David Lebson

June 28th, 2010

Investigation of the Effectiveness of NARS in Video Game Scenarios

Getting Started

This project contains the following items:

The report and analysis of NARS for use in video games

Seven NARS game cases

Open-NARS 1.3.3 JAR executable

To run the game case files:

1. Begin the NARS applet by executing the Open-NARS JAR file. If it is working correctly, two boxes should appear on your screen that contain large text areas, buttons, and menus.

2. Select any of the game case files and open it in any text editor. Find the portion of the document titled Step Sequence, select all of the text and use the copy command (Control+C).

3. Click into the Input Window of NARS and paste (Control+V) the text into this box.

4. In the NARS window, select the File menu, then Save Experience. Type the desired name for the output text file, followed by '.txt'. Example: Test.txt

5. Click OK on the input window. Text should appear in the lower window. Select File and Save Experience again.

6. Open the text file in any text editor. It will display the output that NARS created.

Analysis

The main intention of this project is to investigate NARS, or the Non-Axiomatic Reasoning System, and determine its effectiveness as a potential model for artificial intelligence in video game environments. NARS is a system that takes a situation, and then determines both beliefs and answers from this given information. This situation is developed by sentences formed from the Narsese language, and are inputted as shown in the examples given with this document. From this input, NARS utilizes its Non-Axiomatic Logic to create a set of inferences that allows further information to be developed. This analysis will be divided into three main parts: first, an explanation of typical problem- solving logic required in video game AI; next, a comparison of this logic to NARS; and third discuss what could be changed to NARS to increase its effectiveness in a videogame environment.

The logic required in videogames is a rather large topic which would be too encompassing to fully cover; however, all portions that are relevant to this discussion will be discussed. Two general sets of artificial intelligence exist in zero-sum game logic. First, the minimax tree, which uses a tree of game states to essentially “predict” actions from both players. Second, the rule-based system, which takes a set of information from the current game scenario and applies them to preset rules to derive an action to take. Since minimax trees have a very specific structure, it will not be analyzed to the same extent as the rule-based system.

When looking at rule based logic in games, one primary component is the if-then statement. The if-then statement is used for the system to determine what the current state contains in the game and what to do as a reaction to these findings. The data extracted from the game's current state is used in the “if” portion of the statements. This allows the logic system to search for all of the valid responses for the given data. Following this, a response is found based on which if-then statements were matches to the situation. That is, if situation X exists in the game, then the reaction will be Y. This can be done to essentially completely encompass any situation that can be found in the game's rules, and thus will always have an answer to any scenario. This method of problem solving has several key points: it is relatively simple to implement, the resource usage is generally less than other artificial intelligence systems, and it also allows for straightforward and reliable problem solving.

Moving on to NARS, it has some relation to rule-based logic, but differs in some key fashions. For example, it requires data to be extracted from the situation and it also relies on logic similar to rule-based systems to derive answers; however, these items are not completely similar to its conventional counterpart. NARS has additional features that give it more flexibility, including truth and confidence values, the ability to use inference, and learning and forgetting rates.

NARS allows for all inputted data to include “truth” and “confidence” values. Truth values can also be called frequency values, where it states how common of an occurrence the data is true. This value is between 1 and 0, so a value of 1 would state the data is always true. In conjunction with this is the confidence value, which is the believability of the data. Like the truth value, a higher value indicates that the system believes the value, while a lower value implies that the information seems invalid to the system. This gives the system an immediate advantage over the previous rule based system, because it adds fuzzy logic without any outside calculating or changes to rules.

While if-then statements do exist in NARS, they have additional features. Typical if-then statements only have a single value of either true or false. Meaning, if the case matches the scenario included in the if-then statement, it is assumed as completely true. In NARS, this is not the case. As described earlier, NARS has truth and confidence values for all sentences, and this includes the if-then statements. The benefit of this ability shows in its unpredictability, which may appear to be a problem, but, in fact, is quite a helpful factor. When looking at artificial intelligence in games, a common problem is the predictability of the AI. If the game player sees a situation arise often enough, the AI has a tendency to act in a set manner, which places the computer at a disadvantage that would otherwise not exist. By adding these truth and confidence values, scenarios are not made to be completely true or false, making the level of complexity much greater.

A component that is non-existent in conventional systems is the step-by-step inference that is contained in NARS. This function meshes the input to form new ideas that can be used to solve problems. This allows for large sets of information to be combined without directly telling the system exactly what to do. Instead, the system will take in information, look at the goal that is to be reached, and process the information through step-by-step inference to attempt to reach this goal. This process can be seen in all of the examples provided in this report. Instead of the information being directly fed into the series of if statements, the data is put in piece by piece and slowly adds onto each other.

Learning and forgetting rates are also key components of NARS, and in a video game context would be very helpful additions. The learning system in NARS was not presented or reviewed in the examples provided with this report but from a video game perspective would undoubtedly be very helpful. This learning ability essentially allows the system to save resources by keeping track of similar situations and optimizing the calculating process for this repetition.

Forgetting rates add to the logic of NARS and help the system determine what is “old” information. As seen in the example cases, each step after the information has been originally entered will slowly drop in confidence levels. Although this process might appear unnecessary, it actually improves the systems complexity and flexibility. Instead of being completely necessary to update the information in the logic system, it can be delayed in NARS. Until the information gets confirmed during the continuation of the game, it can still be used, and the reliability of the data will drop. This would clearly be helpful in scenarios where the AI cannot have constantly updated information on the current game state which could result in less overall resource usage.

To definitively declare NARS as effective or ineffective for videogames is incredibly difficult. Since each videogame is different and requires different types of information and interpretation of it, in some situations NARS may not always be the best choice. Board games like chess and checkers almost always require a minimax tree; however, in situations with particular types of logic and rules, the NARS system would be most appropriate given its benefits in the way the it processes information. It is clear that the ability of NARS to mimic human-like decision making is much simpler to the more common approach. This is exhibited by its power of: taking in information with truth and confidence values, using inference, and learning and forgetting information.

Possible Changes to NARS

Unfortunately, without directly testing NARS in a video game context, it is difficult to give any definitive suggestions for changes to the system. Nevertheless, one situation did occasionally arise during testing that is worth noting. In situations where only one goal existed, and the variables and sentences did not have sufficient truth and confident values, no further operations occurred. Typically the reasoning not to act upon questionable information is valid; however, in a game scenario, if a character would stop acting because it was unsure of its surroundings, any actions taken by the system would cease indefinitely. A relatively simple fix for this situation would be to add two new system parameters that could determine the “desperation” level of when to take action. The first variable could be “desperation rate” that would measure roughly how many steps the system would take before action on questionable data would occur. The second could include a number for “questionable input use likelihood.” This one could basically be a multiplier for the truth and confidence values for all input, which can cause questionable information to be acted upon either more or less likely.

