
Bayesianism as a Whole
reasoning, inference and learning

using Bayesian techniques

Abstract

The current paper provides an overview of Bayesian techniques applied to frequently appearing

issues in the field of Artificial Intelligence. It covers design of belief systems, reasoning under

uncertainty, use in advanced learning systems such as Bayesian Problem Learning and application

to various fields. Lastly it touches limitation and disadvantages of such approaches to discussed

problems.

I.II Introduction

Early models of intelligent systems followed the model of reasoning used in first order predicate

calculus. They incorporated assumed true premises, correct sound inference rules and conclusions

that are guaranteed to be true and correct. However, such systems have little or no use in practical

problem applications.

If description of domain is presented as true or false clauses of predicate calculus, to sufficiently

describe necessary states of given domain one needs maintaining a huge table of clauses. Quickly,

such table grows to the extent that it can no longer be efficiently traced. Nevertheless, given such

a table with efficient ways to query its entries, the system cannot be considered intelligent because

it operates on given set of axioms that has been predefined by a designer and never modified during

running time.

Ideally, intelligent systems should respond to changing environment conditions and infer new

information about domain. This new information often contradicts with pre-coded true

assumptions, and thus assumptions must be modified. Early examples have seen use of

nonmonotonic logic, that is reasoning using non-traditional mathematical logic. In traditional,

monotonic reasoning, once knowledge is added to the system, it will never make the set of true

statements decrease. This is different from how human draw conclusions based on their current

system of beliefs, we often reconsider the values of our beliefs based on gained experience.

One of the first approaches to nonmonotonicity was incorporation of various techniques based on

abduction, which is an unsound inference rule, meaning that when P implies Q conclusion is not

necessarily true for every interpretation in which premises are true. Nonmonotonic reasoning

required advanced table management systems to maintain appropriate number of true assumptions

and modify existing true axioms during running time, hence Truth Maintenance System (TMS)

has been introduced. Unfortunately, such approach was not practical also: once new knowledge

was added to the system, not only directly affected true statements were needed to be modified,

but also all dependable statements should have been changed accordingly. In practical

applications, there is exponential number of dependencies in a domain and thus modification

becomes intractable task.

Current and most successful approaches that handle intractability in reasoning under uncertainty

employ wide use of statistics and decomposition of problems using various graph models to reduce

search spaces. Probability and possibility factors have been assigned to decisions where choice is

necessary. One of widely used model is Belief Networks, which is a graphical representation that

captures relationships between variables in domain. Examples: and/or graphs, Markov models,

Dynamic Belief Networks, Naïve Bayes, Bayesian Belief networks.

II.I Inference under Uncertainty

Bayesian Statistics allows joint probability be decomposed into product of conditional

probabilities and to compute posterior probabilities, thus modifying systems degree of belief after

new knowledge has been discovered. However, computation of all joint probabilities using

Bayesian Statistics alone is intractable.

Consider a toy example with just five variables and given prior probability as true or false to each

variable. Let’s assume the set of variables is {a,b,e,j,m}. Joint probability for entire system is

𝑷(𝒂, 𝒃, 𝒆, 𝒋, 𝒎) = 𝑷(𝒋|𝒂, 𝒃, 𝒆, 𝒎)𝑷(𝒎|𝒂, 𝒃, 𝒆)𝑷(𝒆|𝒂, 𝒃)𝑷(𝒃|𝒂)𝒑(𝒂).
It is easy to notice that the cost of producing joint probability table is exponential, in our toy

example it would have possible entries. Therefore, computing joint probabilities directly cannot

be done for practical application involving decent number of variables.

Belief Networks

Belief network is a probabilistic graphical model that is a representation of probability conditions

and dependencies. Belief Network dramatically reduces dependability while maintaining

necessary four primitive relationships of likelihood, conditioning, relevance and causation. Pearl

(1988). Bayesian Belief Network (BBN) is a network that uses Bayesian techniques to compute

posteriori probabilities, that is to modify priori probabilities once new knowledge has been

discovered.

BBN is a DAG (Directed Acyclic Graph), where random variables are represented as nodes of a

graph and conditional probabilities are edges between nodes representing dependent variables.

Nodes that do not have ancestors are independent variables. In BBN, the full joint distribution is

expressed as a product of conditionals of smaller complexities:

𝑷(𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏) = ∏ 𝑷(𝑿𝒊|𝒑𝒂𝒓𝒆𝒏𝒕(𝑿𝒊))

𝒏

𝒊=𝟏

That is, computation of joint probability is reduced to computation of conditional probability of

direct parent variables only.

Consider again our toy example with five random variables (Fig 1).

Using brute force approach to compute joint probability of

P(a,b,e,j,m), the complexity is exponential in terms of input

parameters, that is 25.However, when we reduce problem to BBN,

complexity decreases to exponential in terms of number of parents

of the node. For example, the same probability becomes:

𝑷(𝒂, 𝒃, 𝒆, 𝒋, 𝒎) = 𝑷(𝒃)𝑷(𝒆)𝑷(𝒂|𝒃, 𝒆)𝑷(𝒋|𝒂)𝑷(𝒎|𝒂).

Structure of BBN

BBN must be designed for specific problem where all priori probabilities are known in advance.

Root of the network or Hypothesis nodes (nodes B and E in Fig. 1) have unconditional probabilities

that are also must be known before the network is built. Probabilities are stored in probability table

P(A) at that node. Additionally, nodes feature dynamic values Bel (a) that represent posterior

probability and reflects the overall belief in the proposition A = a given all the evidence, that is

Bel (a) = p(b|e). To compute joint probabilities and assign belief values to nodes, network needs

to be propagated.

Propagation

Propagation of BBN is a traversal of network in order to assign certain values to nodes. There are

two types of propagation: forward and backward. During forward propagation, joint probabilities

are being assigned as discussed above, while during back propagation, belief value are being

computed and priori probabilities are modified given all the evidence (e) and using famous

Bayesian theorem.

Consider another example (Fig. 2). Nodes 𝑊, 𝑋, 𝑌 are

random variables and edges captures conditional probabilities

as evidences (e). Edges with 𝑒+ denote conditions on which

X is dependent, while 𝑒− denote conditions on which X’s children are dependent. Now the value

of belief of X is computed using Bayesian Theorem and the following formula:

Defining 𝜋(𝑥) = 𝑝(𝑥|𝑒𝑥
+) , 𝜆(𝑥) = 𝑝(𝑒𝑥

−|𝑥) and 𝛼 = 1/𝑝(𝑒𝑥
−) we have

𝑩𝒆𝒍(𝒙) = 𝜶𝝅(𝒙)𝝀(𝒙)

Since 𝛼 is total probability which is the same for all variables, its computation is omitted and it

serves as normalization factor. The computation of 𝑏𝑒𝑙(𝑥) is then completed using following

formulas and illustrated on fig 3.

Fig 3

BBNs are widely used today in all kinds of applications. Their use varies from simple systems

with few variables such as weather or traffic prediction to complex projects where BBN is a small

part of inference and learning process.

III. Learning in Complex systems

One example of complex learning systems is BPL (Bayesian Program Learning). BPL was

designed by researchers from CMU in 2015, it is complex learning/inference system that competes

with most sophisticated deep neural networks setups for character recognition application, a

common benchmark used to compare performance of various intelligent systems.

Idea behind BPL is to challenge human ability of inference, learning new concepts, and creating

new exemplars based on sparse amount of data. The crucial difference of BPL is unlike

connectionist systems that require large amount of data to train, BPL uses generative approach to

object recognition, it tries to reconstruct objects from smaller parts and therefore requires much

sparse training data.

Let us use the following definitions: primitive – the most basic part of character; stroke - part of

character that starts with pressing the pen against the paper and terminated by lifting it up;

substrokes - are more primitive movements separated by brief pauses of pen. See figure 4.

BPL generates concepts or types, that is simple probabilistic programs, then uses two-step

Learning and apply Bayesian posterior inference to match these concepts against original data. It

unites three features: compositionality, causality and learning-to-learn. Learning-to-learn uses

hierarchical Bayesian modeling that allows construction of new concepts using existing ones and

maintaining causal and compositional properties. BPL operates using two-step generation: (i)

generation of types and (ii) generation of tokens.

(i) At the beginning BPL is pretrained with data taken

from Omniglot from where it retrieves basic parts of

characters. Then using probabilistic inference programs

tries to build sub-strokes and combine them into strokes

using relations.

Entire joint probability for types is as follows:

Type ψ={𝑘,𝑆,𝑅}, where S are strokes, R are relations,

and k = |S|.

𝑃(𝜓) = 𝑃(𝑘) ∏ 𝑃(𝑆𝑖)𝑃(𝑅𝑖|𝑆𝑖, … , 𝑆𝑖−1)

𝑘

𝑖

Each stroke 𝑆𝑖 is composed of sub-strokes, that is

𝑆𝑖 = {𝑠𝑖1, … , 𝑠𝑖𝑛} where number of sub-strokes is sampled

from frequency 𝑃(𝑛𝑖|𝑘).

Sub-stroke are decomposed in three variables: 𝑠𝑖𝑗 = {𝑧𝑖𝑗, 𝑥𝑖𝑗 , 𝑦𝑖𝑗}

where 𝑧𝑖𝑗 is index of primitives with distribution as follows:

𝑃(𝑧𝑖) = 𝑃(𝑧𝑖1) ∏ 𝑃(𝑧𝑖𝑗|𝑧𝑖,𝑗−1)
𝑛𝑖
𝑗=2 .

Thus, stroke has the following joint distribution: 𝑃(𝑆𝑖) = 𝑃(𝑧𝑖) ∏ 𝑃(𝑥𝑖𝑗|𝑛
𝑗=1 𝑧𝑖𝑗)𝑃(𝑦𝑖𝑗|𝑧𝑖𝑗).

Relation 𝑅𝑖 specifies how strokes are positioned, scaled and joined. Relations come in four types:

Independent, Start, End, Along. Each type has different sub-variables and dimensionality.

(ii) At the second stage, generation of tokens (Fig. 5),

Tokens 𝛩𝑖 are being generated by adding noise and

variance, sampling start location 𝐿𝑖, composing stroke’s

trajectory 𝑇𝑖, affine transformations 𝐴𝑖, and second

noise process that stochastically flips pixels

interpreting their values as independent Bernoulli

probabilities. Finally, Binary image created 𝐼𝑚

created by stochastic function: 𝑃(𝐼𝑚 |𝑇𝑚, 𝐴𝑚).

Joint distribution on types, set of tokens and images

becomes very complex:

𝑷(𝝍|𝜽𝒎[𝒊], 𝑰𝒎) = 𝑷(𝝍|𝜽𝒎[𝒊])

Propagating such a network with generic algorithms for every token becomes nearly impossible

task therefore the idea is selecting most successful and promising motor programs that are further

refined with Markov chain Monte Carlo (MCMC) resulting in approximate posterior distribution

𝑃(𝜓, 𝜃𝑚│𝐼𝑚). To save resources on computation it is possible to produce conditional samples

from the first stage generation, type-level generation, that is 𝑃(𝜓|𝜃𝑚[𝑖], 𝐼𝑚) = 𝑃(𝜓|𝜃𝑚[𝑖]).

At the final stage training images 𝐼𝑇 are compared to different test images 𝐼𝐶 to compute

classification score as follows :

The highest score indicates belonging to a class.

One-shot classification

BPL was tested on one-shot image classification where it achieved excellent results. One shot

classification creates new image 𝐼1 based on a given image 𝐼2 with the following probability

distribution:

With only 10 parses through image 𝐼1, BPL model could produce images with error margins

comparable of humans and less than best deep learning algorithms: BPL – 3.3%, humans – 4.5,

pre-trained Siamese convnet – 8%

IV. Conclusion and Thoughts

Intelligent systems using various statistical techniques, including Bayesian, has achieved great

success in recent years. Bayesianism has deeply penetrated most intelligent systems and functions

reasonably well for certain tasks. For example, BPL achieves less error rate than humans and

passes “visual Turing test”.

However, BPL is far from being “rational”. It remains deep and complex statistical model that is

far from “how people think”. BPL proved its performance on relatively simple concepts of

handwritten characters, and its performance for other real life application is questionable.

Moreover, choosing best motor programs and then propagating network using MCMC is extremely

computation intensive task which is not appropriate for bigger domain.

One major limitation of Bayesianism is priori probabilities. Before creation of Bayesian Belief

Network designers must know all probabilities for each variable and outcome, which is rarely the

case in real world. Another issue is portability and modularity. For example, BPL operates well

for character recognition, however to be useful in different domains, BPL would need to be highly

modified, most of its belief networks would have to be rebuilt; and even new algorithm might need

to be developed for types, token, parsing and for new concept creation.

Besides, the above technical and complexity limitations, perhaps the most crucial limitation is

conceptual. Bayesian approach cannot handle uncertainty in background knowledge and prior

probabilities function, it operates on given data without questioning its correctness. Furthermore,

Bayesianism is always “conditional”, implicitly or explicitly, there is always a relation between

proposition and background knowledge. Although some techniques exist that allow flatten this

issue such as Jeffrey’s rule or introduction of “virtual proposition”, Wang (2004), distinction

between implicit and explicit conditioning is rarely made in real applications.

References

Luger, G (2002). Artificial intelligence: Structures and strategies for complex problem solving.

 Harlow, England: Pearson Education.

Pearl, J (2011). Bayesian networks. Department of Statistics, UCLA. UCLA: Department of

 Statistics, UCLA. Retrieved from:

Human-level concept learning through probabilistic program induction

 BY BRENDEN M. LAKE, RUSLAN SALAKHUTDINOV, JOSHUA B. TENENBAUM

 SCIENCE11 DEC 2015 : 1332-1338

Wang, P. (2004). The limitation of Bayesianism. Artificial Intelligence, 158(1), 97-106.

Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,

 Morgan Kaufmann, San Francisco CA.

Braun, J. J. (2000) Dempster-Shafer theory and Bayesian reasoning in multisensor data

 fusion, in Sensor Fusion: Architectures, Algorithms, and Applications IV, Vol. 4051

 of Proceedings of the SPIE, Orlando, FL

Hautaniemi, S. K., Korpisaari, P. T. & Saarinen, J. P. P. (2000) Target identiflcation with

 Bayesian networks, in Sensor Fusion: Architectures, Algorithms, and Applications IV,

 Vol. 4051 of Proceedings of the SPIE, Orlando, FL

Heckerman, D. (1996) A Tutorial on Learning With Bayesian Networks, Technical Report

 MSR-TR-95-06, Microsoft Corporation, Redmond, WA.

Suermondt, H. J. (1992) Explanation in Bayesian belief networks, PhD thesis, Stanford

 University, Stanford, CA.

Heckerman, D., 1999. Bayesian learning. In: Wilson, R., Keil, F. (Eds.), The

 MIT Encyclopedia of the Cognitive Sciences. MIT Press, Cambridge, Massachusetts

