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Abstract— The research goal of Artificial General Intelligence
(AGI) and the notion of Classical Neural Network (CNN) are
specified. With respect to the requirements of AGI, the strength
and weakness of CNN are discussed, in the aspects of knowledge
representation, learning process, and overall objective of the
system. To resolve the issues in CNN in a general and efficient
way remains a challenge to future neural network research.

I. A RTIFICIAL GENERAL INTELLIGENCE

It is widely recognized that the general research goal of
Artificial Intelligence (AI) is twofold:

• As a science, it attempts to provide an explanation of
the mechanism in the human mind-brain complex that is
usually called “intelligence” (or “cognition”, “thinking”,
etc.).

• As a technology, it attempts to reproduce the same
mechanism in a computer system.

Therefore, a complete AI work should consist of results on
three levels:1

1) A theoryof intelligence, as a collection of statements in
a natural language;

2) A modelof the theory, as a set of expressions in a formal
language;

3) An implementationof the model, as a software in a
programming language, or a special-purpose hardware.

On the theoretical level, the central questions to be answered
are “What is intelligence?” and “How to achieve it?”. For the
first question, everyone looks for the answer in the human
mind-brain complex, though different people focus on its
different aspects:

• Structure. Since the human brain is the only place where
intelligence is surely observed, some people believe that
the best way to achieve AI is to study and duplicate the
brain structure. Examples: various brain models.

• Behavior. Since we often decide whether we are dealing
with an intelligent system by observing its behavior, some
people believe that the best way to achieve AI is to
reproduce human behavior. Examples: Turing Test and
various cognitive models.

1Different from similar level distinctions [1], [2], here the distinction is
made according to thelanguagein which the result is presented, so as to avoid
the dependency on notions like “computation”, “knowledge”, or “algorithm”.

• Capability . Since we often judge the level of intelligence
of other people by evaluating their problem-solving capa-
bility, some people believe that the best way to achieve AI
is to build systems that can solve hard practical problems.
Examples: various expert systems.

• Function. Since the human mind has various cognitive
functions, such as perceiving, learning, reasoning, acting,
and so on, some people believe that the best way to
achieve AI is to study each of these functions one by
one, as certain input-output mapping. Example: various
intelligent tools.

• Principle. Since the human mind seems to follow certain
principles of information processing, some people believe
that the best way to achieve AI is to let computer systems
follow the same principles. Example: various definitions
of rationality.

Though each of the above beliefs leads to sound scientific
research, they aim at different goals, and therefore belong
to different research paradigms [3], [4]. The second question
(“How to achieve intelligence?”) can only be answered with
respect to an answer of the first question (“What is intelli-
gence?”). Many confusions in the discussions on AI are caused
by evaluating an approach within one paradigm according to
the requirements of a different paradigm.

On the modeling level, there are three major frameworks
for formalizing a cognitive system, coming from different
traditions:

• dynamical system. In this framework, the states of the
system are described as points in a multidimensional
space, and state changes are described as trajectories in
the space. It mainly comes from the tradition of physics.

• inferential system. In this framework, the states of the
system are described as sets of beliefs the system has,
and state changes are described as belief derivations and
revisions according to inference rules. It mainly comes
from the tradition of logic.

• computational system. In this framework, the states of
the system are described as data stored in the internal data
structures of the system, and state changes are described
as data processing following algorithms. It mainly comes
from the tradition of computer science.



In principle, these three frameworks are equivalent in their
expressive and processing power, in the sense that a virtual
machine defined in one framework can be implemented by
another virtual machine defined in another framework. Even
so, for a given problem, it may be easier to find solutions in
one framework than in the other frameworks. Therefore, the
frameworks are not always equivalent in practical applications.

On the implementational level, the central issues include
efficiency and naturalness.

These three levels have strong influence to each other,
though the decisions on one level usually do not completely
depend on the decisions on another level. Also, the problems
on one level usually cannot be solved on a different level. For
example, a weakness in a theory usually cannot be made up
by a clever formalization.

At the very beginning, AI researchers took “intelligence”
as a whole. Though for such a complicated problem, research
has to be carried out step by step, people still associated their
work with the ultimate goal of the field, that is, the building
of a “thinking machine”. This attitude was exemplified by
the theoretical discussion of Turing Test [5] and the system-
building practice of General Problem Solver [6].

However, the previous attempts to build general-purpose
intelligent systems all failed. No matter what the reason
in each case actually was, the lesson learned by the AI
community is that general-purpose intelligent systems cannot
be built, at least at the current time. As a consequence, people
turn to domain-specific or narrowly-defined problems, which
are obviously more manageable.

Even so, the ultimate problem of AI remains there, and
there are still a very small number of projects aiming at
“general-purpose thinking machines”, though each based on
a different understanding and interpretation of the goal. In
recent years, the term “Artificial General Intelligence” (AGI)
was used by some researchers to distinguish their work from
the mainstream “narrow/special AI” research [7]. Intuitively,
this term is similar to terms like “Thinking Machine” [5],
“Strong AI” [8], or “Human-level AI” [9], [10], though the
stress is on the general-purpose nature of the design.2

In this paper, the concept of “AGI” is defined by certain
information processingprinciples that are abstracted from the
way the human mind works. Concretely, it means that

1) The system isgeneral purpose, that is, not only works
on a set of predetermined problems. Instead, the system
often faces novel problems that anticipated neither by
its designer nor by the system itself.

2) The system has to work inrealistic situations, meaning
that its knowledge and resources are often insufficient
with respect to the problems to be solved, and that it

2Personally, I don’t like the term “AGI”, because to me, the concept of
“intelligence” should be treated as a domain-independent capability [3], [11],
therefore “general intelligence” is redundant. However, since the term was
coined to stress the difference between this type of research and what is called
“AI” by most people at the current time, I don’t mind to use it in relevant
discussions for this purpose. Hopefully one day in the future people will only
use “AI” for general-purpose intelligent systems, and find other terms for the
domain-specific works. At that time, the term “AGI” can retire.

has to process many tasks in real time, with a constant
processing power.

3) The above restrictions means that the system usually
cannot provide optimal solutions to problems. However,
it can still provides rational solutions that are the
best it can get under the current knowledge-resources
restriction. It follows that the system must learn, from
its experience, about how to use its knowledge and
resources in the most efficient way.

More detained discussions about this kind of system can be
found in [3], [4], [11].

II. CLASSICAL NEURAL NETWORK

In principle, there are many possible paths toward AGI. This
paper is a preliminary step to analyze the approaches that are
based on neural networks.

As many other terms in the field, “Neural Networks”
(as well as “Artificial Neural Networks” and “Connectionist
Models”) is used to refer to many different models, and there is
no accurate definition of the term. Even so, the models do have
common features, which distinguish them from other models
in AI and Cognitive Science (CogSci). Instead of comparing
each neural network model with the need of AGI (which is
impossible for this paper), this paper will first introduce the
notion of “Classical Neural Network” (CNN), as a “minimum
core” with typical properties shared by many (but not all)
neural networks. This notion will inevitably exclude the more
complicated designs, but we have no choice but to start at a
simple case.

According to the notions introduced in the previous section,
the features of CNN are summarized on different levels
(theory, model, and implementation).

As a theory of intelligence, CNN focuses on the repro-
duction of certain cognitivefunctions, defined as input-output
mappings as performed by the human mind, such as in pattern
recognition, classification, or association.3 To achieve this
goal, the major theoretical ideas behind CNN include:

• The system consists of many relatively simple processing
units, which can run in parallel.

• The system solves problems by the cooperation of the
units, without any centralized algorithm.

• The system’s beliefs and skills are distributively repre-
sented by the units and their relations.

• The system is domain-independent by design, and it
learns domain-specific beliefs and skills by training.

• Through learning, the system can generalize its training
cases to similar problems.

• The system is tolerant to the uncertainty in the (training,
testing, and working) data.

The representative literature of these ideas include manifestos
of connectionism like [12], [13]. In the following, the above
ideas will be called collectively as the “CNN ideas”.

3Please note that though CNN gets its inspirations from the human brain,
it is not an attempt to duplicate the brain structure as faithfully as possible.



CNN is obtained by formalizing these ideas in the frame-
work of dynamic system. Concretely, the major aspects of
“CNN model” are specified as the following:

• Static description: state vector and weight matrix. A
network consists of a constant number of neurons, with
connections among them. Each neuron has an activation
value, and each connection has a weight value. A neuron
can be input, output, or hidden, depending on its rela-
tionship with the environment. Therefore, the state of a
network with N neurons at a given time is represented
by a vector of lengthN, which may be divided into an
input (sub)vector, an output (sub)vector, and a hidden
(sub)vector. All the weight values in the network at a
given time can be represented by anN by N matrix.

• Short-term changes: activation spreading. In each step
of state change, a neuron gets its input from the other
neurons (and/or from the outside environment, for input
neurons), then its activation function transforms this input
into its (updated) activation value, which is also its output
to be sent to the other neurons (and/or to the outside
environment, for output neurons). As a result, the state
vector changes its value. This process is repeated until
the state vector converges to a stable value.

• Long-term changes: parameter adjusting. During the
training phase of the network, the weights of connections
are adjusted by a learning algorithm, according to the
current state of the system. Training cases usually need
to be repeatedly presented to the system, until the weight
matrix converges to a stable value.

• Overall objective: function learning. As the conse-
quence of training, the network becomes a function that
maps input vectors to output vectors or state vectors.
That is, starting from an initial state determined by an
input vector,4 the activation spreading process will lead
the system to a stable output vector (such as when the
network is used as an approximate function) or state
vector (such as when the network is used as an associative
memory).

The representative literature of these specifications include
many textbooks on neural networks and AI, such as [14], [15],
[16], [17].

Different types of CNN correspond to different topological
structures, activation functions, learning algorithms, and so on
[15], [18]. Since the following analysis and discussion are
based on the above general ideas and model, they will be
independent of the details of the model, as well as to the
software/hardware implementation of the model. Therefore,
this paper only addresses the “CNN ideas” and “CNN model”,
as defined above.

III. STRENGTH AND WEAKNESS

Given the previous introduction, this section will evaluate
CNN as a candidate technique for AGI.

4There are recurrent neural networks where an input vector does not
correspond to the initial state of a running process of the network, therefore
they are not included in the notion of CNN.

There is no doubt that neural networks has successfully
solved many theoretical and practical problems in various
domains. However, it remains unclear whether it is the pre-
ferred way to explain human cognition or to reproduce human
intelligence as a whole, though that is a belief the connection-
ists have been promoting. From the very beginning, neural
networks was not proposed merely as one more technique
in the AI toolbox, but as an alternative to the “classical”,
symbolic tradition of AI and CogSci [19].

There is already a huge literature on the “symbolic vs.
connectionist” debate [20], and this paper is not an attempt
to address all aspects of it. Instead, there are some special
features of the following discussion that distinguish this paper
from the previous ones:

• It will not talk about neural networks in general, but focus
on a special form, CNN, as defined previously.

• It will evaluates CNN against the goal of AGI, as defined
above, rather than against other (also valid) goals.

• It will not talk about what “can” or “cannot” be achieved
by CNN, because if we do not care about complexity and
efficiency, what can be achieved by one AI technique can
probably also be achieved by another one. Instead, it will
discuss whether CNN is thepreferred technique, com-
pared to the other known candidates, when complexity
and efficiency are taken into consideration.

The discussion will be organized around three major aspects
of CNN: knowledge representation, learning process, and
overall objective.

A. Knowledge representation

The knowledge in CNN is representeddistributively, in
the sense that there is no one-to-one mapping between the
conceptual units and the storage unit of the system. Instead, a
piece of knowledge usually corresponds to a value of the state
vector, or is embedded in the weight matrix as a whole.

In general, it is usually impossible to say what a hidden
neuron or a connection stands for.

For input and output neurons, there are two possibilities.
In some CNNs, they still have individual denotations in the
environment. For example, an input neuron may correspond
to one attribute of the objects to be classified, and an output
neuron may correspond to a class that the objects are classified
into. In the following, such CNNs will be called “semi-
distributed”. On the other hand, there are CNNs where each
input/output neuron has no individual denotation, and it is the
input/output vectors that are the minimum meaningful units in
the system. Such CNNs will be called “fully-distributed”.

Distributed knowledge representation in CNN provides the
following major advantages:

• associative memory. After a training pattern is stored in
the weight matrix, it becomescontent-addressable, in the
sense that it can be recalled from a partial or distorted
version of itself. The same functionality is difficult to be
achieved with the traditionallocal representation, where
a piece of knowledge must be accessed by its address,
which is independent of its content.



• fault tolerance. If part of a CNN is destroyed, it does
not lose its memory. Usually patterns stored in it can
still be recalled, though with a lower accuracy — this
is called “graceful degradation”. On the contrary, in a
system with local representation, the information in the
damaged part will be completely lost (unless the system
keeps duplications of the information somewhere else).

On the other hand, when a CNN is evaluated according
to the requirement of AGI, there are issues in knowledge
representation.

First, a CNN with semi-distributed representation has the
following problems:

• knowledge in multiple spaces. Though for a given
problem, it is often possible to describe the input and
output as a set of attributes, it is hard to do so for a
general-purpose system, unless we assume that for all the
problems the system needs to deal with, the inputs and
outputs still fall into the same multidimensional space.
Usually this assumption leads to a space whose number
of dimensions is too large to be actually implemented.

• missing values. Even when all input and output values
can be assumed to be in a single space, a general-purpose
system cannot assume further that all the input attributes
have meaningful values in every input pattern — some
attributes will be undefined for some input patterns. These
missing values should not be replaced by average or
“normal” values, as what usually happens in a CNN [21].
Though for a concrete situation it may be possible to find
an ad hocway to handle missing values, it is unknown
whether there is a general and justified way to solve this
problem.

A CNN with fully-distributed representation avoids the
above problems by coding a piece of knowledge as a pattern in
the whole input/output vector, where an individual input/output
neuron no longer has separate meaning. However, the follow-
ing problems still exist:

• structured knowledge. Though in theory a piece of
knowledge can always be coded by a vector, it is not
easy to represent itsstructure, when it is composited by
smaller pieces in certain way.5 Many solutions have been
proposed for this problem (such as [23]), but each of
them is typically designed for a special situation. The
concept of “structure” seems to be foreign to vector-based
representation, which is “flat” by nature.

• selective processing. Since all pieces of knowledge are
mixed in the weight matrix, it is not easy (though not
impossible) to process some of them selectively, without
touching the others. For a general-purpose system, such
selective processing is often absolutely necessary, since in
different situations, only therelevant knowledge should
be used.

• explanation. It is well known that to get ameaningful
explanation of the internal process in a CNN is very

5This issue is similar to the issue of “compositionality” raised by Fodor and
Pylyshyn [22], though I do not fully agree with their analysis and conclusion.

difficult. Though it is possible to “explain” why a network
produces a certain result in terms of state vector calcu-
lations, it is not what people can understand intuitively.
“Meaningful explanation” usually means to describe the
process in a concise way with familiar concepts, which
seems incompatible with the very idea of distributed
representation.6

B. Learning process

A CNN learns from training patterns by adjusting its
weights to optimize a certain function of the system state,
such as anerror functionor anenergy function.

Each training pattern provides either an input-output pair
to be remembered (supervised learning) or an input to be
remembered or classified (unsupervised learning). All training
patterns are usually repeatedly presented to the system during
the training phase, before the network can be used as a
function, memory, of classifier.

Compared to the other major AI techniques, the learning
process in a CNN has the following advantages:

• general-purpose algorithm. The learning algorithms in
CNNs are designed in a domain-independent manner
(though for a concrete problem the designer usually
needs to choose from several such algorithms, according
to domain-specific considerations). The systems do not
require built-in domain knowledge, unlike expert systems
developed in the symbolic AI tradition, where the “intel-
ligence” a system shows mainly come from its special
design.

• generalization and similarity. A CNN does not merely
remember a training pattern, but automatically general-
izes it to cover similar patterns. Each training pattern not
only influences the system’s behavior in a point within
the state space, but in a neighborhood. Consequently, the
system can handle patterns it has never seen before, as far
as they bear some similarity to certain training patterns.
On the contrary, symbolic systems are notorious for their
“brittleness” [24].

• noise tolerance. A learned regularity will not be de-
stroyed by a small number of counterexamples. Instead,
the counterexamples are considered as “noise” in the
data, and therefore should be ignored. Similarly, if a
pattern contains certain values that do not agree with the
overall tendency among the patterns, they are considered
as caused by noise, and the “normal” values will be used
or remembered, instead. The same thing is hard to achieve
using binary logic, where a single counterexample can
“falsify” a general conclusion.

At the same time, this kind of learning also brings the
following issues to CNN:

• incremental learning. In general, a CNN assumes that
all the training happens before the network achieves its

6It is important to realize that explanation is not only required by the human
users. A truly intelligent system also needs to explain certain internal processes
to itself.



problem-solving capability, and all the training patterns
are available at the beginning of the training phase. When
the training patterns become available from time to time
(life-long learning), the network often has to be re-trained
with all the new and old patterns, which lead to unrealistic
time-space demands. On the other hand, to incrementally
adjust a trained network often leads to the destroy of old
memory (catastrophic forgetting [25]).

• learning in real-time. It is well known that learning in
a CNN often takes a very long time, and it does not
support “one-shot” learning, which is often observed in
the human mind, and is required for AGI. The long time
expense comes from the demands that (1) all training
patterns must be processed together (mentioned above),
(2) the learning of a pattern is aglobal operation, in the
sense that all neurons and weights may get involved, and
(3) this process only ends in a stable state of the system.7

• multi-strategy learning. A CNN learns from concrete
examplesonly, while human learning has many other
forms, where new knowledge come as general statements,
and new conclusions are obtained by inference that
is more complicated than simple induction or analogy.
Though it is nice for a CNN not to depend on built-in
domain knowledge, it becomes a problem when domain
knowledge is available but cannot be learned by the
network except in the form of training patterns.

• semantic similarity. The generalization and similarity
nature of CNN mentioned above is directly applicable
only when the network uses semi-distributed representa-
tion, where each input dimensions has concrete meaning,
so similar input patterns have similar meanings. With
fully-distributed representation, however, this correspon-
dence is no longer guaranteed anymore. If an input vector
as a whole represents an arbitrary concept, then it is pos-
sible for similar vectors to represent semantically distant
concepts. To handle semantic similarity in such a CNN,
additional (i.e., not innate in CNN) learning mechanisms
are needed, where vector similarity is irrelevant.

• exception handling. It is not alway valid to treat ex-
ceptions as noise to be ignored. Very often we hope the
system to rememberboth the general tendency among
training casesand the known exceptions of this tendency,
then to select which of the two is applicable when a new
case needs to be handled. This issue is related to the
previous issue of selective processing.

Some of the above problems, such as incremental learning and
exception handling, are addressed by the ART networks [26],
[27], [28]. However, since their solutions are based on addi-
tional assumptions (such as the availability of uncommitted

7Though most neural networks are implemented as software running on se-
rial processors, it is unrealistic to expect this problem to disappear in parallel-
processing hardware implementations. Though more powerful hardware will
definitely make a CNN run faster, for a general-purpose system there will
always be complicated problems whose solutions cannot be carried out in
parallel by the available processors. Consequently the time-cost problem will
always be there.

neurons for novel input patterns), the above problems remain
unsolved, specially in a general-purpose system that has to
face novel input patterns all the time.

C. Overall objective

After training, a CNN can carry out a function that maps
an input vector either to an output vector or to a state vector.

Compare to the other AI techniques, the advantages of CNN
on this aspect are:

• complicated function. A CNN can learn a very compli-
cated function, which may be very difficult to get by the
other AI learning techniques.

• novel cases. A CNN responds to novel cases in a
reasonable manner, by treating it according to what has
been learned from similar cases.

Even so, the implicit assumption that “everything of interest
in AI and CogSci can be modeled as some kind offunction”
is problematic, from the viewpoint of AGI. This assumption
implies that for any given input state, there is one and only one
output state in the system, which provides meaningful result,
and this output state correspond to an attractor of the CNN.
Related to this implication, there are the following issues:

• multiple goals. A general-purpose system typically has
multiple goals to pursue or to maintain at the same time,
which are related to each other, but also remain mutually
independent. It is not clear how to carry out multiple
functions in this way within a single CNN.

• multiple consequences. Even for a single goal, it is often
desired to get multiple consequences, which are produced
by the system on the way. It is not a “function” in the
sense that only the final value matters. Also, for the same
input, there are often many valid outputs for an intelligent
system. If a system always gives the same response to the
same stimulus, its intelligence is quite doubtful.

• open-ended processes. For many intelligent/cognitive
processes, there is not even a final state where a function
value can be obtained. Instead, it is more like an open-
ended anytime algorithm that never stops itself in the
lifespan of the system. For example, a “creative thinking”
process may never converge to any “attractor state”,
though the process remains fruitful.

IV. CONCLUSIONS

As a candidate technique to achieve AGI, the theoretical
ideas behind CNN are all acceptable and justifiable, but the
formal framework of CNN seems to be too rigid, for several
reasons:

• The language is poor, because everything has to be
represented as a numerical vector.

• Many cognitive facilities cannot be properly represented
as functions.

• The system needs to learn in different ways, not just from
concrete examples.

• A real-time system must properly respond to various time
pressure.



Since this analysis only used the properties of the general
“CNN model” defined previously, these problems cannot be
easily solved by the changes in technical details within that
framework, such as in network topology, activation spreading
functions, learning algorithms, and so on.

Of course, the above conclusions about CNN cannot be
directly generalized to all kinds of neural networks. After
decades of research, there are already many types of neural
network models that no longer fit into the CNN framework as
defined in this paper. However, it does not mean that they are
completely immune from the above issues, because there is
still a recognizable “family resemblance” among the various
models, including CNN (more or less as the ancestor of the
family). Hopefully this work can provide a starting point
for future research on the relation between AGI and neural
networks, by using CNN as a reference point. For a concrete
model, we can analyze its difference from CNN, and check
whether it resolves the related issues discussed in this paper.

Many of the issues addressed in this paper have been
raised before, and the neural network community has proposed
various solutions to them. There is no doubt that there will be
progress with respect to each of them. However, for neural
network to be recognized as the best approach toward AGI, it
not only has to resolve each of the above issues, but also has
to resolve them altogether in a domain-independent manner.
Furthermore, the solution should be better than what other AI
techniques can provide. Therefore, it is not enough to only
handle some special cases, then to assume that the result will
generalize in a self-evident way, or to only specify certain
desired details of the system, then to claim that all other
problems will be solved by their “emergent consequences”.
This is still a challenge to the neural network community,
since as of today, we are not aware of any neural network that
has resolved all the issues discussed above.8

One possible approach believed by many people is to build
a “hybrid system” which uses multiple techniques, including
neural network. The argument supporting this approach is that
since each technique has its strength and weakness, it will be
better to use different techniques for different purposes, and
therefore to get best overall performance. The problem about
this approach is the consistency and efficiency of the system.
Since this issue is discussed in more details in [29], it will not
be repeated here.

As far as the current discussion is concerned, the author’s
own approach toward AGI can be roughly described as “for-
malizing the neural network ideas in a symbolic model”. An
AGI system named “NARS” realizes almost all of the “CNN
ideas” listed previously in the paper, while on the model level,
it is designed and implemented as an inference system (please
visit the author’s website for the related publications and
demonstrations). Consequently, it has many (though not all) of
the advantages of CNN, without suffering from its problems.

8I do not mean that because of the above problems, the traditional
“Symbolic AI” wins its war against the challenge of neural network. Actually
I believe thetheoretical beliefsbehind Symbolic AI are mostly wrong, but
that is not an issue to be discussed here (see [3], [4]).

A complete comparison between CNN and NARS will be left
to a future publication.
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