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Abstract

In the discussions on the limitation of Artificial Intelligence (AI), there
are three major misconceptions, which identify an AI system with an ax-
iomatic system, a Turing machine, and a system with a model-theoretic se-
mantics, respectively. Though these three notions can be used to describe
a computer system for certain purposes, they are not always the proper
theoretical notions when an AI system is under consideration. These
misconceptions are not only the basis of many criticisms of AI from the
outside, but also responsible for many problems within AI research. This
paper analyzes these misconceptions, and points out the common root of
them, that is, to treat empirical reasoning as mathematical reasoning. Fi-
nally, an intelligent system, NARS, is introduced as an example, which is
neither an axiomatic system, nor a Turing machine in its problem-solving
process, and does not use a model-theoretic semantics, though is still im-
plementable in an ordinary computer.

Keywords: limitation of AI, axiomatization, algorithmization, formalization,
empirical reasoning

1 Introduction

The research of Artificial Intelligence (AI) began half a century ago with the
realization that the recently invented computer not only could carry out numer-
ical calculation, but also could manipulate sequences of bits (that were used to
stand for other things) according to predetermined procedures (programs). In
this way, a computer could have certain capabilities of the human mind.

Naturally, people want to know how far computer systems can go in this
direction. Can a computer be given all mental capabilities, or there are certain
limitations that a computer cannot pass, no matter how it is designed? When
Turing (1950) argued for the possibility of intelligent machines, he did not be-
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lieve in any of such limitation, and he used a large part of the paper to refute
several claims of limitation he anticipated.

Since then, the debates on the possibility of thinking machines, or the limi-
tations of AI research, have never stopped. These debates happen both within
the AI community [Kirsh (1991); Hearst and Hirsh (2000)] and outside it (as
“the philosophy of AI”) [Graubard (1988); Chalmers (2005)]. There is still no
sign of any consensus on the overall conclusion.

This paper is not an attempt to provide a survey of all aspects of these
debates. Instead, it focuses on three claims which are at the foundation of the
debates:

• An AI system is in principle an axiomatic system.

• The problem-solving process of an AI system is equivalent to a Turing
machine.

• An AI system is formal, and only gets meaning according to model-theoretic
semantics.

As usual, these claims often appear in different forms or are implicitly assumed.
In the following, I will start by analyzing each of the claims, to see what it

exactly means, in what sense it is correct, in what sense it is wrong, and why
it is a misconception of AI. After that, I will analyze the common root of the
three misconceptions, and relate them to the mainstream AI research. Finally,
a concrete AI system, NARS, is introduced as an concrete example, in which
none of the three claims holds.

2 AI and axiomatic systems

The most typical case of taking AI systems as axiomatic systems is the argument
that Gödel’s Incompleteness Theorem shows a limitation of AI. This opinion was
first proposed by Lucas (1961, 1970, 1996), and later popularized by Penrose
(1989, 1994).

The argument goes like this: “Gödel’s theorem must apply to cybernetical
machines, because it is of the essence of being a machine, that it should be a
concrete instantiation of a formal system. It follows that given any machine
which is consistent and capable of doing simple arithmetic, there is a formula
which it is incapable of producing as being true — i.e., the formula is unprovable-
in-the-system-but which we can see to be true. It follows that no machine can be
a complete or adequate model of the mind, that minds are essentially different
from machines.” [Lucas (1961)]

Penrose’s conclusion is slightly different, but he also believes that Gödel’s
theorem shows that “human understanding and insight cannot be reduced to
any set of computational rules.” [Penrose (1994)] Penrose also identified an AI
system with an algorithm, which will be discussed in the next section.

Now let us first check what Gödel did in his famous 1931 paper [Gödel
(1999)]. He started with the axiomatic system of PM [Whitehead and Russell
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(1910)], used a code to translate a self-referencing proposition (which states
that it is not provable in PM) into a proposition in PM. If this proposition is
false, it leads to a contradiction with itself, so it has to be true. Therefore “the
proposition that is undecidable in the system PM still was decided by meta-
mathematical considerations” [Gödel (1999)]. Furthermore, this problem cannot
be solved by introducing more axioms, because a new undecidable proposition
can be constructed from the new axiom set [Hofstadter (1979)].

No one has doubt about the validity of Gödel’s conclusion, but there is a
problem in its applicability to AI systems. Gödel’s Incompleteness Theorem,
in its original form, targeted axiomatic systems with the expressive power of
arithmetic calculations. If all AI systems fall into this category, then indeed
we can say that there are truths recognizable by the human mind, but not by
computer systems. However, the “if” part of the above conclusion needs to be
carefully evaluated.

What is the “axiomatic system” in Gödel’s paper? It should consist of “a
few axioms and rules of inference” [Gödel (1999)]. By definition, the axioms
are true under certain interpretations, and are consistent with each other. The
inference rules are “truth-preserving”, i.e., derive true conclusions from true
premises. Within the system, the truth value of a proposition is determined
by checking whether there is a proof (i.e., a sequence of inference steps) that
derives it from the axioms.

Many people believe that the human mind does not work in this way, so
Gödel’s Theorem does not apply to it. Lucas was right when he said: “Gödel’s
theorem applies to deductive systems, and human beings are not confined to
making only deductive inferences. Gödel’s theorem applies only to consistent
systems, and one may have doubts about how far it is permissible to assume that
human beings are consistent. Gödel’s theorem applies only to formal systems,
and there is no a priori bound to human ingenuity which rules out the possibility
of our contriving some replica of humanity which was not representable by a
formal system.” [Lucas (1961)]

However, in that case, why should an AI system (which is supposed to be
similar to the human mind) be built as an axiomatic system? According to
Lucas, the only other option is an “arbitrary and irrational” system — “In short,
however a machine is designed, it must proceed either at random or according
to definite rules”, and the former is even worse, since “The system will have
ceased to be a formal logical system, and the machine will barely qualify for the
title of a model for the mind.” [Lucas (1961)]

What is missing in the above conclusion is a third possibility — a system
that is neither axiomatic nor arbitrary. According to the previous description,
we can see that an “axiomatic system”, as far as the current discussion concerns,
has the following properties:

1. starting with a constant set of (true) axioms,

2. following a constant set of truth-preserving inference rules,

3. having guaranteed consistency among the axioms and theorems.

3



Such a reasoning system is closed, in the sense that all of its knowledge is in the
axioms and rules, and it does not get anything new.

On the contrary, in AI many reasoning systems are open, in the sense that

1. The system’s knowledge is obtained from its environment from time to
time, so there is no constant axiom set from which all conclusions are
derived.

2. The inference rules often make plausible conclusions according to avail-
able knowledge, and consequently the conclusions may conflict with new
information.

3. The system may have explicit or implicit contradictions among pieces of
knowledge and derived conclusions.

Such an open system is clearly not an axiomatic system in the usual sense,
whose conclusions are all derived from a constant and consistent set of axioms.
It is not arbitrary, however, because the knowledge and the inference rules do
have justifications, according to certain beliefs on how the mind works or should
work. Examples of this type of system include nonmonotonic reasoning systems
[McCarthy (1989); Davis and Morgenstern (2004)] and reasoning systems with
learning capability [Michalski (1993); Giraud-Carrier and Martinez (1995)].

Gödel’s Incompleteness Theorem is not directly applicable to an open sys-
tem defined above, because the proof of the Theorem depends on the three
properties of axiomatic systems mentioned before. Of course, we are not saying
that such an open system is complete — quite the contrary, an open system has
many undecidable statements, whose truthfulness depends on the knowledge the
system is going to get in the future. However, for such a system S we cannot
build a Gödel sentence G that is true but cannot be determined to be so by
the system itself. The system still has limitation, but the human mind is not
necessarily better than it in general.

If the open system S contains a subsystem PM , there is still a Gödel sen-
tence G whose truth value cannot be determined within PM , but it may be
decided within S, using the same “metamathematical considerations” as how
we decide G to be true — by “jumping out of the system” [Hofstadter (1979)].
As McCarthy pointed out in his review of Penrose: “One mistaken intuition
behind the widespread belief that a program can’t do mathematics on a human
level is the assumption that a machine must necessarily do mathematics within
a single axiomatic system with a predefined interpretation.” [McCarthy (1990)]

According to Lucas, the above distinction between S and PM does not
matter for the conclusion: “Gödel’s theorem applies to physical determinist
systems, which are sufficiently rich to contain an analogue to simple arithmetic”
[Lucas (1970)], so that the incompleteness can be found even at the hardware
level. He suggested that “The conclusions it is possible for the machine to
produce as being true will therefore correspond to the theorems that can be
proved in the corresponding formal system.” [Lucas (1961)]

Even though at the hardware level a computer can be in discrete states, and
there are rules determining the state change, it is not always isomorphic to an
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axiomatic reasoning system. Though an axiomatic system can be implemented
by a deterministic physical system, the reverse is not always true. For a de-
terministic physical system, it is not always possible to take the descriptions
of its initial state as “axioms”, because in the following states some of the de-
scriptions may become false, which is not allowed within an axiomatic system.
Lucas never made it clear why a “deterministic system” is always equivalent
to an “axiomatic system”, but has simply taken it for granted. As discussed
above, an open system in which all knowledge is revisable cannot be taken as
“axiomatic”.

In a later writing, Lucas moved toward the opposite direction, by taking
a high-level view of a computer system. He said “the operations of any such
computer could be represented in terms of a formal logistic calculus with a def-
inite finite number (though enormously large) of possible well-formed formulae
and a definite finite number (though presumably smaller) of axioms and rules
of inference. The Gödelian formula of such a system would be one that the
computer, together with its software, would be unable to prove. We, however,
could. So the claim that a computer could in principle simulate all our behavior
breaks down at this one, vital point” [Lucas (1996)]. Again, such a system may
not be axiomatic in the usual sense, so his conclusion does not hold.

In all the conceptual confusions mentioned above, a central issue is the no-
tion of “level”, which has been fully discussed by Hofstadter (1979). Lucas’s
response is: “But although there is a difference of levels, it does not invalidate
the argument. A compiler is entirely deterministic. Any sequence of operations
specified in machine code can be uniquely specified in the programming lan-
guage, and vice versa” [Lucas (1996)]. What he failed to see is: when a system
can be analyzed in multiple levels, even when the levels are deterministically
related to one another, different levels may still have very different properties,
and a conclusion may be correct in a certain level, but not in the level above or
below it. For example, we cannot say that a computer cannot process decimal
numbers or symbols (because they are coded by bits), or cannot use functional
or logical programming language (because they are eventually translated into
procedural machine language).

If a Gödel sentence cannot be directly built for an open system, how about
trying something similar? After all, a Gödel sentence cannot be proved in an
consistent, finitely-axiomatized system because it says, roughly, “this sentence
cannot be proved in this system” (in Gödel’s coding, of course). Such a sentence
can be represented in the system if its language is rich enough.

This approach will not have the same effect as Gödel’s, for two reasons.
First, as shown by Whitely’s example, the sentence “Lucas cannot consistently
assert this sentence” cannot be consistently asserted by Lucas [Whitely (1962)],
so this kind of sentence cannot show that the human mind is more capable than
a computer. More importantly, Gödel sentence is a valid proposition in PM,
representing a mathematical statement, so failing to decide its truth value is a
problem, since it demonstrates the incompleteness of PM in its target domain.
On the contrary, the above self-reference sentence, without a second interpreta-
tion, has little use for a human mind, so failing to consistently assert it has no
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practical consequence (except as an example in a debate about the limitation
of AI).

In summary, though Gödel’s Incompleteness Theorem is a great result in
mathematical logic, and has profound impact to metamathematics, it is not di-
rectly relevant to AI, except it shows that an axiomatic system is not a proper
model of intelligence. An intelligent system, as the human mind, is not an
axiomatic system, but an open system, though it may include axiomatic sub-
systems. AI systems are not complete, but nor is the human mind, therefore
Gödel’s result does not indicate a fundamental limitation of AI.

Similar analysis can be carried out in other related claims, such as “An
AI system must be consistent” and “An AI system can only do deduction (so
as to be truth-preserving)” — it is not the case, because an AI system is not
axiomatic. However, it does not mean that the system is arbitrary and irrational,
because an open system can also be built according to rational principles, though
they are different from the principles behind axiomatic systems.

3 AI and Turing machines

The equivalence between an AI system and a Turing machine seems to be more
straightforward than the topic discussed above: As far as an AI system is im-
plemented in an ordinary computer, it is equivalent to a Turing machine, which
is an abstract model of all computing machinery.

The definition of a Turing machine can be found in almost every textbook
on theoretical computer science, for example Hopcroft and Ullman (1979). In-
formally speaking, a Turing machine is a device with a finite set of states, and
among them there is a single initial state, and one or more final states. The ma-
chine has an infinitely long tape with a sequence of input symbols on it initially.
At each step of a running process, the current state within the machine and
the current symbol under a “reading head” on the tape will determine whether
there will be any state change, output symbol onto the tape, or reading-head
move along the tape. A complete running process starts at the initial state,
ends at one of the final states. This process is called “computation”. Also, a
Turing machine corresponds to an algorithm that maps the given input to a
certain output.

Even though the above definition is well known and widely agreed upon,
there are several aspects that are sometimes ignored or confused when the re-
lated notions are used:

• The notion of “Turing machine” does not merely refer to the device, but
refers to a process of it, that is, with a given initial state and a set of final
states.

• The notion of “computation”, in its theoretical sense, does not mean
“whatever a computer does”, but the above well-defined process [Sloman
(2002)].
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• The notion of “computation” describes a process in an abstract device,
without saying much about how the process should be interpreted. On
the other hand, the philosophical discussion on “computationalism” often
uses the term “computation” to mean “formal symbol manipulation” (e.g.,
Scheutz (2002)), which is a different issue (to be addressed in the next
section).

Now let’s see the claims on the limitations of AI based on the above notions.

“Our idea of a machine is just this, that its behavior is completely
determined by the way it is made and the incoming ‘stimuli’: there
is no possibility of its acting on its own: given a certain form of
construction and a certain input of information, then it must act in
a certain specific way.” [Lucas (1961)]

“The basic problem facing workers attempting to use computers
in the simulation of human intelligent behavior should now be clear:
all alternatives must be made explicit. ... In problem solving, the
issue is not only how to direct a selective search among explicit
alternatives, but how to structure the problem so as to begin the
search process.” [Dreyfus (1979)]

“Intelligence cannot be properly simulated by algorithmic means,
i.e. by a computer, in the sense that we use that term today.” “In
particular, a conclusion from the argument in Chapter 4, particu-
larly concerning Gödel’s theorem, was that, at least in mathematics,
conscious contemplation can sometimes enable one to ascertain the
truth of a statement in a way that no algorithm could.” [Penrose
(1989)]

In summary, these claims are all variants of what Turing (1950) called “Lady
Lovelace’s Objection” — that is, to solve a problem, a computer must follow a
predetermined algorithm. Since the human mind seems to follow no predeter-
mined algorithm, some people see this as a fundamental limitation of AI.

To analyze these claims, let us first analyze what is a “problem”, and what
is a “solution” to that problem. Though these terms sound simple, actually
there are two very different situations.

In mathematics and computer science, a problem P is usually a set including
many instances. For example, “sorting” as a problem includes many concrete
sequences to be sorted. A solution of this problem, SP , should be an algorithm
(or call it “computational procedure” or “Turing machine”) described above,
which gives a correct answer for each instance of P . In the following we will call
them problem and solution of “Type 1”.

Outside mathematics, the situation is completely different. In empirical
science and everyday life, a “problem” is usually not a well-defined set, but a
concrete instance to be treated individually. In the human mind, there is usually
no predetermined algorithm to process all such problems of a certain type in
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a unified manner. Instead, they are processed in a case-by-case fashion, with
whatever method that happens to be recalled or formed. Furthermore, there is
often no well-defined distinction between solutions and non-solutions — it is a
matter of degree. Some examples are given by Dreyfus (1979): ill-defined games,
e.g., riddles (perceptive guess), open-structured problems (insight), translating
a natural language (understanding in context of use), recognition of varied and
distorted patterns (recognition of generic or use of paradigm case). Indeed, the
above problems, by their very nature, have no algorithmic solution. The human
mind can solve them in the sense that some (not all) instances get satisfying
(not optimal) solutions. We will call them problem and solution of “Type 2”.

Why cannot we expect Type 2 problem solving from a computer system?
The common answer to this question is “because a computer works by following
algorithms”. Sure, but algorithms for what? Since an algorithm for problem P1

is usually not an algorithm for problem P2, a system with algorithms does not
necessarily have an algorithm for every problem it encounters.

Assume there is a learning system S that faces a type of problem P with
many instances. Initially S does not solve the problem well. For problem
instance Pi, it gave answer A1

i , which is far from the best answer. However
S is equipped with a learning algorithm L, and after some training, when Pi

appeared again, it got answer A2
i , which is better than A1

i . During this learning
process, does S have an algorithm with respect to P or Pi?

According to the definition of “algorithm”, the answer is “No”, simply be-
cause the system’s solution to the problem changes over time. The system does
follow an algorithm, L, but it is not an algorithm for the solving of P , but an
algorithm for the learning of solving P , which is a different problem.

Penrose thought that as far as a “changing algorithm” is governed by a
meta-algorithm, the two together can be seen as a single algorithm [Penrose
(1994)]. This is wrong, because an algorithm (or Turing machine) must be de-
fined with respect to a certain problem-solving process, with determined input-
output pairs. Even on a computer running programs (each of which follows a
well-defined algorithm), it is possible for the system as a whole to do Type 2
problem solving, that is, to provide a satisfying answer to a problem instance
without an algorithm for this problem.

For the previous example, the system S can solve some problems of type P
(in the sense discussed above), but it has no algorithm for the problem type P ,
because it handles P1, P2, and so on, in a case-by-case manner. Furthermore, it
does not even have an algorithm for the problem instance Pi, because its solu-
tions change from time to time. Then how about P j

i , the jth occurrence of Pi?
Since S is a deterministic system, some people may suggest that the system’s
solution to P j

i follows an algorithm. However, since such an “algorithm” may
never be repeated by the system again, it is very different from how the notion
of algorithm is defined in theoretical computer science, which implies a prede-
termined and repeated behavior pattern. Also, we can no longer argue that the
human mind does not follow algorithms in this sense, because all the examples
listed before only shows that the human behaviors change from situation to
situation.
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If a system can learn and work in a context-sensitive manner, then for certain
problems its behavior does not correspond to a Turing machine, also because
there is no fixed initial and final state. For the same problem, in different time
and context the system may provide different answers. In this sense, the system
can solve problems that are not algorithmic or computable. This conclusion
does not contradict the conclusions about the undecidability and incompatibil-
ity of certain problems, obtained in theoretical computer science, because here
“problem” and “solution” get different meanings. This meaning change is not
begging the question, because this is exactly what we mean when saying “the
human mind can solve a problem without an algorithm”.

Even for such a system, its behavior can still be seen as a Turing machine, if
we take its life-long input as a “problem”, and its life-long output as the “solu-
tion” to the problem. However, this is not the level at which we talk about the
problem-solving behaviors of the human mind. If a human being is reborn with
exactly the same innate state, and lives through exactly the same experience
as the previous life, can different behaviors be observed? It seems that nobody
has argued for human non-algorithmic behavior in this sense. Rather, all the
arguments are about human behaviors that change with experience and context,
which, as argued above, can also happen in a computer system.

Similar conclusions have be proposed as “something can be computational
at one level, but not at another level” [Hofstadter (1985)], “cognitive processes
that, although they involve more than computing, can still be modeled on the
machines we call computers” [Kugel (1986)], and “The irrelevance of Turing ma-
chines to AI” [Sloman (2002)]. These conclusions are not widely accepted, again
because of the level confusion discussed previously. Just because a computer
follow algorithms at a certain level, some people think that it can only solve
problems for which the system has algorithms, which is an invalid conclusion.

For a computer doing Type 2 problem solving, the traditional analysis of
computability and computational complexity cannot be carried out anymore,
simply because the system’s behavior does not follow a fixed procedure, and
the expense of resources also changes from case to case. However, it does not
mean that there is no limitation in the system’s capability. Actually, Type 2
is a “weaker” manner of problem solving (compared to Type 1), because the
system may not be able to find the best solution for certain instances, and may
even not be able to find any solution for certain other instances. It is valuable
only when Type 1 problem solving cannot be carried out for some reason, and
provides a way for AI to go beyond the limitations associated with the notions
of algorithm, computation (in the theoretical sense), and Turing machine.

4 AI and model-theoretic semantics

The previous two misconceptions argue against the possibility of AI by proposing
something that a computer system cannot do, because of its equivalence to a
conceptual device, i.e., axiomatic system and Turing machine, respectively. The
opinion to be discussed in this section assumes a computer system can be built
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to behave just like a human mind, then argues that such a computer system still
lacks genuine intelligence, because a computer is a formal system that only has
syntax, but no semantics.

The most well-known version of this opinion is Searle’s “Chinese Room”
thought experiment [Searle (1980)]. Behind the unrealistic scenario described
in this argument, the theoretical reasoning is direct and clear: “Because the
formal symbol manipulations by themselves don’t have any intentionality; they
are quite meaningless; they aren’t even symbol manipulations, since the symbols
don’t symbolize anything. In the linguistic jargon, they have only a syntax but
no semantics.” [Searle (1980)]

To analyze this conclusion, we need to start with the concepts of “syntax”,
“semantics”, and “formal system”. To be more concrete, let us see the case of
a reasoning system.

A typical reasoning system implements a logic, consisting of

1. a language to represent knowledge,

2. a set of inference rules to derive new knowledge from given knowledge,

3. a semantics to link the language to the world, and to justify the rules.

To implement a logic in a reasoning system means to write programs to pro-
cess the language, to keep the knowledge, to carry out the inference, and to
communicate with the world.

In such a system, “syntax” indicates the formats of valid sentences of the
language and the patterns of the inference rules; “semantics” indicates the prin-
ciples of determining the meanings of the words and the truth-values of the
sentences in the language.

A reasoning system can be “formal” (or “symbolic”) in two different senses:

1. It has a formal syntax, that is, its language is defined by a formal grammar,
and its inference rules are all formally defined.

2. It has a formal semantics, that is, the meaning and truth in its language
are determined according to an interpretation that maps the items of the
language into objects and relations in the world.

Now let us explain these two senses in detail.
A formal grammar specifies the formats of valid sentences. For example, in

first order predicate calculus, a grammar rule may look like “s ::= P (c)”, where
s is a proposition, P is a predicate, and c is an argument. Such a grammar rule
gives one (but not the only one) way to construct a proposition. In the rule,
s, P , and c are “symbols” in the sense that they can be replaced by different
constants to get different propositions. The grammar rule is “formal” in the
sense that it only specifies the format of a proposition, without saying anything
about its meaning, or the meaning of the involved symbols s, P , and c.

A formal inference rule specifies the pattern of a single inference step, with
its premises and conclusion. For example, in propositional calculus, an inference
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rule may look like “{p, p → q} ` q”, where p and q are propositions, and “→” is
the implication relation. This rule states that q can be derived from p and p → q.
This rule is formal, because p and q can be substituted by any propositions, and
the rule remains valid.

For a reasoning system S using a language L, the above grammar rule and
inference rule do not appear in L, but in its meta-language, which is part of the
specification of S, describing what kind of sentence can appear in L, and how
the sentences can be used in inference, at a general level.

A formal semantics for L itself is a quite different matter. According to
it, if Yellow(Tweety) is indeed a sentence of L, then the meaning of Yellow
and Tweety is determined by an interpretation I, which maps Yellow into an
attribute Yellow, and Tweety into an object Tweety, in a model M, which is a
set of descriptions of (the relevant part of) the world, consisting of objects, their
attributes, and relations. Under this interpretation, Yellow(Tweety) is true if
and only if in M the object Tweety indeed has the attribute Yellow. According
to this semantics, for the words and sentences of a language to get meanings and
truth values, the sufficient and necessary condition is the existence of a proper
interpretation. This kind of semantics is called “model-theoretic semantics”.

If a reasoning system is formal in both senses (i.e., with formal syntax and
semantics), Searle’s conclusion directly follows. For such a system, no matter
what propositions are in its memory and what inference rules it can use, the
system does not necessarily have access to the interpretation that gives meaning
to them — to the system, they are just meaningless symbols. According to
model-theoretic semantics, syntax and semantics are independent of each other
— “Syntax is not sufficient for semantics. That proposition is a conceptual
truth. ... Computer programs are entirely defined by their formal, or syntactical,
structure” [Searle (1984)], so cannot have true understanding, and therefore,
intelligence.

However, what if the system is only “formal” in the sense of syntax, but not
semantics? That is, the system uses a language with a formal grammar, as well
as a set of formally defined inference rules, but does not define meaning and
truth according to an interpretation. At least, this is not a self-contradicting
idea, because formal syntax and formal semantics are not the same thing.

Model-theoretic semantics came from metamathematics, especially the work
of Tarski. It has made great contribution to the research, understanding, and
application of mathematics. It is sort of the standard semantics used by mathe-
matical languages. Though Tarski also suggested using it for natural languages,
the success there has been quite limited. “As regards the applicability of seman-
tics to mathematical science and their methodology, i.e., to meta-mathematics,
we are in a much more favorable position than in the case of empirical sciences.”
[Tarski (1944)]

What is the major difference between mathematical sciences and empirical
sciences, as far as semantics is concerned?

A major difference is that a mathematical theory is abstract, and is not
especially about any concrete domain. As Russell said, “If our hypothesis is
about anything, and not about some one or more particular things, then our
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deductions constitute mathematics. Thus mathematics may be defined as the
subject in which we never know what we are talking about, nor whether what we
are saying is true” [Russell (1901)]. The last sentence sounds like Searle in his
Chinese Room, except that for mathematics, this is desired. When an abstract
mathematical theory is to be applied to a concrete domain, an interpretation
gives the theory meaning and truth, as specified by model-theoretic semantics.
It is this possibility of multiple interpretations that makes mathematics a general
tool of thinking that can be used for many purposes.

In empirical sciences and everyday life, most theories and knowledge are
concrete, in the sense that words in the language used there cannot be freely
interpreted. What a word means to a human being depends on its role in the
person’s experience, so no interpretation is needed.

In her response to Searle’s conclusion, Boden (1993) pointed out that the
input and output link a computer to the world, and proposed that “meaning and
understanding are grounded in causal powers, in what a creature can do in the
world”. This is related to the “Symbol Grounding” problem of Harnad (1990),
where he suggested to “ground” the meaning of symbols in sensory categories
of the system.

In the study of natural language, there are many theories which explain
meaning and truth in ways fundamentally different from model-theoretic se-
mantics, as exemplified by Harman (1982), Lakoff (1988), Ellis (1993), and
Langacker (1999). According to these theories, syntax, grammar, semantics,
and categorization are no longer isolated from each other, and meaning and
truth are closely related to the system’s experience and cognition processes. If
these theories can be applied to natural languages, why cannot they be used on
a language with a formal syntax?

Model-theoretic semantics is not the only choice for a language defined by a
formal grammar. There is procedural semantics, and “According to this theory
the meaning of expressions (in the internal language) are characterized by a
certain kind of abstract procedure, which under appropriate circumstances can
be used to determine the truth or falsity of propositions and to assess the success
or failure of actions” [Woods (1986)]. Another idea is to define semantical
notions, such as truth and meaning, with respect to a knowledge base containing
relevance experience [Kowalski (1995)] or a database containing background
information [Mancini and Bandler (1988)]. Unlike in model-theoretic semantics,
in these cases the semantic notions are not defined by an interpretation, and
syntax and semantics are no longer independent of each other.

The problem here is that people often implicitly assume that if a language
has a formal syntax, it must also have a formal semantics. The term “formal
language” merged the two different notions together in people’s minds. Accord-
ing to the previous analysis, we can see that a language with a formal syntax
does not have to use a model-theoretic semantics. Instead, the symbols in the
language can be grounded in something outside the language, and in that case,
Searle’s conclusion does not apply anymore.
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5 AI and mathematical reasoning

The three issues discussed above have a common nature — each of them is about
the relation between AI and a metamathematical notion: axiomatic system,
Turing machine, and model theory, respectively.

All of the three notions were initially proposed for mathematical reasoning.
Roughly speaking, “axiomatic system” is the desired way to organize mathe-
matical knowledge and to make valid inferences; “Turing machine” is the desired
way to specify a complete problem-solving process in mathematics; and “model
theory” is the desired way to map an abstract mathematical theory into a con-
crete domain. These notions, as well as the related ones, formed the foundation
for modern study of mathematics for decades. There is little doubt about their
applicability in mathematics.

Computer science was initially about numerical calculations. Since then,
though the domain has been greatly expended into all kinds of “information
processing”, the theoretical foundation of the field remains dominated by the
heritage from mathematics, including the three notions discussed above. Even
though in computer science we rarely build fully axiomatic systems, we do hope
to start with “correct input”, and to produce from them “correct output”, step
by step. For a problem to be solved, we usually require the solution to be an
algorithm that works for every instance of the problem. For the “symbols” in
a program, we do take their meaning to be the objects in the world denoted by
them. These notions have supported computer science and have achieved great
success [Halpern et al. (2001)].

For the above historical reasons, when AI began to grow in the field of com-
puter science, these notions again were accepted into the theoretical foundation.

For example, McCarthy said: “If a computer is to store facts about the
world and reason with them, it needs a precise language, and the program has
to embody a precise idea of what reasoning is allowed, i.e. of how new formulas
may be derived from old. Therefore, it was natural to try to use mathematical
logical languages to express what an intelligent computer program knows that
is relevant to the problems we want it to solve and to make the program use
logical inference in order to decide what to do” [McCarthy (1989)]. Guided
by similar ideas, Hayes’ “Näıve Physics Manifesto” proposed to put everyday
knowledge into the format of mathematical logic, because “Modern formal logic
is the most successful precise language ever developed to express human thought
and inference” [Hayes (1979)]. One of the largest AI projects, Cyc, has carried
out such a practice for a few decades [Lenat (1995)].

Many people believe that the goal of AI is nothing but to find new algo-
rithms, i.e., to “identify a task domain calling for intelligence, then construct a
program for a digital computer that can handle tasks in that domain” [Newell
and Simon (1976)]. So in this sense, there is little difference between AI and
traditional computer applications, except that the “problems” to be solved in AI
are those that the human mind can handle well. According to Schank (1991),
“AI entails massive software engineering. To paraphrase Thomas Edison ‘AI
is 1% inspiration and 99% perspiration.’ We will never build any real AI un-
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less we are willing to make the tremendously complex effort involved in making
sophisticated software work”.

The influence of model-theoretic semantics can be recognized in the well-
known “Physical Symbol System Hypothesis” of Newell and Simon, where the
“symbols” still get their meaning through “designation” and “interpretation”,
even though they are believed to be able to get their “intended interpretation”
through a causal relation between a symbol and a process — the symbol “can
invoke and execute its own processes from expressions that designate them.”
Therefore, “the real contribution of logic is not its usual rather sparse syntax,
but the semantic theory which it provides”[Newell and Simon (1976)].

Now we can see that the belief that an AI system should be axiomatic,
algorithmic, and formal — close to what Hofstadter (1985) called a “Boolean
Dream” — is indeed held by many AI researchers. Therefore, the criticisms from
Dreyfus, Lucas, Penrose, and Searle are not against a straw man, but against
certain influential (even dominating) AI approaches.

As far as these criticisms are taken to mean “a mind is not axiomatic, algo-
rithmic, and formal”, they are quite justifiable. As analyzed previously, being
axiomatic fails to be open to novel experience, being algorithmic fails to be
adaptive and context-sensitive, and being formal fails to ground meaning in
experience. Overall, the dependency on these mathematical notions is partly
responsible for many failures in AI research in the past.

On the other hand, these criticisms finally say that “a computer cannot be
a mind, because it is inevitably axiomatic, algorithmic, or formal”, so according
the previous discussions, they are wrong. Instead of targeting certain approaches
toward AI, they targeted the possibility of AI, no matter what approach is
involved. Since their analysis missed certain important possibilities, their final
conclusions are unjustified.

Why the notions of axiomatization, algorithmization, and formalization work
excellently in mathematics and computer science, but run into trouble in AI?
Simply speaking, this is because mathematical reasoning and empirical reason-
ing follow different “logics”. Here “logic” is used in its broad sense, meaning
regularity, principle, rationale, and so on.

Mathematics and empirical sciences were used to be thought of as following
the same logic, and it is just that in mathematics this logic reaches its purest
and perfect form. Later, from the study of the philosophy of science, such as
the works of Popper (1959), Kuhn (1970), and Lakatos (1999), it is revealed
that empirical sciences do not work by deriving theorems from axioms while
following well-defined “scientific methods”. Even in mathematics, mathematical
logic is the logic followed when research results are validated, not when they are
discovered.

Since most AI works are not about the validation of results in mathematics,
it should not be a surprise that some mathematical notions cannot be applied.
Actually few AI researchers treat AI research as research in mathematics. In-
stead, they believe that the mathematical tools, though not directly applicable,
should not be abandoned, but be extended or modified for AI purposes.

For example, McCarthy (1988) thought “expressing knowledge and reasoning
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about the commonsense world in mathematical logic has entailed difficulties
that seem to require extensions of the basic concepts of logic”, so he proposed
a “non-monotonic logic”. This logic is different from classical logic because
of its nonmonotonicity, but is still very similar to classical logic in the other
aspects. Similarly, because for many hard problems tractable algorithms cannot
be found, people turn to heuristic algorithms and approximate algorithms, which
relax the requirements of classical algorithms, though are still within the scope
of computation theory [Simon and Newell (1958)].

The problem with these “revisionist” approaches is that each of them is
targeting one issue of classical theory, while ignoring the others. To build a
general intelligence system in this way is difficult, if not impossible, because
the “tools” built under different considerations won’t work together smoothly
[Wang (2004b)]. Furthermore, these approaches miss the fundamental difference
between mathematical reasoning and empirical reasoning.

One key issue that distinguishes mathematical reasoning from empirical rea-
soning is that the former assumes the sufficiency of its knowledge and resources
with respect to the problems to be solved. A system based on a constant set
of axioms and inference rules does not need to learn, because all the relevant
knowledge is already in the axioms and rules. To prove the truth of a statement,
the expense of computational resources (mainly time and space) is irrelevant, as
far as they are finite. The system does not attempt to change itself to increase
its capability. If it fails to solve a problem that is beyond its capability, the
fault is not its, but belongs to whoever gave it the problem.

On the contrary, in empirical reasoning the system is always open to new
knowledge and problems. The new knowledge may conflict with old knowledge,
and a new problem may be beyond the system’s current capability. The sys-
tem has to resolve the inconsistency, and makes its best guess (based on its
experience) on how to solve the problem. All these activities must be carried
out within the restriction of available resources of the system. Because of this
fundamental difference, traditional theories about mathematical reasoning can-
not be used in empirical reasoning, and minor revisions and extensions are not
enough. We need something principally different.

A practical reason for many AI researchers to stay with the traditional theo-
ries is the lack of alternatives. As McDermott (1987) put it, the logicist position
wants “to argue that mathematic logic is a good notation for writing the knowl-
edge down. It is in some sense the only notation. The notation we use must
be understandable to those using it and reading it; so it must have a semantics;
so it must have a Tarskian semantics, because there is no other candidate”.
Those people who do not like the notions of axiomatization, algorithmization,
and formalization have thrown the idea of reasoning system away altogether,
and attempt to achieve intelligence through connectionism, evolution, robotics,
or dynamics.
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6 A non-axiomatic reasoning system

In the previous sections, I have argued that it is quite possible for an AI system
to be not axiomatic, algorithmic, or formal, in the most natural senses of these
notions. In the following I will go further to show that such a possibility has
turned into reality in an AI system called NARS (Non-Axiomatic Reasoning
System).

Given the nature of this paper, here I will not try to give a comprehensive
introduction to the system, nor to propose NARS as the best way to achieve
AI. Instead, I only want to use NARS as an example to show that an AI system
can go beyond the “limitations” set by the theoretical notions discussed above.

NARS is a reasoning system, in the sense that it has its language, seman-
tics, inference rules, memory, and control mechanism. All the technical issues
mentioned in the following have been described with much more details in other
publications (to be cited in the following). For overviews of the system, see
Wang (1995, 2004b), and a comprehensive description of the project has ap-
peared in Wang (2006). The most recent implementation of NARS is linked
from my homepage, and can be demonstrated on-line.

NARS uses a language defined by a formal grammar, and a set of inference
rules that are also formally defined [Wang (2006)]. Different from the most typ-
ical form of mathematical logic, the language and rules of NARS do not belong
to the “predicate logic” family, but to the “term logic” family, together with
Aristotle’s logic. There are two major differences between these two families:

1. In a predicate logic, the basic form of sentence has a predicate and a
list of arguments, e.g., “P (a1, a2)”. In a term logic, the basic form of
sentence has a subject term and a predicate term linked by a copula, e.g.,
“S → P”. Intuitively, this sentence represents a special-general relation,
such as “bird → animal”.

2. In a predicate logic, the basic form of inference rule is truth-functional,
that is, “{P} ` Q” is a valid inference rule if and only if “¬P ∨Q” is true,
while P and Q do not need to be related in contents. In a term logic, the
basic form of inference rule is syllogistic, that is, the two premises must
have a shared term, and the conclusion consists the other two terms, e.g.,
“{S → M,M → P} ` S → P”.

NARS does not use model-theoretic semantics, but an “experience-grounded
semantics” [Wang (2005)]. According to this theory, the truth value of a state-
ment, like “S → P”, and the meaning of a term, like S, are determined according
to the system’s experience. Roughly speaking, the “experience” of the system
is a stream of input sentences that system gets from its interaction with its
environment. At any given moment, for a statement “S → P” the system may
find some positive evidence supporting it, and some negative evidence refuting
it, from its experience. The truth value of the statement is a pair “< f , c >”,
where f is the frequency of positive evidence among total evidence, and c is the
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confidence the system has on the frequency judgment, as an increasing func-
tion of total amount of evidence. The meaning of a term is defined to be its
experienced relations with other terms.

According to the above semantics, an inference rule in NARS determines
the truth value of its conclusion, by checking how much (positive and negative)
evidence the premises provide directly for it. Different combinations of premises
correspond to different types of inference, so have different truth-value functions.
For example, the basic rules (truth values omitted) are [Wang (1994, 1995,
2006)]:

{S → M,M → P} ` S → P (deduction)
{M → S, M → P} ` S → P (induction)
{S → M,P → M} ` S → P (abduction)
{S → P, S → P} ` S → P (revision)

The memory of NARS can be seen as a network, with terms are nodes,
statements as links, and a truth value indicates the “strength” or “weight”
of the link [Wang and Hofstadter (2006)]. Under this interpretation, different
inference rules correspond to different ways to make new links (and nodes), as
suggested by Minsky (1985). This network also shares certain properties with
connectionist networks [Wang (1995)].

In the memory, each node and link has a priority value attached, indicating
its relative importance and relevance to the system at the current time. The
system can absorb new knowledge or answer questions according to available
knowledge. When such a task appears, the system uses the knowledge in its
memory to process it by inference, which means to add or change the related
nodes and links (for new knowledge), or to locate or produce related nodes and
links (for new question). In each inference step, the node and links are chosen
probabilistically, according to their priority, that is, a node/link with a higher
priority has a higher chance to be used. After the step, the priority values of
the involved nodes and links are adjusted, according to the immediate feedback
about their importance and relevance.

For a given question, the system reports the best answer (e.g., with the
highest confidence value) it has found so far, then continues to look for better
answers. Since the system at any time usually has many (input and derived)
tasks, the time/space resources each of them gets are the result of their compe-
tition, and are usually not enough for exploring all possibilities of its processing.
For a given task, its processing path and result depend on the knowledge and
tasks in the memory, as well as the priority distribution among them. All these
factors change over time, depending on what happens in the interaction of the
system and its environment [Wang (2004a, 2006)].

Designed in this way, NARS is indeed a reasoning system, with the same
major components (language, rules, semantics, memory, and control) as tra-
ditional reasoning systems. However, since these components are designed ac-
cording to the requirement of “adapting and working with insufficient knowledge
and resources”, their properties are fundamentally different from those of the
traditional systems.
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NARS, as its name indicates, is not axiomatic [Wang (1994)]. In the system,
there is no truth value that cannot be modified by future evidence, including
those of the input statements. The inference rules may derive conclusions which
conflict with new knowledge. There is no guarantee that the system does not
contain implicit inconsistency among its knowledge. Even so, the system is any-
thing but arbitrary, and is designed according to certain beliefs about intelligent
reasoning. Furthermore, the system may contain subsystems that are treated
as axiomatic in certain ways [Wang (2006)].

The problem solving processes in NARS does not follow problem-specific
algorithms [Wang (2004a)]. For each task, the inference procedure is not pre-
determined, but formed at run-time by the related knowledge that happens to
be recalled. There is no fixed initial and final states for a task — it can be
accepted at any time, and ended at any time. If the same task is given to the
system at different time, its processing is usually different. For instances of the
same type of problem, the system’s treatments may be different, too. Even so,
for certain problems that the system happens to have sufficient knowledge and
resources, it can still follow algorithms for them. Furthermore, on a micro scale
(each inference step) the system still follows predetermined algorithms, and on
a macro scale (each life-long input/output), the system is still equivalent to a
Turing machine. However, these scales should not be confused with the central
scale, where the system’s problem solving processes are defined.

NARS as a whole does not use model-theoretic semantics [Wang (2005)].
As mentioned previously, to the system, the truth value of a statement and
the meaning of a term are determined by the system’s experience about them.
Outside observers can still freely interpret the terms and statements, but that
has little to do with the system. With the change of experience and context,
meanings and truth values also change in a non-arbitrary way. Though NARS
has no human-like sensorimotor mechanism yet, it can still ground truth and
meaning in its experience. Even so, for its axiomatic subsystems, it may use
model-theoretic semantics.

Working in this way, none of the proposed “limitations” to AI discussed
before applies to NARS.

7 Conclusion

In the discussions about the limitation of AI, there are three fundamental mis-
conceptions:

1. An AI system is in principle an axiomatic system.

2. The problem-solving process of an AI system is equivalent to a Turing
machine.

3. An AI system is formal, and only gets meaning according to model-theoretic
semantics.

There are many implications of these misconceptions, such as:
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1. The capability of an AI system is restricted by Gödel’s Incompleteness
Theorem, while the human mind is not.

2. The processes in an AI system all follow predetermined algorithms, so the
system cannot be original or flexible.

3. Since an AI system uses a formal language, its processes only have syntax,
but no semantics.

These claims are misconceptions, because they treat certain ways to see or
use a computer system as the only ways to see or use it. The differences among
these “ways” often correspond to the difference levels or scales of description
[Hofstadter (1979)]. A notion that correctly describes a system at a certain level
or scale may be improper or wrong at another one.

What make things even more complicated is the involvement of concepts
like “model” or “emulation”. To study the nature of a target system X, a
mathematical tool or platform T is often used to build a model M , which shares
certain properties with X, so can be used to emulate X for certain purposes.
In this situation, it is crucial to clearly distinguish the properties of X and M
from those of T in general.

In the current discussion, the X to be studied is an “intelligent system” as
exemplified by the human mind, the T is an ordinary computer system, and
the M is the AI system built in T according to the designer’s understanding
of X. The conclusion of this paper is that neither X nor M should be seen as
axiomatic, algorithmic, or semantically formal. However, this conclusion does
not directly apply to the tools that is used to build M . For example, if M is a
virtual machine, it is possible to emulate it in a host virtual machine, which can
be described abstractly as a Turing Machine; if M is a reasoning system, it is
possible to describe its meta-theory as an axiomatic system, or to understand its
meta-language according to model-theoretic semantics. In these cases, we should
not confuse a virtual machine with its host machine, or a reasoning system with
its meta-theory. This paper is about what properties M (and therefore X) has,
but not about what properties T has. The mathematical tools and platforms
contributed by traditional theories still play important roles in the building of
host machines and meta-theories, though we do not want to build AI systems
directly according to them.

Many people outside the field of AI accept these misconceptions, because
they take the related notions as “in principle” specifying what an AI system, as
a computer system, can do. They fail to see that these notions do not specify
all possibilities of a computer system, especially an AI system. Their criticisms
have the value of showing the limitation of certain AI approaches, though not
all approaches.

Many people inside the field of AI accept these misconceptions (though not
all of their implications), because they prefer well-known theories, which have
been proved to be successful in certain related fields. They fail to see that
those fields have fundamental differences from AI. Their research works make
contributions to computer science, though not much to AI.
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It has been argued by Wang (1995) that many properties of intelligence can
be explained as the capability of adaptation with insufficient knowledge and re-
sources. The theories about mathematical reasoning cannot be directly applied
to AI, because they do not assume these insufficiencies. The development of
NARS shows the possibility of building a reasoning system on this new theoret-
ical foundation, and the system has displayed many properties similar to human
intelligence.

NARS is not the first computer system that is not axiomatic, algorithmic,
and formal. Roughly speaking, an open system is no longer axiomatic, an
adaptive system is no longer algorithmic, and a grounded system is no longer
formal. There have been many such systems in AI history. However, these
practices have not been fully reflected in the theories of AI. As a result, notions
of axiomatic system, Turing machine, and model theory are still taken by many
people as setting the foundation, as well as limitation, of AI systems.

To say that the notions in mathematical logic and theory of computation do
not set limitation for AI, it does not mean that AI has no limitation at all. The
problem solving capability of NARS, like that of the human mind, is limited by
the system’s available knowledge and resources. However, this kind of limitation
shows nothing that can be done by the mind but not by the machine.

AI, because of its special nature, should not be simply taken as a sub-domain
of computer science. Even though AI systems are eventually implemented in
computer systems, AI needs a different theoretical foundation. NARS is a step
toward this direction. The project has not been completed yet, though the re-
sults so far have shown many interesting features, as well as many novel solutions
to traditional problems.[Wang (2006)]
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