “problem”, is matched
with existing beliefs for possible direct solutions, as well as
used in backward inference to produce derived questions and
goals, based on relevant beliefs.

One concrete implication of the above theory of intelli-
gence is that an intelligent system, like NARS, often needs
to deal with problems for which the system has no applica-
ble algorithm, as a special case of “insufficient knowledge”.
As analyzed in the previous section, this can be caused by
various reasons, such as:
• The problem is not computable;
• Though the problem may be computable, no algorithm

has been found yet;
• Though the problem can be solved by an algorithm, it is

unknown to the system at the moment;
• Though the system knows some algorithmic solutions to

the problem, it cannot afford the resource required by any
of them.
No matter what the reason is, in this situation the system

cannot follow APS. To work in this situation, there are two
possible approaches:

1. Find an algorithm first, then use it to process the problem
instances;

2. Directly solve the problem instances without following a
predetermined algorithm.
While most of the relevant works in AI follow the first ap-

proach, in NARS the second approach is explored. Here a
key observation is that the “problem” an intelligent system
meets is usually a “problem instance”, rather than a “prob-
lem type”. The “sorting problem” ordinary people meet in
their daily life is usually to sort concrete sequences, one
at a time, not “to find a method to routinely sort any se-
quence”, as defined by mathematicians and computer sci-
entists. Therefore, even when a problem type cannot be
“solved” by an algorithm, some (even if not all) of its in-
stances may still be solved, by taking the special properties
of each of them into consideration. In this way, “problem

solving” is carried out in a case by case manner, and that is
where the name CPS comes.

Some people may suspect CPS as APS rebranded, by
treating what is previously taken as a problem instance as
a problem type — though the system has no algorithm to
sort all sequences, it might have an algorithm to sort [3, 2,
4, 1]. This is not what CPS means, because in a system like
NARS, not only that each instance of the same problem type
may be processed differently, but also that each occurrence
of the same problem instance may be processed differently.
This is not as strange as it sounds if we consider human
problem solving, where the same problem (instance) often
gets different treatment when it occurs in different contexts.

How about to insist that “The system is still following an
algorithm for each occurrence of the problem, though differ-
ent occurrences of the same problem may be handled by dif-
ferent algorithms”? After all, the actual solving process of
the problem (occurrence) consists of nothing but a sequence
of operations, right? Isn’t it just an algorithm? Such a usage
of the notion of “algorithm”, though possible, would make
it useless in analyzing the system, because such an “algo-
rithm” can only be recorded after the problem-solving pro-
cess, and is not repeatable. No matter what word is used, the
system’s processing of the next occurrence of the problem
is no longer accurately predictable, unless everything in the
environment and the system are fully specified. In this situ-
ation the system does not serve as a fixed function mapping
the problem instances to corresponding solutions.

The above analysis suggests that non-algorithmic CPS is
not only logically possible, but also has the human mind as
an existing proof. However, it does not tell us how to carry
out this kind of process in a computer. After all, a computer
system has to follow some algorithms (though not specific
to the domain problems) to control its activities.

Theoretically speaking, if the precondition and conse-
quence of each operation are accurately known, the system
should be able to solve a concrete problem by exhaustively
evaluating all possible operation sequences, and choosing
the best solution according to their overall results. However,
it is obvious that for any non-trivial problem such an exhaus-
tive search will not be affordable. This is especially true for
NARS, with its assumption on the insufficiency of knowl-
edge and resources — “insufficient knowledge” means that
the precondition and consequence of each operation are not
accurately known, and “insufficient resources” means that
the system does not have the time and space to consider all
known possibilities. Under this assumption, by definition,
the system cannot always find the best solution that guaran-
tees the optimal result among all alternatives.

On the other hand, for a system working in this situation,
the “insufficiency” assumption does not mean that all solu-
tions are equally good. According to the opinion that intel-
ligence is a form of adaptation, an intelligent system should
pick the best solution that, according to its experience, is
most likely to achieve a desired result, among the alterna-
tives the system can consider with available resources.

As a realization of the above idea, the problem-solving
process in NARS can be informally and briefly described as
the following.



First, since NARS is designed in the framework of reason-
ing system, in it goals, operations, and beliefs are all repre-
sented as sentences in a formal language. A goal describes
what the system want to achieve (i.e., to make it true); an
operation can be directly achieved by executing some code;
and a belief summarizes the system’s experience on the re-
lations among items in the system, including goals, opera-
tions, and other beliefs.

Assuming insufficient knowledge, in NARS a belief can
only specify partial preconditions or consequences of an op-
eration, with a truth-value to indicate the evidential support
for it according to the system’s experience. Each inference
rule, when used for forward inference, takes a couple of ex-
isting beliefs as premise, and derives a conclusion, with a
truth-value determined according to the evidence provided
by the premises. With the coming of new evidence, new
beliefs are derived, and existing beliefs are revised. There-
fore, the system’s overall opinion about the preconditions
and consequences of each operation changes over time.

Similarly, a goal is a statement, not a state, so is a incom-
plete specification of a certain aspect of the (internal or ex-
ternal) environment. There are inference rules used for back-
ward inference, to produce derived goals, recursively from
existing goals and beliefs. At any moment, there are usu-
ally many (input or derived) goals in the system, which are
not necessarily consistent in what they specify as desired. If
according to its experience the system expects the execution
of a certain operation will achieve a certain goal, there is
no guarantee that the expectation will be confirmed by fu-
ture experience. Furthermore, the operation may have some
undesired impact on other goals. Therefore, in the system
each statement has a desire-value associated to summarize
its overall relations with the goals considered, which, plus
some other factors, will decide whether the system will take
the statement as a goal.

Under the assumption of insufficient resources, the sys-
tem cannot afford to explore all possibilities by interacting
every task with every (relevant) belief. Instead, it can only
let selected tasks interact with selected beliefs. The selec-
tions are based on the system’s evaluation on the priority
(which summarizes factors like urgency, importance, rele-
vance, usefulness, etc.) of the tasks and beliefs, according
to the system’s experience. Since the system constantly gets
new experience while communicating with the environment
and working on the tasks, the evaluation results change from
time to time.

The above mechanism inevitably leads to CPS. To NARS,
each task corresponds to a new case, that is, the occurrence
of a problem instance in a internal context (defined by the
available knowledge and resources at the moment). What
the system does to a task is determined by what the system
knows about it (the existing relevant beliefs), how much re-
sources the system can spend on it (the number of beliefs
that will be selected), and the priority distribution among
the beliefs (the access order of the selected beliefs). Since
the above factors are constantly changing, the processing of
a given task becomes unpredictable and non-repeatable ac-
cording to the task alone, and the problem-solving process
cannot be abstracted as APS.

CPS with Procedural Knowledge
In this section, more technical details are provided on the
CPS process in NARS. Given the paper length restriction,
here the focus is in the recent progress on CPS with proce-
dural knowledge. For CPS with declarative knowledge, see
(Wang, 1996; Wang, 2004).

NARS uses a formal language Narsese, which is term-
oriented, that is, a statement in it typically has the form
of subject-copula-predicate. While “There is a R relation
among objects a, b, c” is usually represented in predicate
logic as R(a, b, c), in Narsese it becomes ((× a b c)→ R),
which states that the tuple [a, b, c] (the subject term) is a
special case of the relation R (the predicate term), and ‘→’
(the copula) is the inheritance relation.

A “statement on statements” can be represented as a
higher-order statement. For example, “An R1 relation
among objects a, b, c implies an R2 relation among b, a, c” is
represented as (((× a b c)→ R1) ⇒ ((× b a c)→ R2)),
where the two terms are statements, and ‘⇒’ is the implica-
tion relation, another type of copula.

An event is a statement with temporal information. For
example, “An R1 relation among objects a, b, c is usually
followed by an R2 relation among b, a, c” is represented as
(((× a b c)→ R1) /⇒ ((× b a c)→ R2)), where ‘/⇒’ is
implication plus the temporal information that the event as
subject happens before the event as predicate.

With insufficient knowledge, in NARS no statement is ab-
solutely true. A judgment is a statement with a truth-value
attached, indicating the evidential support the statement gets
from the experience of the system. A truth-value consists of
two factors: a frequency factor in [0, 1], measuring the pro-
portion of positive evidence among all available evidence,
and a confidence factor in (0, 1), measuring the proportion
of current evidence among future evidence, after the coming
of new evidence of a unit amount. For example, if statement
((× a b c) → R) has been tested 4 times, and in 3 of them
it is true, while in 1 of them it is false, the truth-value of the
statement is f = 3/4 = 0.75, c = 4/5 = 0.80, and the
judgment is written as “((× a b c)→ R) <0.75; 0.80>”.

A goal is an event the system wants to achieve, that is,
the system is willing to do something so that the truth-value
of that statement will approach <1.00; 1.00> as closely as
possible. The attached desire-value of each goal is the truth-
value of the system’s belief that the achieving of the goal
really leads to desired situations.

An operation is an event that the system can directly real-
ize by executing some program (which are usually not writ-
ten in Narsese). In other words, it is a statement with a
“procedural interpretation”, as in logic programming. For
example, if the term R corresponds to the name of an oper-
ation, and a, b, and c are arguments of the operation, then
((× a b c)→ R) represent the event that R is applied on a,
b, and c, which is a special case for the three to be related.

The system’s knowledge about an operation is mainly rep-
resented as beliefs on what the operation implies, as well as
what it is implied by. Each belief provides partial informa-
tion about the precondition or consequence of the operation,
and the overall meaning of the operation, to the system, is
the collection of all such beliefs. To simplify the description,



in the following a term, like S, will be used to represent a
statement, such as ((× a b c)→ R).

In NARS, a judgment (S1 /⇒ S2) <f ; c> can be used to
uniformly represent many different types of knowledge.
• If S1 is directly about an operation, but S2 is not, then the

judgment represents a belief on an effect or consequence
of the operation;

• If S2 is directly about an operation, but S1 is not, then the
judgment represents a belief on a cause or precondition of
the operation.
Such a judgment can be used by various rules. In forward

inference, it and a judgment on S1 can derive a judgment
on S2 by the deduction rule, as a prediction; it and a judg-
ment on S2 can derive a judgment on S1 by the abduction
rule, as an explanation. This judgment itself can be derived
from the system’s observation of event S1 followed by event
S2, by the induction rule, as a generalization. In backward
inference, this judgment and a goal (or a question) on S2

can derive a goal (or a question) on S1. Different rules use
different truth-value functions to calculate the truth-value of
the conclusion from those of the premises. The details of
these rules, with their truth-value functions, can be found in
(Wang, 2006).

For more complicated situations, both the S1 and S2 in
above judgment can be compound statements consisting of
other statements. For example, very common the condition
part of an implication statement is a “sequential conjunc-
tion”, as in ((S1, S2) /⇒ S3), which means the event se-
quence “S1, then S2” is usually followed by event S3. When
S2 is an operation, such a statement represents its (partial)
precondition and consequence. When S3 is a goal, (S1, S2)
indicates a plan to achieve it.

The inference rules of NARS carry out various cogni-
tive functionalities in a uniform. Beside the above men-
tioned prediction, explanation, and generalization, the sys-
tem can also do planning (finding a sequence of operations
that lead to a given goal), skill learning (forming stable oper-
ation sequence with useful overall function), decision mak-
ing (choosing among alternatives), etc., though in this pa-
per their details cannot be explained. Working examples of
these functions in NARS can be found at the project website
http://code.google.com/p/open-nars/.

In NARS, all beliefs (existing judgments) and tasks (new
knowledge, questions, and goals) are clustered into con-
cepts, according to the terms appearing in them. The system
runs by repeating the following working cycle:

1. Select tasks in a task buffer to insert into the correspond-
ing concepts, which may trigger the creation of new con-
cepts and beliefs, as well as direct processing on the tasks.

2. Select a concept from the memory, then select a task and
a belief from the concept.

3. Feed the task and the belief to the inference engine to pro-
duce derived tasks.

4. Add the derived tasks into the task buffer, and send report
to the environment if a task provides a best-so-far answer
to an input question, or indicates the realization of an in-
put goal.

5. Return the processed belief, task, and concept back to
memory.

The selections in the first two steps are all probabilistic, with
the probability for an item (concept, task, or belief) to be
selected proportional to its priority value. In the last step,
the priority of the involved items are adjusted according to
the immediate feedback obtained from the inference result.

Now we can see that for a given task, its processing path
and result are determined by the beliefs interacting with it, as
well as the order of the interactions (that is, inference steps),
which in turn depends on the items in the memory (con-
cepts, tasks, and beliefs), as well as the priority distributions
among the items. All these factors change constantly as the
system communicates with the environment and works on
the tasks. As a result, there is no algorithm specifying the
inference step sequence for a task. Instead, this sequence is
formed at run time, determined by many preceding events
in the system. In this way, task processing (that is, problem
solving) in NARS becomes “case by case”.

Comparison and Discussion
CPS and APS are different approaches of problem solving
in computer. In APS, it is the programmer who solves the
problem (as a class), and the computer just applies the so-
lution to each instance of the problem. In CPS, it is the
computer that directly solves the problem (as a case), de-
pending on its available knowledge and resources. A CPS
system still follow algorithms, but these algorithms are not
solutions of domain-specific problems. Instead, they are
domain-independent solutions of “meta-problems” like the
handling of input/output, the carrying out of the inference
steps, the allocating of resources, etc.

These two approaches are suitable for different situa-
tions. Given the scope of the problems a system faces, APS
is preferred when there are sufficient knowledge (to get a
problem-specific algorithm) and resources (to execute the al-
gorithm), while CPS is an option when no problem-specific
algorithm is available and affordable. CPS gives the system
creativity, flexibility, and robustness, though it lacks the pre-
dictability, repeatability, and reliability of APS.

CPS processes are difficult to analyze, because the tra-
ditional theories on computability and computational com-
plexity become inapplicable at the problem-solving level
(though it may be applied in other levels), as the solvable
problems and the solution costs all become context-sensitive
and practically unpredictable, unless the system’s experi-
ence in the past and near future (when the problem is be-
ing solved) is fully known, and the system can be simulated
step-by-step with all details.

Some claims on the limitations of AI are based on the
“non-algorithmic” nature of intelligence and cognition, as in
(Dreyfus, 1979; Penrose, 1989). When facing CPS systems,
all such claims become invalid, because the problem-solving
processes in these systems are already non-algorithmic. This
topic has been discussed with more details in (Wang, 2007),
and will not be repeated here.

A large part of AI research is driven by the challenge of
problems for which no efficient algorithm is available. The



typical response is to find such an algorithm first, then to use
it in APS. CPS is different from these techniques in its basic
idea, though still related to them here or there.

One of the earliest AI technique is heuristic search
(Newell and Simon, 1976). Since all possible solutions
come from permutations of a constant set of basic opera-
tions, problem solving in theory can be described as search-
ing for a path from the initial state to a goal state in a state
space. Because exhausting all possibilities usually demands
unaffordable resources, the key becomes the selection of
paths to be explored. NARS is similar to heuristic search in
that (1) it compares alternative paths using numerical func-
tions, since in NARS the truth-values, desire-values, and
priority-values all have impact on the order by which the
alternatives are explored, and (2) the system usually gets sat-
isfying solutions, rather than optimal solutions. Their major
differences are that at each step NARS does not evaluate a
static list of alternatives according to a fixed heuristic, but
recognizes and builds the alternatives by reasoning, and al-
locates resources among them, so to explore them in a con-
trolled concurrency (Wang, 1996), which is similar to par-
allel terraced scan (Hofstadter and FARG, 1995). Further-
more, in NARS the heuristic information is provided mainly
by the domain knowledge, which is not built into the system,
but learned and derived, so is flexible and context-sensitive,
while a heuristic algorithm has a fixed step sequence.

A related technique is production system, or rule-based
system, where each state change is caused by the apply-
ing of a rule, and different solutions correspond to different
rule-application sequences. NARS looks like such a system,
since it also describes a problem in a formal language, and
modifies the description by rules during inference. However,
in traditional rule-based system there is a static long-term
memory (containing rules) and a changeable working mem-
ory (containing facts) (Newell, 1990). In a problem solving
process, only the latter is changed, and after the process, the
working memory is reset. Therefore, the system still does
APS, since it provides a (fixed) mapping from input (prob-
lem instances) to output (solutions), even though here the
“algorithm” is not explicitly coded as a program, but is im-
plicitly distributed among the rules and the control mecha-
nism (which is responsible for selecting a rule to fire in each
working cycle). On the contrary, in NARS the content of
memory is modified by every problem-solving process, so
the processes have strong mutual influence, and it is impos-
sible to analyze one of them without the others.

The “case” in CPS should not be confused with the same
term in Case-Based Reasoning (Leake, 1996), which solves
problems by revising solutions of similar problems — that
is still APS, with the algorithms distributed among the cases
and the control mechanism (which is responsible for select-
ing similar cases and putting together a new solution).

More complicated forms of APS can be found in works on
randomized algorithms (Cormen et al., 2001), anytime algo-
rithms (Dean and Boddy, 1988), and metareasoning (Russell
and Wefald, 1991). Though driving by different consider-
ations and suggesting different approaches, each of these
technique solves a problem with a family of algorithms,
rather than a single one. For a given problem instance, some

outside factor (beyond the input data) decides which algo-
rithm in the family will be selected and applied. In random-
ized algorithms, the selection is made randomly; in anytime
algorithms, it is determined by the executing time restric-
tion; and in metareasoning, it is the result of an explicit de-
liberation. If we treat these factors as an additional argument
of the problem, used as the index of the algorithm selected
from the family, all these situations are reduced to APS. On
the contrary, CPS cannot be reduced into APS in this way,
since it is not even a selection among preexisting algorithms.
If a problem (instance) is repeatedly solved in NARS, the
solution does not form a probability distribution (as in a ran-
domized algorithms). Even if the same amount of time is
allocated to a problem, in NARS the results can still be dif-
ferent, while according to anytime algorithm and metarea-
soning, the results should be the same. Even so, NARS still
share some properties with these approaches. For example,
given more resources, the system usually provides better so-
lutions, as an anytime algorithm (Wang, 1996).

In NARS a problem-solving process is non-algorithmic,
because the process is not built into the system, but formed
by the learning and adaptation mechanism of the system. To
learn problem-solving skills from environment feedback is
not a new idea at all (Turing, 1950). There is a whole rein-
forcement learning field aimed at the optimization of the re-
ward from the environment to the system’s operations (Kael-
bling et al., 1996). Also, genetic programming provides
a powerful way to generate algorithms for many problems
(Koza, 1992). Though these techniques (and some others)
are very different in details, they are still within the APS
framework given at the beginning of the paper: first, find
an algorithm for a problem class, then, apply the algorithm
to each problem instance. What these techniques aim is to
replace the human designer in the first phase of APS. This
is different from the aim of CPS, which merge these two
phases into one, by directly solving problem instances in a
non-algorithmic manner. There are indeed many situations
where algorithms are desired, and therefore some kind of
algorithm-learning technique will be preferred. However,
there are also situations where the system cannot satisfy the
demand of these algorithm-learning techniques on knowl-
edge and resources, so CPS will be more proper. CPS does
not reject all forms of skill learning, as far as it does not re-
duce the problem-solving process into APS. As described in
the previous section, NARS can learn procedures.

In summary, CPS is designed for a situation where no ex-
isting technique can be applied, rather than as an alternative
to an existing technique in the field for which it is designed.
CPS is similar to the existing techniques in many aspects,
but cannot be reduced to any of them.

Conclusion
For problem-solving, the “case-by-case” approach (CPS),
which is used in NARS and advocated in this paper, is dif-
ferent from the algorithmic approach (APS) by taking the
following positions:

• Do not define a “problem” as a class and use the same
method to solve all of its instances. Instead, treat each



“problem instance” as a “problem” on its own, and solve
it in a case-by-case manner, according to the current
(knowledge/resource) situation in the system.

• Do not draw a sharp line between solutions and non-
solutions for a given problem, and treat all solutions as
equally good. Instead, allow solutions to be partial, and
compare candidate solutions to decide which one is better.

• Do not insist on “one problem, one solution”. Instead,
allow the system to generate zero, one, or a sequence of
solutions, each of which is better than the previous ones.

• Do not depend on a predetermined algorithm to solve
a problem. Instead, cut a problem-solving process into
steps. Though each step follows an algorithm, the overall
process is formed by linking steps together at run time in
a context-sensitive manner.

• Do not predetermine the method by which a problem is
processed in each step. Instead, let the selected problem
and available knowledge decide how the problem is pro-
cessed in that step.

• Do not attempt to use all relevant beliefs to solve a prob-
lem. Instead, in each step only consider one of them, se-
lected according to their priority values.

• Do not solve problems one after another. Instead, process
problems (and subproblems) in parallel, but at different
speed, according to their priority values.

• Do not throw away the intermediate results at the end of
a problem-solving process. Instead, keep them for future
problems.

• Do not isolate each problem-solving process in its own
working space. Instead, let all problems interact with the
same memory.

• Do not attempt to keep all beliefs forever. Instead, remove
items with the lowest priority when the memory is full.

• Do not process each problem with a fixed resources sup-
ply. Instead, let the processes compete for resources.

• Do not keep a fixed resources distribution. Instead, adjust
the priority distribution according to the experience of the
system and the current context, so as to give important
and relevant items more resources.

Some of the above issues are discussed in this paper,
while the others have been addressed in related publications
(Wang, 1996; Wang, 2004; Wang, 2006).

This new approach for problem-solving is proposed as a
supplement to the traditional (algorithmic) approach, for sit-
uations where the system has insufficient knowledge and re-
sources to apply or to build an algorithm for the problem it
faces.

The practice of project NARS shows that such an ap-
proach can be implemented, and has properties not available
in traditional systems. Since the capability of such a system
is not only determined by its design, but also by its expe-
rience, it is hard to evaluate the potential of this approach
in solving practical problems. However, at least we can say
that this approach is exploring a territory beyond the scope
of classic theory of computation, and it is more similar to
the actual thinking process of the human mind.

References
Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
(2001). Introduction to Algorithms. MIT Press, McGraw-
Hill Book Company, 2nd edition.
Davis, M. (1958). Computability and Unsolvability.
Mcgraw-Hill, New York.
Dean, T. and Boddy, M. (1988). An analysis of time-
dependent planning. In Proceedings of AAAI-88, pages
49–54.
Dreyfus, H. L. (1979). What Computers Can’t Do: Revised
Edition. Harper and Row, New York.
Hofstadter, D. R. and FARG (1995). Fluid Concepts and
Creative Analogies: Computer Models of the Fundamental
Mechanisms of Thought. Basic Books, New York.
Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996).
Reinforcement learning: a survey. Journal of Artificial In-
telligence Research, 4:237–285.
Koza, J. R. (1992). Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selection.
MIT Press, Cambridge, Massachusetts.
Leake, D., editor (1996). Case-Based Reasoning: Experi-
ences, Lessons, and Future Directions. AAAI Press, Menlo
Park, California.
Marr, D. (1982). Vision: A Computational Investigation
into the Human Representation and Processing of Visual
Information. W. H. Freeman & Co., San Francisco.
Newell, A. (1990). Unified Theories of Cognition. Harvard
University Press, Cambridge, Massachusetts.
Newell, A. and Simon, H. A. (1976). Computer science as
empirical inquiry: symbols and search. Communications
of the ACM, 19(3):113–126.
Penrose, R. (1989). The Emperor’s New Mind: Concern-
ing Computers, Minds, and the Laws of Physics. Oxford
University Press.
Russell, S. and Wefald, E. H. (1991). Principles of metar-
easoning. Artificial Intelligence, 49:361–395.
Turing, A. M. (1950). Computing machinery and intelli-
gence. Mind, LIX:433–460.
Wang, P. (1995). Non-Axiomatic Reasoning System: Ex-
ploring the Essence of Intelligence. PhD thesis, Indiana
University.
Wang, P. (1996). Problem-solving under insufficient re-
sources. In Working Notes of the AAAI Fall Symposium on
Flexible Computation, pages 148–155, Cambridge, Mas-
sachusetts.
Wang, P. (2004). Problem solving with insufficient re-
sources. International Journal of Uncertainty, Fuzziness
and and Knowledge-based Systems, 12(5):673–700.
Wang, P. (2006). Rigid Flexibility: The Logic of Intelli-
gence. Springer, Dordrecht.
Wang, P. (2007). Three fundamental misconceptions of ar-
tificial intelligence. Journal of Experimental & Theoretical
Artificial Intelligence, 19(3):249–268.


