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Abstract
Insufficient knowledge and resources is not only a bi-
ological constraint on human and animal intelligence,
but also has important functional implications for ar-
tificial intelligence (AI) systems. Traditional theories
dominating AI research typically assume some kind of
sufficiency of knowledge and resources, so cannot solve
many problems in the field. AI needs new theories
obeying this constraint, which cannot be obtained by
minor revisions or extensions of the traditional theories.
The practice of NARS, an AI project, shows that such
new theories are feasible and promising in providing a
new theoretical foundation for AI.

AI and Biological Constraints
Since its inception, Artificial Intelligence (AI) has been
driven by two contrary intuitions, both hinted in the name
of the field.

On one hand, the only form of “intelligence” we know
for sure comes from biological systems. Therefore, it seems
natural for AI research to be biologically inspired, and for AI
systems to be developed under biological constraints. After
all, there is existing proof that this approach works. Though
many researchers prefer the more abstract languages pro-
vided by neuroscience or psychology over the language of
biology, their work can still be considered as “biologically
inspired”, in a broad sense. To some researchers, “This is
what the brain does” is a good justification for a design de-
cision in an AI system (Reeke and Edelman 1988).

On the other hand, the “artificial” in the name refers to
computers, which are not biological in hardware, and so do
not necessarily follow biological principles. Therefore, it
also seems natural for AI to be considered as a branch of
computer science, and for the systems to be designed under
computational considerations (which usually ignore biologi-
cal constraints). After all, the biological form of intelligence
should only be one of the possible forms, otherwise AI is
doomed to fail. Some researchers are afraid that to follow
biology (or cognitive science) too closely may unnecessar-
ily limit our imagination on how an intelligent system can
be built, and the “biological way” is often not the best way
for computers to solve problems (Korf 2006).
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As usual, the result of such an intuition conflict is a com-
promise between the two. Many AI researchers get inspira-
tions and constraints from biology, neuroscience, and psy-
chology, on how intelligence is produced in biological sys-
tems. Even so, these ideas are introduced into AI systems
only when they have clear functional implications for AI.
Therefore, being “biologically inspired/constrained” is not
an ends by itself, but a means to an ends, which is non-
biological by nature. In AI research, a biological inspiration
should not be directly used as a justification for a design de-
cision. After all, there are many biological principles that
seem to be irrelevant to intelligence.

So, the real issue here is not at the extreme positions —
nobody has seriously argued that AI should not be biolog-
ically inspired, nor that all biological constraints must be
obeyed in AI. Instead, it is on how to posit AI with respect to
biology (and neuroscience, psychology, etc), and concretely,
on which biologically inspirations are really fruitful in AI
research and which biological constraints are functionally
necessary in AI design.

To solve the above problem means that, for any concrete
biological inspiration or constraint, it is not enough to show
that it is indeed present in the human brain or other biologi-
cal systems. For it to be relevant to AI, its functional neces-
sity should also be established, that is, not only that it has
certain desired consequences, but also that the same effect
cannot be better achieved in an AI system in another way.

AIKR as a constraint
To make the discussion more concrete, assume we are in-
terested in problem-solving systems, either biological or not.
Such a system obtains knowledge and problems from its en-
vironment, and solves the problems according to the knowl-
edge. The problem-solving process costs certain resources,
mainly processing time and storage space.

Not all such systems are considered as “intelligent”.
The main conclusion to be advocated in this paper is the
Assumption of Insufficient Knowledge and Resources
(AIKR): An intelligent system should be able to solve prob-
lems with insufficient knowledge and resources (Wang 1993;
2006).

In this context, “insufficient knowledge and resources” is
further specified by the following three properties:



Finite: The system’s hardware includes a constant num-
ber of processors (each with a fixed maximum processing
speed), and a constant amount of memory space.

Real-time: New knowledge and problems may come to the
system at any moment, and a problem usually has time
requirement for its solution.

Open: The system is open to knowledge and problem of
any content, as far as they can be represented in the format
acceptable by the system.
For human beings and animals showing intelligence,

“problem solving” is an abstract way to describe how such
a system interacts with its environment to maintain or to
achieve its goals of survival and reproduction, as well as the
other goals derived from them. The system’s knowledge is
its internal connections, either innate or acquired from its ex-
perience, that link its internal drives and external sensations
to its actions and reactions. For such a system, the insuffi-
ciency of knowledge and resources is a biological constraint
by nature. The system has finite information-processing ca-
pability, though has to open to novel situations in its envi-
ronment (which is not under its control), and to respond to
them in real time. Otherwise it cannot survive.

When we say such a system “is able to solve problems
with insufficient knowledge and resources”, it does not mean
that it can always find the best solution for every problem,
nor even that it can find any solution for each problem. In-
stead, we mean such a system can work in such a situa-
tion and solve some of the problems to its satisfaction, even
though it may fail to solve some other problems, and some
of its “solutions” may turn out to be wrong. Actually, if the
system can solve all problems perfectly, by definition it is
not working under AIKR. Therefore, AIKR not only speci-
fies the working environment of a system, but also excludes
the possibility of certain expectations for a system working
in such an environment.

Why AIKR is usually disobeyed in AI
Though AIKR has a biological origin, it does not mean that
it cannot be applied to artificial systems — there is noth-
ing fundamentally “ biological” in the above three require-
ments. Any concrete computer system has finite processing
and storage capacity, and is often desired to be open and to
work in real-time. Even so, few AI systems has been de-
signed to fully obey AIKR.

Though every concrete computer system is finite, this
constraint is ignored by many theoretical models of com-
putation, such as a Turing Machine (Hopcroft and Ullman
1979). For instance, many systems are designed to as-
sume that additional memory is always available whenever
needed, and to leave the problem to the human administrator
when this is not the case.

Most computer systems do not work in real time. Usu-
ally, a problem does not show up with a time require-
ment associated. Instead, the processing time of a prob-
lem is determined by the algorithm of the system by which
the problem is solved, plus the hardware/software platform
on which the algorithm is implemented. For the same
problem instance, the system spends the same amount of

(time and space) resources on it, independent of the con-
text in which the processing happens. This is true even
for the so-called “real-time systems” (Laffey et al. 1988;
Strosnider and Paul 1994), which are designed to satisfy the
time requirement of a practical application, though when the
system actually interacts with its environment, it often does
not respond to the (change of) time requirement in the cur-
rent context. Furthermore, these systems usually only han-
dle time requirements in the form of deadlines, though in
reality a time requirement may take another form, such as
“as soon as possible”, with various degrees of urgency.

Most computer systems only accept problems with con-
tent anticipated by the system designer, and novel problems
beyond that will be simply rejected, or mistreated — this is
why these systems are considered “brittle” (Holland 1986).
There are also various restrictions on the content of knowl-
edge the system can accept. For example, most reason-
ing systems cannot tolerate any contradiction in the given
knowledge, and systems based on probability theory assume
the given data correspond to a consistent probability distri-
bution function. When such an assumption is violated, the
system cannot function properly.

In summary, even though a computer system always has
limited knowledge and resources, they can still be sufficient
with respect to the problems the system attempts to solve,
since the system can simply ignore the problems beyond its
limitation. Intuitively, this is why people consider conven-
tional computer systems unintelligent — though such a sys-
tem can be very capable when solving certain problems, it is
rigid and brittle when facing unanticipated situations.

This issue is not unnoticed. On the contrary, in a sense
most AI research projects aim at problems for which there
are insufficient knowledge and resources. Fields like Ma-
chine Learning and Reasoning under Uncertainty explic-
itly focus on the problems caused by imperfect knowledge
and inexhaustible possibilities, which are also the causes of
many difficulties in fields like vision, robotics, and natural
language processing. Even so, there are few systems devel-
oped under AIKR. Instead, an AI system typically acknowl-
edges AIKR on certain aspects, while on the others still as-
sume the sufficiency of knowledge and resources.

Such an attitude usually comes from two considerations:
idealization and simplification.

To some researchers working on normative models of in-
telligence, since AIKR is a constraint, it limits the model’s
capability and is therefore undesired, so it should not be al-
lowed whenever possible. To them, in a theory or a formal
model of intelligence, idealization should be used to exclude
the messy details of the reality. After all, Turing Machine
is highly unrealistic, but still plays a key role in theoretical
computer science. In this way, at least an idealized model of
intelligence can be specified, so as to establish a goal for the
concrete systems to approach (if not to reach). An exam-
ple of this opinion can be found in (Legg and Hutter 2007):
“We consider the addition of resource limitations to the def-
inition of intelligence to be either superfluous, or wrong.
. . . Normally we do not judge the intelligence of something
relative to the resources it uses.” Based on such a belief on
intelligence, Hutter proposes the AIXI model, which pro-



vides optimal solutions to a certain type of problem, while
requiring unlimited amount of resources (Hutter 2005).

To many other researchers who are building concrete in-
telligent systems, AIKR is a reality they have to face. How-
ever, they consider it as a collection of problems, which is
better to be handled in a divide-and-conquer manner. This
consideration of simplification lead them to focus on one (or
a few) of the issues, while to leave the the other issues to a
future time or to someone else. They hope in this way the
problems will become easier to solve, both in theory and in
practice. We can find this attitude in most AI projects.

In the following, we will argue against both above atti-
tudes toward AIKR.

Destructive implications of AIKR
Normative models of intelligence study what an intelligent
(or rational) system should do. In current AI research, these
models are usually based on the following traditional theo-
ries:
First-order predicate calculus, which specifies valid in-

ference rules on binary propositions;
Probability theory, which specifies valid inference rules

on random events and beliefs;
Model-theoretic semantics, which defines “meaning” and

“truth” by mapping a language into a model;
Computability and complexity theory, which analyzes

problem-solving processes that follow algorithms.
None of these theories, in its standard form, obeys AIKR.

On the contrary, they all assume the sufficiency of knowl-
edge and resources in certain form. If we analyze the diffi-
culties they run into in AI, we will see that most of the issues
come from here.

Though first-order predicate calculus successfully plays
a fundamental role in mathematics and computer science
(Halpern et al. 2001), the “logicist AI” school (McCarthy
1988; Nilsson 1991) has been widely criticized for its rigid-
ity (McDermott 1987; Birnbaum 1991). In (Wang 2004a),
the problems in the logical approach towards AI is clustered
into three groups:
• the uncertainties in knowledge and inference process,
• the justification of non-deductive inference rules,
• the counterintuitive conclusions produced by logic.
It is argued in (Wang 2004a) that all these problems come
from the usage of a mathematical logic (which does not
obey AIKR) in a non-mathematical domain (where AIKR
becomes necessary).

Probability theory allows uncertainty in predictions and
beliefs, but its application in AI typically assumes that all
kinds of uncertainty can be captured by a consistent proba-
bility distribution defined over a propositional space (Pearl
1988). Consequently, it lacks a general mechanism to han-
dle belief revisions caused by changes in background knowl-
edge, which is not in the predetermined propositional space
(Wang 2004b).

Model-theoretic semantics treats meaning as denoted ob-
ject in the model, and truth-value as distance between a

statement and a fact in the model (Tarski 1944; Barwise and
Etchemendy 1989), and therefore they are independent of
the system’s experience and activities. Consequently, such
a semantics cannot capture the experience-dependency and
context-sensitivity in meaning and truth-value, which are
needed for an adaptive system (Lakoff 1988; Wang 2005).

Algorithmic problem-solving has the advantage of pre-
dictability and repeatability, but lacks the flexibility and
scalability required by intelligence. Again, here the problem
comes from the assumption of sufficient knowledge (i.e.,
there is a known algorithm) and resources (i.e., the system
can afford the resources required by the algorithm) (Wang
2009).

Therefore, to design a system under AIKR, new theories
are necessary, which are fundamentally different from the
traditional theories, though may still be similar to them here
or there.

The above conclusion does not mean that the traditional
theories are “wrong”. They are still normative theories about
a certain type of rationality. It is just that under AIKR, a
different type of rationality is needed, which in turn requests
different normative theories.

For a system based on AIKR, many requirements of clas-
sic rationality cannot be achieved anymore. The system can
no longer know “objective truth”, or always make correct
predictions. Nor can it have guaranteed completeness, con-
sistency, predictability, repeatability, etc. On the other hand,
it does not mean everything goes. Under AIKR, a ratio-
nal system is one that attempts to adapt to its environment,
though its attempts may fail. While the future is unpre-
dictable, it is better to behave according to the past; while
the resource supply cannot meet the demand, it is better to
use them in the most efficient manner, according to the sys-
tem’s estimation. Consequently, a system designed under
AIKR can still be “rational”, though not in the same sense
as specified by classic “rationality”.

Similar opinions have been expressed previously, with
notions like “bounded rationality” (Simon 1957), “Type II
rationality” (Good 1983), “minimal rationality” (Cherniak
1986), “general principle of rationality” (Anderson 1990),
“limited rationality” (Russell and Wefald 1991), and so on.
Each of these notions assumes a less ideal and more realistic
working environment, then specifies the principles that lead
to the mostly desired results. AIKR is similar to the above
notions in spirit, though it is more radical than all of them
— as explained previously, “insufficient” does not merely
mean “bounded” or “limited”.

Therefore, a main implication of AIKR is a proposed
paradigm shift in AI research, by suggesting the systems to
be designed according to different assumptions on the envi-
ronment, different working principles, and different evalua-
tion criteria. According to this opinion, the traditional theo-
ries are not applicable to AI systems in general (though still
useful here or there), since their fundamental assumptions
are no longer satisfied in this domain.

Now let us revisit the two objections to AIKR mentioned
previously.

The objection based on idealization is wrong, because
this opinion, as explicitly expressed in (Legg and Hutter



2007), fails to see that there are different types of idealiza-
tion. AIKR is also an idealization, except that it is closer
to the reality of intelligent systems. Rationality (or intelli-
gence) can be defined with either finite resources or infinite
resources. However, the two definitions lead to very differ-
ent design decisions, so the “intelligence” defined in (Legg
and Hutter 2007) does not provide proper guidance to the de-
sign of concrete AI systems which must work under AIKR.
Here the situation is different from that of Turing Machine,
because resource restriction is a fundamental constraint for
intelligent systems, though not for computational systems.
AIKR is a major reason for the cognitive facilities to be what
they are, as observed by psychologists: “Much of intelligent
behavior can be understood in terms of strategies for cop-
ing with too little information and too many possibilities”
(Medin and Ross 1992). No wonder AIXI is so different
from the human mind, either in structure or in process (Hut-
ter 2005).

The objection based on simplification is wrong, because
this opinion leads to a mixture of different notions of ra-
tionality — in certain parts of a system, a new notion of
rationality is introduced, while in the others, the classic ra-
tionality is still followed. Though such a system can be
used for certain limited purposes, they have serious theo-
retical defects when the research goal is to develop a the-
ory and model of intelligence that is general-purpose and
comparable to human intelligence. The divide-and-conquer
strategy does not work well here, because a change on the
assumption on knowledge and resources usually completely
changes the nature of the problem. For example, an open
system needs to be able to revise its beliefs according to new
evidence. It is an important aspect of common-sense reason-
ing that non-monotonic logic attempts to capture, by allow-
ing the system to derive revisable conclusions using “default
rules” (McCarthy 1988; Reiter 1987). However, the default
rule, though having empirical contents, cannot be revised by
new experience, largely because non-monotonic logic is still
binary, so cannot measure the degree of evidential support a
default rule gets. Consequently, the system is not fully adap-
tive, and has no general way to handle the inconsistent con-
clusions derived from different default rules (Wang 1995b).
If we try to extend the logic from binary to multi-valued, we
will see that the situation is changed so much that the pre-
vious results in binary logic become hardly relevant. Sim-
ilarly, it is almost impossible to revise AIXI into a system
working under AIKR, because the resulting model (if it can
be done) will bear little resemblance to the original AIXI.

Constructive implications of AIKR
AIKR is not only a constraint that should be obeyed in AI
system, but also one that can be obeyed. It is possible to
design an AI system which is finite, real-time, and open.

The above claim is supported by the practice of the NARS
(Non-Axiomatic Reasoning System) project, which is an AI
system designed in the framework of reasoning system, and
with prototype systems implemented (Wang 1993; 1995a;
2006).

NARS is designed to fully obey AIKR. It is “non-
axiomatic” in the sense that its domain knowledge all comes

from its experience (i.e., input knowledge), and are revisable
by new experience. The problems the system faces are often
beyond its current knowledge scope, so no absolutely cor-
rect or optimal conclusion can be guaranteed. Instead, as an
adaptive system, NARS uses its past experience to predict
the future, and uses its finite computational resource supply
to satisfy its excessive resource demands. In this situation, a
“rational” solution to a problem is not one with a guaranteed
quality, but one that is mostly consistent with the system’s
experience and can be obtained with the available resources
supply.

Under AIKR, model-theoretic semantics does not work,
since meaning of terms and truth-value of beliefs in NARS
cannot be taken to be constants corresponding to the objects
and facts in an outside world. Instead, truth-value has to
mean the extent to which the system takes a belief to be
true, according to the evidence in the system’s experience;
meaning has to indicate what a term expresses to the system,
that is, the role it plays in the system’s experience. Such
an experience-grounded semantics is fundamentally differ-
ent from model-theoretic semantics, and cannot be obtained
by extending or partially revising the latter.

When the beliefs and problems of NARS are represented
in a formal language, what is represented is not a “model of
world” that is independent of the system’s experience, but a
“summary of experience” that is dependent of the system’s
body, environment, and the history of interaction between
the system and the environment. This summary must be ex-
pendable to cover novel situations, which is usually not iden-
tical to any past situation known to the system. For this pur-
pose, a conceptual vocabulary is needed, in which each con-
cept indicates a certain stable pattern in the experience, and
a belief specifies the substitutability between the concepts,
that is, whether (or to what extent) one concept can be used
as another. To represent and derive this kind of beliefs in
NARS, a term logic is used, which is fundamentally different
from first-order predicate logic. In representation language,
a predicate logic uses a predicate-arguments format, while
a term logic uses a subject-copula-predicate format. In in-
ference rules, a predicate logic uses truth-functional rules,
and reasons purely according to the truth-value relationship
between the premises and the conclusion, while a term logic
uses syllogistic rules, and reasons mainly according to the
transitivity of the copula.

Since NARS is open to experience of any content (as long
as it can be represented in the system’s representation lan-
guage), the truth-value of a belief is uncertain, since it may
have both positive and negative evidence, and the impact of
future evidence will need to be considered, too. Obviously,
a binary truth-value is no longer suitable, but even replac-
ing it with a probability value is not enough, because under
AIKR, the system cannot have a consistent probability dis-
tribution function on its belief space to summarize all of its
experience. Instead, in NARS each belief has two numbers
attached to indicate its evidential support: a frequency value
(representing the proportion of positive evidence among all
evidence) and a confidence value (representing the propor-
tion of current evidence among evidence at a near future,
after the coming of new evidence of a certain amount). To-



gether, these two numbers provide information similar to a
probability value, though they are only based on past expe-
rience, and can be revised by new evidence. Furthermore, it
is not assumed that all the truth-values in the system at the
same time are consistent. Whenever an inconsistency hap-
pens, the system resolves it, either by merging the involved
evidence pools (if they are distinct), or by picking the con-
clusion with more evidence behind it (if the evidence cannot
be simply merged). In each step of inference, the rule treats
the premises as the only evidence to be considered, and as-
sign a truth-value to the conclusion accordingly. Some of the
inference rules have certain similarity with the rules in tradi-
tional logic or probability theory, but in general the inference
rules of NARS cannot be fully derived from any traditional
theory.

Since NARS is open to novel problems, and must pro-
cess them in real time, with various time requirements and
changing context, it cannot follow predetermined algorithm
for each problem. Instead, the system usually solves the
problems in a case-by-case manner. For each concrete oc-
currence of a problem, the system processes it according to
available knowledge and using available resources. Under
AIKR, the system cannot assume that it knows everything
about the problem, nor that it can take all available knowl-
edge into consideration. NARS maintains priority distri-
butions among its problems and beliefs, and in each step,
the items with higher priority will have a higher chance to
be accessed. The priority distributions are constantly ad-
justed by the system itself, according to the change in the
environment and the feedback collected for its operations,
so as to achieve the highest overall (expected) resource-
efficiency. Consequently, the system’s problem-solving pro-
cesses become flexible, creative, context-sensitive, and non-
algorithmic. These processes cannot be analyzed according
to the theory of computability and complexity, because even
for the same problem instance, the system’s processing path
and expense may change from situation to situation.

NARS fully obeys AIKR. The system is finite, not only
because it is implemented in a computer system with fixed
processing capacity, but also because it manages its own
resources without outside interference — whenever some
processes are started or speed up, usually there are others
stopped or slowed down; whenever new items are added
into memory, usually there are old items removed from it.
The system is open, because it can be given any beliefs and
problems, as far as they can be expressed in the representa-
tion language of the system, even when the beliefs conflict
with each other or the problems go beyond the system’s cur-
rent capability. The system works in real-time, because new
input can show up at any moment, and the problems can
have various time requirements attached to them — some
may need immediate attention, though have little long-term
importance, while some others may be the opposite.

NARS is built in stages. As described in (Wang 2006),
the representation language and inference rules are extended
incrementally, with more expressive and inferential power
added in each stage. Even so, AIKR is established from
the very beginning and followed all the way. This type of
divide-and-conquer is different from the common type criti-

cized previously. According to common practice in AI, even
if AIKR were accepted as necessary, people would build a
finite system first, then make it open, and finally make it
to work in real time. However, in that way very likely the
design of an earlier stage will be mostly useless for a later
stage, because the new constraint has completely changed
the problem.

In summary, AIKR not only implies that the traditional
theories cannot be applied to AI systems, but also suggests
new theories for each aspect of the system. Limited by pa-
per length, here we cannot introduce the technical details of
NARS, but for the current purpose, it is enough to list the
basic ideas, as well as why they are different from the tradi-
tional theories. Technical descriptions of NARS can be find
in (Wang 2006), as well as in the other publications online
at the author’s website.

Conclusion
Though the Assumption of Insufficient Knowledge and Re-
sources (AIKR) origins as a constraint on biological intel-
ligent systems, it should be recognized as a fundamental
assumption for all forms of intelligence in general. Many
cognitive facilities observed in human intelligence can be
explained as strategies or mechanisms to work under this
constraint.

The traditional theories dominating AI research do not ac-
cept AIKR, and minor changes in them will not fix the prob-
lem. This mismatch between the theories AI needs and the
theories AI uses also suggests a reason for why the main-
stream AI has not progressed as fast as expected.

AI research needs a paradigm shift. Here the key issue is
not technical, but conceptual. Many people are more com-
fortable to stay with the traditional theories than to explore
new alternatives, because of the well-established position of
the former. However, these people fail to realize that the
successes of the traditional theories are mostly achieved in
other domains, which the research goal and the environmen-
tal constraints are fundamentally different from those in the
field of AI.

What AI needs are new theories that fully obey AIKR.
To establish a new theory is difficult, but still more promis-
ing than the other option, that is, try to force the traditional
theories to work in a domain where their fundamental as-
sumptions are not satisfied.

The practice of NARS shows that it is technically feasible
to build an AI system while fully obeying AIKR, and such
a system displays many properties that are similar to the
human intelligence. Furthermore, such a system can solve
many traditional AI problems in a consistent manner. This
evidence supports the conclusion that AIKR should be taken
as a cornerstone in the theoretical foundation of AI.
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