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Abstract 

 

The current paper provides an overview of Bayesian techniques applied to frequently appearing 

issues in the field of Artificial Intelligence. It covers design of belief systems, reasoning under 

uncertainty, use in advanced learning systems such as Bayesian Problem Learning and application 

to various fields. Lastly it touches limitation and disadvantages of such approaches to discussed 

problems. 

 

I.II Introduction 

 

Early models of intelligent systems followed the model of reasoning used in first order predicate 

calculus. They incorporated assumed true premises, correct sound inference rules and conclusions 

that are guaranteed to be true and correct.  However, such systems have little or no use in practical 

problem applications.  

 

If description of domain is presented as true or false clauses of predicate calculus, to sufficiently 

describe necessary states of given domain one needs maintaining a huge table of clauses. Quickly, 

such table grows to the extent that it can no longer be efficiently traced. Nevertheless, given such 

a table with efficient ways to query its entries, the system cannot be considered intelligent because 

it operates on given set of axioms that has been predefined by a designer and never modified during 

running time.   

 

Ideally, intelligent systems should respond to changing environment conditions and infer new 

information about domain. This new information often contradicts with pre-coded true 

assumptions, and thus assumptions must be modified. Early examples have seen use of 

nonmonotonic logic, that is reasoning using non-traditional mathematical logic. In traditional, 

monotonic reasoning, once knowledge is added to the system, it will never make the set of true 

statements decrease. This is different from how human draw conclusions based on their current 

system of beliefs, we often reconsider the values of our beliefs based on gained experience.   

 

One of the first approaches to nonmonotonicity was incorporation of various techniques based on 

abduction, which is an unsound inference rule, meaning that when P implies Q conclusion is not 

necessarily true for every interpretation in which premises are true. Nonmonotonic reasoning 

required advanced table management systems to maintain appropriate number of true assumptions 

and modify existing true axioms during running time, hence Truth Maintenance System (TMS) 

has been introduced. Unfortunately, such approach was not practical also: once new knowledge 

was added to the system, not only directly affected true statements were needed to be modified, 

but also all dependable statements should have been changed accordingly. In practical 



applications, there is exponential number of dependencies in a domain and thus modification 

becomes intractable task.    

  

Current and most successful approaches that handle intractability in reasoning under uncertainty 

employ wide use of statistics and decomposition of problems using various graph models to reduce 

search spaces. Probability and possibility factors have been assigned to decisions where choice is 

necessary. One of widely used model is Belief Networks, which is a graphical representation that 

captures relationships between variables in domain. Examples: and/or graphs, Markov models, 

Dynamic Belief Networks, Naïve Bayes, Bayesian Belief networks.  

 

II.I Inference under Uncertainty 

 

Bayesian Statistics allows joint probability be decomposed into product of conditional 

probabilities and to compute posterior probabilities, thus modifying systems degree of belief after 

new knowledge has been discovered. However, computation of all joint probabilities using 

Bayesian Statistics alone is intractable.  

 

Consider a toy example with just five variables and given prior probability as true or false to each 

variable. Let’s assume the set of variables is {a,b,e,j,m}. Joint probability for entire system is  

𝑷(𝒂, 𝒃, 𝒆, 𝒋, 𝒎)  =  𝑷(𝒋|𝒂, 𝒃, 𝒆, 𝒎)𝑷(𝒎|𝒂, 𝒃, 𝒆)𝑷(𝒆|𝒂, 𝒃)𝑷(𝒃|𝒂)𝒑(𝒂). 
It is easy to notice that the cost of producing joint probability table is exponential, in our toy 

example it would have  possible entries. Therefore, computing joint probabilities directly cannot 

be done for practical application involving decent number of variables.  

 

Belief Networks 

 

Belief network is a probabilistic graphical model that is a representation of probability conditions 

and dependencies. Belief Network dramatically reduces dependability while maintaining 

necessary four primitive relationships of likelihood, conditioning, relevance and causation. Pearl 

(1988). Bayesian Belief Network (BBN) is a network that uses Bayesian techniques to compute 

posteriori probabilities, that is to modify priori probabilities once new knowledge has been 

discovered. 

 

BBN is a DAG (Directed Acyclic Graph), where random variables are represented as nodes of a 

graph and conditional probabilities are edges between nodes representing dependent variables. 

Nodes that do not have ancestors are independent variables. In BBN, the full joint distribution is 

expressed as a product of conditionals of smaller complexities:  

𝑷(𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏) =  ∏ 𝑷(𝑿𝒊|𝒑𝒂𝒓𝒆𝒏𝒕(𝑿𝒊))

𝒏

𝒊=𝟏

 

That is, computation of joint probability is reduced to computation of conditional probability of 

direct parent variables only. 

 



Consider again our toy example with five random variables (Fig 1). 

Using brute force approach to compute joint probability of  

P(a,b,e,j,m), the complexity is exponential in terms of input 

parameters, that is 25.However, when we reduce problem to BBN,  

complexity decreases to exponential in terms of number of parents 

of the node. For example, the same probability becomes:  

𝑷(𝒂, 𝒃, 𝒆, 𝒋, 𝒎) = 𝑷(𝒃)𝑷(𝒆)𝑷(𝒂|𝒃, 𝒆)𝑷(𝒋|𝒂)𝑷(𝒎|𝒂). 

 

 

Structure of BBN 

 

BBN must be designed for specific problem where all priori probabilities are known in advance. 

Root of the network or Hypothesis nodes (nodes B and E in Fig. 1) have unconditional probabilities 

that are also must be known before the network is built. Probabilities are stored in probability table 

P(A) at that node. Additionally, nodes feature dynamic values Bel (a) that represent posterior 

probability and reflects the overall belief in the proposition A = a given all the evidence, that is 

Bel (a) = p(b|e). To compute joint probabilities and assign belief values to nodes, network needs 

to be propagated. 

 

Propagation 

 

Propagation of BBN is a traversal of network in order to assign certain values to nodes. There are 

two types of propagation: forward and backward. During forward propagation, joint probabilities 

are being assigned as discussed above, while during back propagation, belief value are being 

computed and priori probabilities are modified given all the evidence (e) and using famous 

Bayesian theorem.  

 

Consider another example (Fig. 2). Nodes 𝑊, 𝑋, 𝑌 are 

random variables and edges captures conditional probabilities 

as evidences (e). Edges with  𝑒+ denote conditions on which  

X is dependent, while 𝑒− denote conditions on which X’s children are dependent. Now the value 

of belief of X is computed using Bayesian Theorem and the following formula: 

 

 

 

 

Defining 𝜋(𝑥) = 𝑝(𝑥|𝑒𝑥
+) , 𝜆(𝑥) = 𝑝(𝑒𝑥

−|𝑥) and 𝛼 = 1/𝑝(𝑒𝑥
−) we have  

 

𝑩𝒆𝒍(𝒙) = 𝜶𝝅(𝒙)𝝀(𝒙) 

 

Since 𝛼 is total probability which is the same for all variables, its computation is omitted and it 

serves as normalization factor. The computation of 𝑏𝑒𝑙(𝑥) is then completed using following 

formulas and illustrated on fig 3. 



 

 

 

 

 

  

 

 

 

 

 

 

Fig 3 

 

 

BBNs are widely used today in all kinds of applications. Their use varies from simple systems 

with few variables such as weather or traffic prediction to complex projects where BBN is a small 

part of inference and learning process.  

 

III. Learning in Complex systems 

 

One example of complex learning systems is BPL (Bayesian Program Learning). BPL was 

designed by researchers from CMU in 2015, it is complex learning/inference system that competes 

with most sophisticated deep neural networks setups for character recognition application, a 

common benchmark used to compare performance of various intelligent systems.  

 

Idea behind BPL is to challenge human ability of inference, learning new concepts, and creating 

new exemplars based on sparse amount of data. The crucial difference of BPL is unlike 

connectionist systems that require large amount of data to train, BPL uses generative approach to 

object recognition, it tries to reconstruct objects from smaller parts and therefore requires much 

sparse training data.  

 

Let us use the following definitions: primitive – the most basic part of character; stroke - part of 

character that starts with pressing the pen against the paper and terminated by lifting it up; 

substrokes - are more primitive movements separated by brief pauses of pen. See figure 4. 

 

BPL generates concepts or types, that is simple probabilistic programs, then uses two-step 

Learning and apply Bayesian posterior inference to match these concepts against original data. It 

unites three features: compositionality, causality and learning-to-learn. Learning-to-learn uses 

hierarchical Bayesian modeling that allows construction of new concepts using existing ones and 

maintaining causal and compositional properties. BPL operates using two-step generation: (i) 

generation of types and (ii) generation of tokens.  

 



(i)  At the beginning BPL is pretrained with data taken  

from Omniglot from where it retrieves basic parts of 

characters.  Then using probabilistic inference programs 

tries to build sub-strokes and combine them into strokes 

using relations.  

 

Entire joint probability for types is as follows: 

 

Type ψ={𝑘,𝑆,𝑅}, where S are strokes, R are relations,  

and k = |S|. 

𝑃(𝜓) = 𝑃(𝑘) ∏ 𝑃(𝑆𝑖)𝑃(𝑅𝑖|𝑆𝑖, … , 𝑆𝑖−1)

𝑘

𝑖

 

 
Each stroke 𝑆𝑖 is composed of sub-strokes, that is 

𝑆𝑖 = {𝑠𝑖1, … , 𝑠𝑖𝑛} where number of sub-strokes is sampled  

from frequency 𝑃(𝑛𝑖|𝑘). 

 

Sub-stroke are decomposed in three variables: 𝑠𝑖𝑗 = {𝑧𝑖𝑗, 𝑥𝑖𝑗 , 𝑦𝑖𝑗}  

where 𝑧𝑖𝑗 is index of primitives with distribution as follows: 

𝑃(𝑧𝑖) = 𝑃(𝑧𝑖1) ∏ 𝑃(𝑧𝑖𝑗|𝑧𝑖,𝑗−1)
𝑛𝑖
𝑗=2 . 

 

Thus, stroke has the following joint distribution:  𝑃(𝑆𝑖) = 𝑃(𝑧𝑖) ∏ 𝑃(𝑥𝑖𝑗|𝑛
𝑗=1 𝑧𝑖𝑗)𝑃(𝑦𝑖𝑗|𝑧𝑖𝑗). 

 

Relation 𝑅𝑖 specifies how strokes are positioned, scaled and joined. Relations come in four types: 

Independent, Start, End, Along. Each type has different sub-variables and dimensionality.  

 

(ii) At the second stage, generation of tokens (Fig. 5), 

Tokens 𝛩𝑖  are being generated by adding noise and  

variance, sampling start location 𝐿𝑖, composing stroke’s  

trajectory 𝑇𝑖, affine transformations 𝐴𝑖, and second 

noise process that stochastically flips pixels 

interpreting their values as independent Bernoulli  

probabilities. Finally, Binary image created 𝐼𝑚  

created by stochastic function:  𝑃(𝐼𝑚 |𝑇𝑚, 𝐴𝑚). 

Joint distribution on types, set of tokens and images 

becomes very complex:  

 

𝑷(𝝍|𝜽𝒎[𝒊],  𝑰𝒎) = 𝑷(𝝍|𝜽𝒎[𝒊]) 

 

 



Propagating such a network with generic algorithms for every token becomes nearly impossible 

task therefore the idea is selecting most successful and promising motor programs that are further 

refined with Markov chain Monte Carlo (MCMC) resulting in approximate posterior distribution 

𝑃(𝜓, 𝜃𝑚│𝐼𝑚 ). To save resources on computation it is possible to produce conditional samples 

from the first stage generation, type-level generation, that is 𝑃(𝜓|𝜃𝑚[𝑖],  𝐼𝑚) = 𝑃(𝜓|𝜃𝑚[𝑖]).  

 

At the final stage training images 𝐼𝑇 are compared to different test images 𝐼𝐶 to compute 

classification score as follows :  

 

 

 

 

 

The highest score indicates belonging to a class. 

 

One-shot classification 

 

BPL was tested on one-shot image classification where it achieved excellent results. One shot 

classification creates new image 𝐼1 based on a given image 𝐼2 with the following probability 

distribution: 

 

  

 

 

 

 

 

 

 

 

 

With only 10 parses through image 𝐼1, BPL model could produce images with error margins 

comparable of humans and less than best deep learning algorithms: BPL – 3.3%, humans – 4.5, 

pre-trained Siamese convnet – 8% 

 

IV. Conclusion and Thoughts  

 

Intelligent systems using various statistical techniques, including Bayesian, has achieved great 

success in recent years. Bayesianism has deeply penetrated most intelligent systems and functions 

reasonably well for certain tasks. For example, BPL achieves less error rate than humans and 

passes “visual Turing test”. 

 



However, BPL is far from being  “rational”.  It remains deep and complex statistical model that is 

far from “how people think”. BPL proved its performance on relatively simple concepts of 

handwritten characters, and its performance for other real life application is questionable. 

Moreover, choosing best motor programs and then propagating network using MCMC is extremely 

computation intensive task which is not appropriate for bigger domain.  

 

One major limitation of Bayesianism is priori probabilities. Before creation of Bayesian Belief 

Network designers must know all probabilities for each variable and outcome, which is rarely the 

case in real world. Another issue is portability and modularity. For example, BPL operates well 

for character recognition, however to be useful in different domains, BPL would need to be highly 

modified, most of its belief networks would have to be rebuilt; and even new algorithm might need 

to be developed for types, token, parsing and for new concept creation.  

 

Besides, the above technical and complexity limitations, perhaps the most crucial limitation is 

conceptual. Bayesian approach cannot handle uncertainty in background knowledge and prior 

probabilities function, it operates on given data without questioning its correctness.  Furthermore, 

Bayesianism is always “conditional”, implicitly or explicitly, there is always a relation between 

proposition and background knowledge. Although some techniques exist that allow flatten this 

issue such as Jeffrey’s rule or introduction of  “virtual proposition”, Wang (2004), distinction 

between implicit and explicit conditioning is rarely made in real applications.  
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