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ABSTRACT 

 

Research on Artificial General Intelligence has re-gained attention since the 2000s 

with a range of feedback from other disciplines, such as neurology, cognitive science, 

linguistics, psychology, philosophy, and such. NARS, a non-axiomatic reasoning system, 

is a general-purpose intelligent system able to work with insufficient knowledge and 

resources, and to adapt to its environment by learning from experience. It treats 

intelligence as a domain-independent capability with no domain-specific sub-module. 

Since the human mind evolved under the same restriction, this normative model displays 

many human-like properties. 

NARS is used to reinterpret several well-known results in cognitive science, such 

as Wason’s selection task, the Linda problem, and U-shaped learning, which cannot be 

explained by traditional normative models, but can now be handled by NARS in a unified 

way. This study specifically investigates the reasoning capabilities of NARS, a non-

axiomatic reasoning system, on natural language data. NARS is used to mimic U-shaped 

learning of passive voice in English, subjective pronoun resolution, and contextual 

dependency of concepts. For this purpose, logical form from WordNet is translated to 

NARS. Furthermore, a convolutional neural network, which is available online and 

trained with images from ImageNet, is used to recognize possible noun categories of a 

given image. 

    The results have shown that a general-purpose system can simulate human-

level behavior on language data without a built-in linguistic module.  
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CHAPTER 1 

INTRODUCTION 

 

For more than 60 years, Artificial Intelligence (AI) researchers have been working 

on creating intelligent machines or programs that can perform the intellectual tasks that a 

human being can. These tasks can vary greatly from playing chess, counting animals in a 

picture, performing commands given in a natural language to making jokes, having a 

conversation with a human, producing novel inventions and art. Weak-AI aims to apply 

human-like intelligence to problems, while the ultimate goal of strong-AI is to have 

systems that have their own minds. NARS (Non-Axiomatic Reasoning System) is an 

ongoing open-source project with the ultimate aim to become an Artificial General 

Intelligence (AGI). It is a general-purpose intelligent system that can function with 

insufficient knowledge and resources, and adapt to its environment by learning from 

experience (Wang, 2006, 2013a). Since it treats intelligence as a domain-independent 

capability, and attempts to cover all cognitive functions, NARS belongs to the emerging 

field of Artificial General Intelligence (Wang & Goertzel, 2007). This study specifically 

investigates the reasoning capabilities of NARS on natural language data.   

1.1 Motivations      

It is well-documented that the traditional logic, as represented by first-order 

predicate logic (FOPL), is not a proper descriptive theory of human reasoning. A famous 

example is Wason’s selection task: A group of subjects are given a set of cards with 

letters on one side and numbers on the other side, and asked to evaluate the truthfulness 
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of the statement “If a card has a vowel on one side, then it has an even number on the 

other side”. The statement can be represented as proposition (for all x) (Vowel(x) → 

Even(x)) in FOPL. For example, if the cards display E, K, 4, 7, respectively, subjects tend 

to choose only E or E and 4 whereas the correct answer would be E and 7 (Wason & 

Johnson-Laird, 1972). In other words, the subjects tend to verify to rule; however, they 

should have checked the cards that may falsify the rule according to the classical logic, 

since checking individual instances cannot verify a universally quantified statement, but 

can only falsify it. 

Another established model of reasoning, probabilistic theory, also fails to provide 

a descriptive model for human reasoning. A well-known case here is the “conjunction 

fallacy”: In certain situations, the subjects tend to take the conjunction of statements as 

having a higher probability than a component statement of the conjunction. Take the 

“Linda problem” as an example. Given a description of Linda that fits people’s 

impression of feminist, many subjects take the statement “Linda is a bank teller and is 

active in the feminist movement” as more probable than “Linda is a bank teller”, though 

according to probability theory, the probability of “P and Q” cannot be higher than the 

probability of P, for any statements P and Q. (Tversky & Kahneman, 1983). 

The fundamental disagreements between existing normative models and 

psychological observations are not limited to reasoning. For example, similar issues 

appear in learning, too. Various learning models (Bower & Hilgard, 1981; Sutton & 

Barto, 1997) turn to treat “learning” as a process in which cognitive systems gradually 

approach the correct answers or optimal solutions, while the reality of human cognition 

does not always work in this way. 
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Such mismatches between human cognition and classical logic are the main 

motivations for proposing NARS as a Cognitive Framework. Language data is selected to 

test the plausibility of this proposal. 

1.2 Research Questions      

The main hypothesis of this study is that NARS can be used as a Cognitive 

Framework. The study specifically focuses on using language data for reasoning with 

NARS because language is the uttermost product of human mind, and language data offer 

a challenge for any artificial intelligence system. The three research questions are: 

Despite having no language-specific module, 

1. Can NARS simulate U-shaped learning in language learning? 

2. Can NARS achieve pronoun resolution? 

3. Can NARS display a change of belief which corresponds to contextual 

 dependency of concepts?   

In the following chapter, NARS and some other AGI systems are briefly 

introduced. U-shaped learning and pronoun resolution are discussed in the next chapter. 

Using WordNet and ImageNet to simulate contextual dependency of concepts in NARS 

is explained before the conclusion chapter.   
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CHAPTER 2 

AGI SYSTEMS AND NON-AXIOMATIC REASONING SYSTEM (NARS) 

 

Searle’s (1980) Chinese Room Argumenti was one of the early and famous 

reactions to strong-AI. Such reactions, as well as the complexity of strong-AI, have 

caused many researchers to work on solving various sub-problems with weak-AI 

approaches, which have resulted in uncombinable systems. On the contrary, humans can 

learn different problem solving approaches or algorithms and even combine and alter 

them to come up with novel ones. Furthermore, recent studies have claimed that 

everybody may be born synesthetic, which means humans’ knowledge representations 

are initially so flexible that they can represent and combine different data modalities 

(shapes, colors, sounds, meanings) within the same ontology when they are infants. 

Though human knowledge representations may be specialized as we grow up, our 

analogy making and even creativity skills seem related to our minds’ ability to unify 

different data modalities. 

Research on general purpose systems returned stronger in 2000s. This time, the 

proponents of strong-AI have been better equipped with knowledge from other 

disciplines, such as neurology, cognitive science, linguistics, psychology, philosophy, 

and such. The progress of strong-AI is very central to the mind-body problem stated by 

Descartes because it may prove that there is no dualism and mind is a product of 

substance. This study favors strong-AI but not soon because of two reasons: First, strong-

                                                   

i See http://plato.stanford.edu/entries/chinese-room/ for a discussion of the Chinese Room 
Argument 
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AI research heavily depends on relatively young fields like neurology and cognitive 

science. Therefore, it requires updates and knowledge transfers from these young fields. 

Second, there is a partially circular dependency: strong-AI researchers use their minds to 

deal with the mind problem and to create an artificial mind; and then, understanding mind 

will help the researchers to create an artificial mind. These make the strong-AI field 

improve incrementally and slowly, just as the human mind does. Thrun (1997) used the 

term “lifelong machine learning” for a system that is able to acquire knowledge through 

learning, retain or consolidate such knowledge, and use it for inductive transfer when 

learning new tasks. An AGI system needs to be able to transfer its experience to other 

domains in order to be a lifelong learning system. Thus, knowledge acquisition, 

representation, reasoning and knowledge transfer are the key components of an intelligent 

system. Most referred and ongoing AI systems with NLP or related features are reviewed 

in the following sub sections before NARS. 

2.1 AGI Systems      

2.1.1 SNePS     

Stuart Shapiro’s SNePSii currently has the most developed NLP feature. His 

research group released the version 2.8. They have been working on a new version, 3.0. 

The SNePS agent was written in LISP. Every proposition is parsed into a FOL-like 

representation and then they are represented as nodes in a network. Relations among 

propositions are represented by arcs in the network. 

                                                   

ii http://www.cse.buffalo.edu/sneps/  
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For example, “Any robot that talks is intelligent” is represented as in Figure 2.1 

(Shapiro, 2000). SNePS uses many redundant nodes to represent semantics of agent, 

time, categories, action, act, event, and proposition-denoting terms. They also make use 

of a lexicon to parse sentences. The lexicon is not automatically incremental. A user 

needs to update the lexicon. 

 
Figure 2.1: A propositional semantic network in SNePS 

The network based representation provides flexibility: The SNePS agent may 

have different networks depending on the previous experience. Arcs can be used as 

flexible relations among propositions. However, everything depends on the lexicon, and 
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the system cannot build up its own lexicon. Another problematic issue is the belief 

revision in SNePS. Assume that the following propositions are input to the system, “All 

pirates are uneducated”, “John is a pirate”, “John is educated”. When the system comes 

across such a contradiction, it reports the contradiction, and then, either the system asks 

users to revise the contradicting propositions, or an automated belief revision method 

recently added to the system runs to determine the least used proposition and deletes it. 

However, this is not what a human being would probably do. Since the lexicon is 

handmade, it is easy to represent degrees quantification or levels or certainty. A better 

solution would be, revise the propositions to either one of these: 

 John may be a pirate. 

 John might be educated. 

 Some pirates are uneducated. 

Rapaport (2013) states that such semantic networks built online by SNePS agents 

have the ability to represent Meinongian Semantics (i.e., semantics of impossible objects 

in real life) because every SNePS term represents an intensional (mental) entity. For 

example, “unicorns have big horns”, and “A round square is round” are Meinongian type 

propositions. Semantic networks build by an agent corresponds to a human’s mental 

repository, and the tree-like structure makes reasoning faster. However, a SNePS 

framework requires use of an ANSI Common LISP interpreter, which makes it a less 

user-friendly environment. 
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2.1.2 LIDA     

LIDAiii is a Java based cognitive framework using Global Workspace Theoryiv. 

The architecture ties in well with both neuroscience and cognitive psychology, but it 

deals most thoroughly with “lower level” aspects of intelligence, handling more advanced 

aspects like language and reasoning only somewhat sketchily. The LIDA agent can run in 

a virtual world, sense the world (colors, numbers, obstacles), and achieves some tasks 

according to cognitive cycles as shown in Figure 2.2 (Franklin, Madl, D'Mello & Snaider, 

2014). The LIDA framework mimics three types of learning: Perceptual, episodic and 

procedural. Perceptual learning concerns the learning of new objects, categories, 

relations, etc., represented as nodes in the perceptual memory. Episodic learning, on the 

other hand, involves learning to memorize specific events (i.e., the what, where, and 

when).  

                                                   

iii http://ccrg.cs.memphis.edu/ 

iv GWT resembles the concept of Working Memory, and is proposed to correspond to a 
"momentarily active, subjectively experienced" event in working memory. It closely 
related to conscious experiences. 
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Figure 2.2: LIDA’s Cognitive Cycle 

Finally, procedural learning concerns the learning of new actions and action 

sequences with which to accomplish new tasks (e.g., “turn left, walk, grab, walk, turn 

right” might be a successful solution for the command “fetch my cup”). This architecture 

may explain many features of mind; however, it remains far away from understanding 

language, vision, and such. The developers claim that LIDA is the best implementation of 

“consciousness” because its agent is aware of time, space, itself and its experience. 

Despite dealing with lower level abilities, LIDA is a good at implementation of different 

memory types, and dealing with self-awareness, grounded knowledge and reasoning 

under uncertainty. 
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2.1.3 OpenCog (CogPrime, OpenCogPrime) 

Ben Goertzel and his collaborators have been working on OpenCog Frameworkv, 

which also uses the concept of cognitive cycle as in LIDA. It is a developed and detailed 

framework. The knowledge units of the system are called atoms, which can be nodes or 

links in a network representation. Atoms have truth and attention (which sets priority of 

the node) values. OpenCog has a probabilistic reasoning ability of the network 

representation, which is actually a hypergraph. Nodes can be conceptual, perceptual, 

procedural, psyche (goal and feeling of the agent) nodes while links can be logical, 

member, associative, execution, action, etc. It has a very complex architecture with 

intermediate modules. OpenCog uses hand-coded rules for Natural Language Processing, 

which are part of a module called RelEx. The semantic parses are then mapped to atom 

structures with links. The system also has a language generation module: SegSim, which 

is also rule-based. Here is how it works: 

1. The NL generation system stores a large set of pairs of the form (semantic 

structure, syntactic/morphological realization). 

2. When it is given a new semantic structure to express, it first breaks this 

semantic structure into natural parts, using a set of simple syntactic-semantic 

rules. 

3. For each of these parts, it then matches the parts against its memory to 

find relevant pairs and uses these pairs to generate a set of syntactic realizations 

(which may be sentences or sentence fragments). 

                                                   

v http://opencog.org/ 
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4. If the matching fails, then  

a. It returns to Step 2 and carries out the breakdown into parts again. 

But if this happens too many times, then  

b. It recourses to a different algorithm 

5. If the above step generates multiple fragments, they are pieced together, 

and a certain rating function is used to judge if this has been done adequately 

(using criteria of grammaticality and expected comprehensibility, among others). 

If this fails, then Step 3 is tried again on one or more of the parts; or Step 2 is tried 

again. 

6. Finally, a “cleanup” phase is conducted, in which correct morphological 

forms, articles and function words are inserted. 

This method works for simple cases but would probably fail frequently (according 

to some examples given in Goertzel, Pennachin & Geisweiller, 2014). Moreover, it is not 

explained clearly enough. 

2.1.4 ACT-R 

ACT-Rvi is a theoretical framework for emulating and understanding human 

cognition inspired by human brain. It aims at building a system performing the full range 

of human cognitive tasks. ACT-R aims to describe the mechanisms underlying 

perception, thinking, and action. It is composed of a set of perceptual-motor modules, 

different memory modules, buffers, and a pattern matcher. The perceptual motor modules 

basically serve as an interface between the system and the world. ACT-R has declarative 

                                                   

vi http://act-r.psy.cmu.edu/ 
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memory (for factual information) and procedural memory (for procedures). ACT-R uses 

symbolic constructs (i.e., chunks or productions) created to describe the results of a 

complex operation. Such chunks may be available without re-computing the next time a 

similar task occurs (similar to memoization). ACT-R is a general purpose framework for 

psychological operations abstract reasoning, but creativity and transfer learning are still 

missing. A probabilistic natural language parsing model was implemented in ACT-R. 

Declarative memory was used as a lexicon while production rules (or grammar) were 

saved in procedural memory. However, ACT-R does not have a built-in NLP module. It 

provides reasoning and processing power given lexicon and grammar (see Lewis & 

Vasishth, 2005 for some examples). The advantage of using ACT-R for NLP is that 

intermediate phrasal constructions are automatically kept as chunks for later use, which 

makes parsing fast, incremental and even probabilistic. 

2.1.4 SOAR 

SOARvii is a rule-based intelligent system. SOAR stores its knowledge in form of 

production rules, arranged in terms of operators that act in the problem space, which is 

composed of a set of states that represent the task at hand. It has a production memory 

(like a long-term memory) and a working memory (like a short-term memory). SOAR 

transforms every input into representations (symbols) and works on these representations. 

It has a production rule system (if…then rules) to modify representations or make 

decisions. SOAR assumes that intelligent action can be formulated as the selection and 

application of operators to a state, to achieve some goal. SOAR is not strong in areas such 

                                                   

vii http://sitemaker.umich.edu/soar/home 
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as episodic memory, creativity, handling uncertain knowledge, or reinforcement learning. 

Similar to ACT-R, SOAR is originally not designed for NLP but there are some 

implementations. For example, Mohan, Mininger, Kirk and Laird (2013) used SOAR to 

model situated language comprehension to make an agent perform commands such as 

“move the large red cylinder to right of the blue triangle”. They indexed and defined all 

objects, properties and actions before the agent performed actions. Moreover, some 

independent researchers worked on NL-SOAR which integrates English grammar with 

WordNet data but it is no longer an active study.  

2.2 NARS and Its Architecture   

The AGI model used in this study is NARS (Non-Axiomatic Reasoning System) 

(Wang, 2006, 2013a). NARS is a general-purpose intelligent system with ability to work 

with insufficient knowledge and resources, and to adapt to its environment by learning 

from experience. 

Wang (2011) defines three properties for insufficient knowledge and resources: 

 Finite: The system’s hardware includes a constant number of processors 

(each with a fixed maximum processing speed), and a constant amount of 

memory space. 

 Real-time: New knowledge and problems may come to the system at any 

moment, and a problem usually has time requirement for its solution. 

 Open: The system is open to knowledge and problem of any content, as far 

as they can be represented in the format acceptable by the system. 
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NARS is inspired from nature because the system’s knowledge is its internal 

connections that link its internal drives and external sensations to its actions and 

reactions. These connections are either innate or acquired from its experience. The 

insufficiency of knowledge and resources is a biological constraint by nature. The system 

has finite information-processing capability, though it has to be open to novel situations 

in its environment. These situations are not under the system’s control. Furthermore, the 

system has to respond to them in real time. Otherwise it cannot survive. In this 

interpretation, the insufficient knowledge and resources drive intelligence because an 

intelligent animal (or a system) has to find the good enough solution to overcome natural 

selection. 

 NARS has a special language for knowledge representation, an experience-

grounded semantics of the language, a set of inference rules, a memory structure, and a 

control mechanism. The non-axiomatic logic is used for adaptation with insufficient 

knowledge and resources, operating on patterns that have the “truth-value” evaluated 

according to the system’s “experience” by using these patterns. This approach allows for 

emergence of experience-grounded semantics, and inferences defined by judgments. 

Since it treats intelligence as a domain-independent capability, and attempts to cover all 

cognitive functions, NARS belongs to the emerging field of Artificial General 

Intelligence (Wang & Goertzel, 2007). More information about NARS can be found 

onlineviii, and in this paper the system is only briefly described. The overall architecture 

and procedure of NARS are given in Figure 2.3 (Wang, 2013a). As a reasoning system, 

the major components of NARS includes 
                                                   

viii https://sites.google.com/site/narswang/ 
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 an inference engine with routines that implement the inference rules 

 a memory that stores tasks and beliefs, as well as other information 

 a few buffers that hold the data items under processing 

 a few input/output channels that serve as the system's interface with the 

 environment 

 

Figure 2.3: NARS Architecture. 

In NARS, the basic form of knowledge is an inheritance relation, S → P, from a 

subject term S to a predicate term P. Intuitively, it means that “S is a specialization of P, 

and P is a generalization of S”. For example, bird → animal roughly means “Bird is a 

kind of animal” in English. Given the assumption of insufficient knowledge, S → P is 
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usually uncertain, and the uncertainty can be measured according to available evidence. 

For a statement S → P and a term M, if M is in the extensions of both S and P (i.e., being 

a common instance of the two), it is positive evidence; if it is the extensions of S but not 

the extension of P, it is negative evidence. Symmetrically, if M is in the intensions of 

both P and S (i.e., being a common property of the two), it is positive evidence; if it is in 

the intension of P but not the intension of S, it is negative evidence. For a given concept, 

the system’s beliefs about it may be either extensional (indicating its instances or special 

cases) or intensional (indicating its properties or general cases). All these beliefs together 

determine the meaning of the concept. 

Beliefs in NARS are not “absolute truth” but summaries of the system’s 

experience. The truth-value of a statement measures its evidential support, and the 

evidence can be either positive or negative, depending on whether it agrees with the 

statement, as mentioned above. A truth-value consisting of two factors: frequency and 

confidence. Wang (2013a) simply formulates frequency as f = w+/w, and confidence, as c 

= w/(w+k), where k is a positive constant, which is the system parameter for “evidential 

horizon”. While the uncertainty within frequency is caused by negative evidence, the 

uncertainty about frequency is caused by future evidence. The second measurement, 

confidence, is introduced for the latter. 

The frequency is the percentage of positive evidence for the statement among all 

evidence, whereas the confidence is the percentage of current evidence among all 

evidence at a constant future (such as after the next piece of evidence comes), so it 

indicates how strong or stable the frequency is. In other words, it is an indicator for how 

easy it is for the system to change its mind on this matter. A higher confidence value does 
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not mean that the frequency is closer to the “objective probability”, but that the frequency 

is harder to be changed by new evidence. For example, the statement “With 0.9 

confidence, I 100% believe that broken is the passive form break.” can be represented as 

“(“break” × “broken”) → passive <1, 0.9>” in NARS’s grammar. This representation 

states that broken and break has a relation passive between the two. Since it is the only 

evidence, the frequency is 1. However, 0.9 confidence is set by default to state that the 

system is confident about its belief but open to change it in future.  

Using the given experience as premises, the inference rules of NARS carry out 

various types of inference, including deduction, induction, abduction, revision, choice, 

analogy, etc. Each rule has a truth-value function that determines the truth-value of the 

conclusion according to those of the premises and the type of the inference. 

The following subsection discusses a NARS solution to the two problems 

introduced in Chapter 1, Wason’s Selection Task and Linda Problem in order to show 

that NARS can provide a better simulation of human reasoning than classical approaches.   

2.1.4 NARS Replies to Wason’s Selection Task and Linda Problem 

Since the treatment of these two problems in NARS have been discussed in 

previous publications (Wang, 2001; Abdel-Fattah et al., 2012), the arguments are just 

summarized here. When Wason’s selection task is represented in NARS, the truth-value 

of a statement is determined both by positive evidence and negative evidence, as 

introduced previously. In this way, the statement “If a card has a vowel on one side, then 

it has an even number on the other side” is not interpreted as a universally quantified 
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proposition, but more as a statistical statement where the probability is to be determined 

by the given evidence. 

If the subject has considered all the possibilities and there is no other factor, then 

the correct decision is to turn over the E, 4, and 7 cards, but not the K card. This is the 

case, because the E card and the 4 card may provide positive evidence, and the E card 

and the 7 card may provide genitive evidence. However, NARS assumes that the subject 

works with insufficient knowledge and resources, therefore may fail to consider certain 

possibility. Since NARS runs with limited resources and knowledge, we cannot expect 

such a system to make perfect decisions. In general, the E card should be selected most 

often, because it corresponds to two possible ways to provide evidence. On the contrary, 

the K card should be selected least often, because it is not evidence, and its selection is 

only caused by the random factors. Between the 4 card and the 7 card, though they are 

logically symmetric, there are at least two factors that in favor of the former: one is the 

extra step of negation needed by the 7 card to be recognized as a piece of negative 

evidence, and the other is the priming effect on even numbers caused by the mentioning 

of “even number” in the description of the task. 

Here the key point is that in FOPL, truth-value is determined by the existence of 

negative evidence only, while in NARS both positive and negative evidence matter. 

If the statements in Linda problem are input to NARS, the system will consider all 

available evidence to decide the extent to which Linda is an instance of another concept, 

bank-teller or feminist bank-teller. Given the design of the experiment, the most 

accessible information about all three concepts are intensional (i.e., about their 

properties), so the system reaches its conclusion by checking if Linda has the properties 



19 

usually associated with bank-teller and feminist bank-teller, respectively. Since according 

to the given information the concept Linda has more common properties with feminist 

bank-teller than with bank-teller, its degree of membership is higher to the former than to 

the latter.  

Comparing NARS and probabilistic model, here there are two key issues: first, 

what the statements to be compared are. According to the traditional interpretation of the 

experiment, they are the statement Bank-teller(Linda) and the statement Bank-

teller(Linda) ˄ Feminist(Linda), while in NARS, they are the statement {Linda} → bank-

teller and the statement {Linda} → (feminist ∩ bank-teller). The latter is not the 

conjunction of two statements, but a statement whose predicate term is an intersection of 

two terms. The second issue is how the degree of belief is defined. According to the 

traditional interpretation, it is the probability for the event described by the statement to 

occur, or the probability for Linda to fall into the involved set. According to this 

interpretation, it is clearly less probable for Linda to fall into two sets than into one of the 

two. On the contrary, in NARS concept membership evaluation can be based on 

extensional evidence, intensional evidence, or a mixture of the two (Wang & Hofstadter 

2006). If all evidence are intensional and one concept is a special case of the other one, 

then if the instance has most of the properties involved, its relationship with the specific 

concept will be stronger, since it shares more properties with it. For example, it can be 

assumed that most human beings will consider themselves more as a human than as an 

animal, though “by definition” humans are animals. 

Now whether these experiments reveal human fallacies or leads into the following 

questions: Should we accept the FOPL assumption that truth-value depends on negative 
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evidence only or the NARS assumption that truth-value depends on both positive and 

negative evidence? Should we accept the probability theory assumption that membership 

depends on extensional evidence only or the NARS assumption that membership depends 

on both extensional and intensional evidence?  The traditional models (FOPL and 

probability theory) choose their assumptions mainly for mathematical reasons, while the 

assumptions of NARS are chosen mainly based the considerations of AI and cognitive 

science.  



21 

CHAPTER 3 

NARS FOR U-SHAPED LEARNING AND PRONOUN RESOLUTION 

 

In this chapter, U-shaped learning and pronoun resolution in language learning 

and production are studied via NARS. In cognitive development, U-shaped learning, or 

U-shaped development, is a type of learning in which the learner first learns the correct 

behavior, then leaves it, and finally reacquires it. Pronoun resolution is simply finding the 

noun being referred by a pronoun. Since both are experience- and memory-related 

phenomena, they are appropriate to be tested in NARS. In the following sections, firstly, 

U-shaped learning is simulated in the acquisition of passive voice construction in 

English. Then, subjective pronouns are used as examples for the resolution task.  

3.1 U-shaped Learning      

U-shaped learning can be observed in various phenomena, such as language 

acquisition (Marcus et al., 1992), object permanence (Bowerman, 1982), and face 

recognition (Carey, 1982). A famous example is learning English passive voice: children 

first learn that added, worked, hanged and eaten are passive voices. When children 

realize that there is a rule which is the addition of -ed to a verb in order to make it 

passive, they produce ungrammatical construction such as eated and telled due to 

overgeneralization of the rule. Finally, they correct their errors and acquire that although 

the -ed rule is valid, there are some verbs that do not obey it, such as eaten and told.  

Carlucci and Case (2013) claim that without U-shaped learning fewer classes of 

languages would be learnable; and U-shaped learning is necessary for full learning power 
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within Gold’s formal model of language learning from positive data (Gold, 1967). Gold’s 

theorem states that “no negative evidence” results in the Logical Problem of the 

Language Acquisition (LPLA). LPLA can be stated that since children are not exposed 

negative evidence, then it is possible that they would acquire language the target 

language, plus some more, which means a super set of the target language. In other 

words, people need knowledge of the structure of their language for which insufficient 

evidence is available in the data to which they are exposed as children (Hornstein & 

Lightfoot, 1981). LPLA discussion is one of the central debates between connectionist 

and nativist scholars (see Pinker, 1979; Chomsky, 1980; Cowie, 1999; Smith, 1999; 

Pullum & Scholz, 2002; Johnson, 2004; Heinz, 2010; Clark & Lappin, 2010 for some pro 

and con arguments and implications). Carlucci and Case (2013) suggest that humans 

might exhibit U-shaped and other non-monotonic learning patterns because otherwise it 

would be impossible for them to learn what they need to learn to be competitive due to 

the limitations of human memory and computational power. Therefore, a computational 

model demonstrating U-shaped learning and non-monotonic learning patterns by nature 

can be employed as a test-bed in Cognitive Science to study human learning. 

3.1.1 U-shaped Learning of Passive Voice by NARS     

As mentioned in Chapter 2, a truth-value in NARS consists of two factors: 

frequency and confidence. The frequency is the percentage of positive evidence for the 

statement among all evidence, whereas the confidence indicates how strong or stable this 

degree of statement is, according to the amount of evidence supporting it. For example, 

the statement “With 0.9 confidence, I 100% believe that eaten is the passive form eat.” 
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can be represented as “(“eat” × “eaten”) → passive <1, 0.9>” in NARS’s grammar. 

This representation states that eat and eaten has a relation passive between the two.  

Since its truth-values are determined by available evidence, they can be revised 

when new evidence becomes available. NARS can innately simulate U-shaped learning 

in case of conflicting/competing information. Table 3.1 is a simple simulation of U-

shaped learning of English passive voice. Note that the italic sentences are translation of 

the NARS statements. 

Table 3.1: Simulation of U-shaped learning of English 

Steps 

1.Initial input as experience 

(“eat” × “eaten”) → passive 

Eaten is the passive form of eat 

(“break” × “broken”) → passive 

 Broke is the passive form of break 

(“add” × “added”) → passive  

Added is the passive form of add 

(“ask” × “asked”) → passive  

Asked is the passive form of ask 

2. Output 

(“eat” × “eaten”) → passive <1, 0.9>   

With 90% confidence, I 100% believe that eaten is the passive form 

eat 
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Table 3.1: Simulation of U-shaped learning of English (continued). 

Steps 

3. Append-ed operations is defined to the system as a simple 

concatenation 

(“add” × “added”) → append-ed 

(“ask” × “asked”) → append-ed 

(“need” × “needed”) → append-ed 

(“eat” × “eated”) → append-ed 

4. Inductive conclusion outputted by the system 

($x → append-ed)  ($x → passive) <1, 0.45> 

With 45% confidence, I 100% believe that an instance of the passive 

relation is also an instance of the append-ed relation. 

5. Revision by evidence accumulation  

($x → append-ed) ⇒ ($x → passive) <1, 0.62> 

6. This causes the system to take a wrong step 

(“eat” × “eated”) → passive <1, 0.56> 

With 0.56 confidence, I still 100% believe that eated is the passive 

form eat.  
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Table 3.1: Simulation of U-shaped learning of English (continued). 

Steps 

7. Counter evidence to the inductive conclusion 

(“eat” × “eaten”) → passive 

┐((“eat” × “eated”) → passive) 

eat and eated have no relation of passive. 

8. Inductive conclusion, revised again 

($x → append-ed)  ($x → passive) <0.67, 0.72> 

 

When the initial knowledge shown in Step 1 is given to the system as input, the 

system acknowledges that eat and eated have a relation: passive, and assigns a default 

truth-value to the belief, as shown in Step 2. The same happens to the other input lines, 

though the corresponding beliefs are not listed here. In Step 3, the morphological relation 

append-ed is established between the corresponding word-pairs, which indicates that the 

first word can become the second in the pair after concatenation of -ed as a suffix. The 

acknowledgements of these inputs are omitted. 

   When noticing a common instance of the append-ed relation and the passive 

relation, the induction rule of NARS generalizes this relation to instances of these two 

relations. Since this conclusion is only based on a single piece of evidence, its confidence 

is relatively low, as shown in Step 4. However, another common instance of the two 

relations will produce the same inductive conclusion, and the revision rule of the system 

will merge the two into a more confident conclusion, as shown in Step 5. Similarly, the 
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other given positive evidence will increase the confidence of the inductive conclusion, 

though we will not go through all the details here. 

   At this moment, if the system sees that “eat” becomes “eated” by adding the 

suffix “-ed”, it will do a deduction using this information and the previously derived 

conclusion, and take the “eated” to be the passive form of “eat”, as shown in Step 6. The 

user can correct this error by providing a negative judgment of this conclusion, together 

with the correct passive form of the word, as in Step 7. Please note that in NARS a single 

counter example will not “falsify” a general statement, but decrease its frequency value. 

Now the inductive conclusion is revised again, into the conclusion shown in Step 8. If 

such counter examples are met again and again, the frequency value of this “general rule” 

will become lower, and the system will not depend on it to find the passive form of 

words, but depend on the specific word-pairs that have been remembered. 

   Finally, when more and more evidence is collected, the general rule of adding “-

ed” will be judged as valid for most verbs, and it will co-exist with the known counter 

examples. For a concrete question about the passive form of a given word, the 

remembered answer directly matching the question (word × ?x)  → passive is usually 

favored over the conclusion produced by the  “statistical rule”, since the former has a 

higher confidence value. It is only when there is no counter example recalled, will the 

general rule to be applied to answer the question. In this way, the U-Shaped learning 

process is reproduced. 

Counter evidence against system’s beliefs are tricky. Yet, they do exist and cause 

U-shaped learning curves which should be captured by any system aiming to model 

human cognition. For example, Perfors et al. (2010) have been proposing Bayesian 
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models as a cognitive framework; but they state that the odds such as U-shaped 

acquisition should be modeled as the memorization of individual data points in Bayesian 

models. NARS and Bayesian approach are based on different assumptions. In Bayesian 

model, whether an event will happen, or whether a proposition is true, is uncertain, but 

their probability, or degree of uncertainty, is usually certain. On the contrary, in NARS 

the insufficiency of knowledge and resources is consistently and completely assumed.  

NARS may contain (explicitly or implicitly) conflicting judgments. To handle them, 

NARS has both updating rule and revision rule, whereas the latter is not available in a 

Bayesian model, because the information about confidence is absent there (Wang, 2006).  

As for the related issue of LPLA, or the “poverty of negative evidence”, NARS 

does not always depend on the user to explicitly provide negative evidence as shown in 

the above example (though such evidence is acknowledged and used in belief revision). 

A major source of negative evidence is failed anticipation. When the system uses wrong 

conclusion (like “eated” as the passive form of “eat”) in practice, it will cause problems 

so the system cannot achieve its goal as anticipated. Such feedback is used by NARS as 

negative evidence of the beliefs responsible. 

3.2 Subjective Pronoun Resolution by NARS     

There are ambiguities in word-, and even, suffix-level constituents requiring 

resolution in all world languages, mainly because of the conflict between contrast and 

efficiency; a user of a language needs to convey meaning as clearly as possible and in an 

efficient and economical way (Siddiqi, 2009). The optimization between the two gives 

rise to some constituents to be resolved. Pronoun resolution is mainly due to the economy 
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constraint because pronouns are generally short words (or null elements in some 

languages) replacing other nouns, phrases, or even complete sentences. For example, he 

in (1) refers to Tim while which stands for the complementizer phrase that he would be on 

time. 

(1) [Tim]i told Gina that [[he]i would be on time]k, [which]k was actually a lie. 

Psycholinguistic studies have shown that adults coordinate semantic and syntactic 

information, contextual clues, and statistical regularities in order to parse and resolve 

linguistic input (Altmann & Steedman, 1988; Trueswell, 1996; Papadopoulou, Peristeri, 

Plemenou , Marinis & Tsimpli, 2015) while the situation is not very clear for children 

(Clahsen & Felser, 2006; Papadopoulou & Tsimpli, 2005). Infants usually construct 

initial grammatical categories by mapping words to conceptual categories by noticing 

that words denoting objects, words denoting actions, words denoting properties belong to 

separate classes, and such (Gentner, 1982). Pronouns are one of them.  

Children start to use pronouns around the age of two. Repeating the same 

sentence with an appropriate pronoun or using verb pairs that logically entail each other 

are heuristics or some methods to teach children how to use and resolve pronouns.  In 

other words, regularities, mainly with respect to verbs, are main indicators for children to 

acquire pronouns (Laakso & Smith, 2006). These regularities are due to broad semantic 

categories of nouns and verbs. Verbs are important heuristics for pronouns resolution. 

Verbs are particularly relational entities whose meanings are usually not directly 

perceptible (see Hirsh-Pasek & Golinkoff, 2006). An exception is psychological state 

verbs like look, think, want, believe and know. Yet, meaning maps between most of the 

verbs and the world are not transparent. Children may learn verb meanings through their 
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relations to other words in the input or use default relations of verbs to understand other 

words, such as pronouns.  

Further details, such as gender and number, for example in child-directed speech 

(CDS), help children to master the pronoun resolution (see Laakso & Smith, 2006 for the 

relation between regularities in CDS and pronoun resolution). Children show distinct 

resolution success rates usually with U-shaped development even at the age of 10-to-11 

years (Papadopoulou et al., 2015). McCloskey (2006) calls pronouns “elsewhere” 

elements because they refer to some other elements that are already in or will be memory. 

Sichel (2014) states that some elements in memory compete to be referent, specifically, 

for gaps while heuristics and clues determine the winner.  

Studies have shown that pronoun comprehension depends on the accessibility of 

potential referents (see Arnold, 1996). For example, he in “Tim helped Oscar when he 

was at home” is generally resolved as Tim because it comes first in the sentence. In 

addition, pronoun resolution is also guided by gender information. For example, it is very 

unlikely for native speakers of English to resolve he in (1) as Gina. Although some 

studies following the Minimalist Hypothesis (McKoon & Ratcliff, 1992) claim that the 

accessibility factors are prior, Arnold, Eisenband, Brown-Schmidt and Trueswell (2000) 

experimentally showed that gender and accessibility clues are used almost in parallel. 

Several other studies (Garvey, Caramazza & Yates, 1976; Pickering & Majid, 2007) 

emphasized the verb-bias in pronoun resolution. For example, when asked to complete 

the sentences given in (2), some people choose he as father for the verb confess while 

they select son for the verb scold. 
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(2) The father confessed to his son because he. . .”  

 “The father scolded his son because he. . .”      

 In a neuropsychological study, McMillan, Clark, Gunawardena, Ryant and 

Grossmana (2012) found fMRI evidence that pronoun resolution cannot be a core 

linguistic mechanism problem but must involve decision making task which takes several 

heuristics and even risks associated with the competing referents. Some researchers claim 

that infants’ initial knowledge of language is not syntactic, but that abstract grammatical 

categories are established around the age of 2-3 (Tomasello, 2000). Other researchers 

claim that category learning is about mapping the input to preexisting abstract syntactic 

categories (Valian, 2009). In the current study, the resolution of English subjective 

pronouns is simulated in NARS parallel to human.  

3.2.1 Subjective Pronoun Resolution by NARS     

The current study is neutral about the preexistence of categories for pronoun 

resolution. However, it claims that pronouns can be resolved by an artificial general 

intelligence system which has no language-specific logic. In a toy experiment in NARS, 

pronoun resolution is simulated. Reasoning with respect to verbs together with some 

aspects of words, such as gender and number, are main indicators for the system to 

resolve pronouns as shown below where italic sentences are translations in English. Note 

that the system is reset in each experiment; thus, they are independent of each other. 

Furthermore, the system is told that nouns and pronouns are similar to some extent. 

Although a pronoun can be semantically identical to a noun, there are indeed 
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(morpho)syntactic differences: A pronoun cannot be preceded by an adjective to form an 

adjectival phrase or cannot be pluralized by simply adding -s as a suffix.  

(3) Input: 

 {“John”, “Mary”, “cats”, “meat”, “water”} → nouns. 

  John, Mary, cats, meat and water are instances of nouns 

 {“he”, “she”, “it”, “they”} → pronouns. 

  He, she, it and they are instances of pronouns 

 pronouns ↔ nouns <0.8, 0.9>. 

  Pronouns and nouns are similar to some extent.  

 (“John” × “meat”) → eat 

  John eats meat. 

 (“he” × “meat”) → eat 

  He eats meat. 

 “he” ↔ ?x ? 

  Who is he? 

 Output: 

 (“John” × “meat”) ↔ (“he” × “meat”)  <0.8, 0.45>. 

  With 45% confidence, the system 80% believes that the relation  

   between ‘he’ and ‘meat’ is identical to the relation between ‘John’  

   and ‘meat’.  

 “he” ↔ “John” <0.8, 0.45> . 

  With 45% confidence, the system 80% believes that ‘he’ is ‘John’.  
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The experiment in (3) represents the condition in which the sentence “John eats 

meat” with the overt subject “John” is repeated with the covert subject “he” as “He eats 

meat.” The default frequency and confidence values, which are 1 and 0.9 respectively, 

are used in the input. Due to the immediate repetition of two statements, the system 

concludes first that the relation like is identical in two statements, and then that “he” can 

be resolved as “John”.  Another way is to see pronoun resolution as a question answering 

activity, that is, to handle “(“he” × “meat”) → eat” as a question “(?1 × meat ) → eat” 

(Who eat meat?), and the answer “John” will replace “he”. The toy experiment (4), the 

logical entailment “if someone is hungry, he eats meat” is used to resolve the pronoun 

“he” as “John”. 

(4) Input: 

 {“John”, “Mary”, “cats”, “meat”, “water”} → nouns. 

  John, Mary, cats, meat and water are instances of nouns 

 {“he”, “she”, “it”, “they”} → pronouns. 

  He, she, it and they are instances of pronouns 

 pronouns ↔ nouns <0.8, 0.9>. 

  Pronouns and nouns are similar to some extent.  

 ($x → [hungry]) ⇒ ($x × “meat”) → eat). 

     If someone is hungry, that person eats meat. 

 “John” → [hungry] 

   John is hungry. 

 (“he” × “meat”) → eat. 

  He eats meat. 
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 “he” ↔ ?x ? 

  Who is he? 

 Output: 

 “he” → [hungry].  <0.8, 0.81>. 

  With 81% confidence, the system 80% believes that he is hungry. 

 “he” ↔ “John”. <0.8, 0.42>. 

  With 42% confidence, the system 80% believes that ‘he’ is ‘John’. 

The system’s confidence in (4) is lower than the one in (3) because more 

intermediate logical mechanism are involved in the reasoning process. The example (5) 

simulates system’s learning gender. 

(5) Input:    

 {“John”, “Mary”, “cats”, “meat”, “water”} → nouns. 

  John, Mary, cats, meat and water are instances of nouns 

 {“he”, “she”, “it”, “they”} → pronouns. 

  He, she, it and they are instances of pronouns 

 pronouns ↔ nouns <0.8, 0.9>. 

  Pronouns and nouns are similar to some extent.  

 “Mary” → [female]. 

  Mary is female. 

 ($x → [thirsty]) ⇒ ($x × “water”) → drink). 

     If someone is thirsty, that person drinks water. 

 “Mary” → [thirsty]. 

  Mary is thirsty. 
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 (“she” × “water”) → drink). 

  She drinks water. 

 “she” ↔ ?x ? 

  Who is she? 

 Output: 

 “she” → [thirsty].  <0.8, 0.81>. 

  With 81% confidence, the system 80% believes that she is thirsty. 

 “she” ↔ “Mary”.  <0.8, 0.42>. 

  With 42% confidence, the system 80% believes that she is Mary. 

 “she” → [female]. <0.8, 0.38>. 

  With 38% confidence, the system 80% believes that she is female. 

The final experiment in (6) represents the learning of number for pronouns.   

(6) Input: 

 {“John”, “Mary”, “cats”, “meat”, “water”} → nouns. 

  John, Mary, cats, meat and water are instances of nouns 

 {“he”, “she”, “it”, “they”} → pronouns. 

  He, she, it and they are instances of pronouns 

 pronouns ↔ nouns <0.8, 0.9>. 

  Pronouns and nouns are similar to some extent.  

 (“John” × “meat”) → eat 

  John eats meat. 

 “cats” → [plural].   

  Cats are plural. 
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 “cats” → [hungry].   

  Cats are hungry. 

 ($x → [hungry]) ⇒ ($x × “meat”) → eat). 

     If someone is hungry, that person eats meat. 

 (“they” × “meat”) → eat). 

  They eat meat. 

 “they” ↔ ?x ? 

  Who are they? 

 Output: 

 “they” → [hungry].  <0.8, 0.81>. 

  With 81% confidence, the system 80% believes that they are  

   hungry. 

 “they” ↔ “cats”.  <0.8, 0.42>. 

  With 42% confidence, the system 80% believes that they are cats. 

 “they” → [plural]. <0.8, 0.36>. 

  With 36% confidence, the system 80% believes that they are  

   plural. 

NARS treats pronoun resolution as a reasoning process, by which a pronoun is 

recognized as representing another noun or noun phrase. The reasoning is based on the 

conceptual relations provided by the words in the sentence, mainly the verbs. As the 

system receives more input proving its conclusion about pronouns, it is going to gain 

more confidence. The toy experiments above show that a general reasoning mechanism is 
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enough to learn pronouns provided that pronouns’ semantic content is grounded as 

relations among the concepts.  
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CHAPTER 4 

WORDNET AND IMAGENET MEET NARS 

 

In this chapter, NARS is combined with data from WordNet and ImageNet. In a 

set of toy experiments, WordNet plays a reliable source of definitions for concepts. The 

concepts are translated to NARS. Similarly, ImageNet is used as a reliable source of 

visuals for concepts. A convolutional neural network trained by ImageNet images, which 

is available online, is used to retrieve possible conceptual definitions of an input image. 

These definitions are used in a few experiments to show that NARS can simulate 

contextual dependency of concepts.  

4.1 WordNet  

WordNet is an on-line lexical reference system inspired by psycholinguistic 

theories of human lexical memory (Fellbaum, 2005; Miller, 1995). English nouns, verbs, 

adjectives, and adverbs are organized into synonym sets, each representing one 

underlying lexical concept. WordNet contains 155,287 words organized in 117,659 

synsets (synonym sets) for a total of 206,941 word-sense pairs. Synsets actually 

correspond to abstract concepts. An example adjective synset is “good, right, ripe.”  

Miller and Johnson-Laird (1976) proposed that research on lexicons should be 

called psycholexicology: The information a lexicon must contain in order for the 

phonological, syntactic, and lexical components to work together in the everyday 

production and comprehension of linguistic messages. Standard dictionaries neglect 

synchronic organization of lexical knowledge. Still, WordNet contains a net of words that 
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are semantically related as shown. In the following section, the semantic relations in 

WordNet and their corresponding equivalences in NARS are given as examples.  

4.1.1 From WordNet Semantics to NARS 

Human languages use words to represents concepts despite numerous 

ambiguities: Sometimes distinct concepts have to share same word as their labels. For 

example, the word bed represents different concepts as nouns and verb given in (7).  

(7) Word: bed  

Nouns: a piece of furniture to sleep 

  a plot of ground in which plants are growing 

  a stratum of rock 

  … 

Verbs: to furnish with a bed 

  to place plants in a bed of soil 

  to put to bed 

  … 

If we assume that BEDi is the concept for “a piece of furniture to sleep” and BEDk 

stands for the action “to put to bed”, the word bed represents the two distinct concepts in 

English. These two concepts are generally represented with distinct words in different 

languages: For example, Turkish uses the word yatak for BEDi while yatırmak stands for 

BEDk as shown in (8). This allows NARS to be adapted to different languages sharing 

similar concepts. 

(8) (“bed” × BEDi) → represent. 
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(“bed” × BEDk) → represent. 

(“yatak” × BEDi) → represent. 

(“yatırmak” × BEDk) → represent. 

Although natural language translation is out of the scope of the current study, 

NARS provides a broad mechanism which allows the representations of the same 

concepts with different labels. The synonym sets (synsets) in WordNet actually stand for 

semantic level logical form. Most synonym sets are connected to other synsets via a 

number of semantic relations based on the type as given in (9). 

(9) Nouns 

hypernyms: Y is a hypernym of X if every X is a (kind of) Y (canine is a 

 hypernym of dog) 

hyponyms: Y is a hyponym of X if every Y is a (kind of) X (dog is a hyponym of 

 canine) 

coordinate terms: Y is a coordinate term of X if X and Y share a hypernym (wolf 

 is a coordinate term of dog, and dog is a coordinate term of wolf) 

meronym: Y is a meronym of X if Y is a part of X (window is a meronym of 

 building) 

holonym: Y is a holonym of X if X is a part of Y (building is a holonym of 

 window) 

Verbs 

hypernym: the verb Y is a hypernym of the verb X if the activity X is a (kind of) 

 Y (to perceive is an hypernym of to listen) 
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entailment: the verb Y is entailed by X if by doing X you must be doing Y (to 

 sleep is entailed by to snore) 

Adjectives 

Antonym: The adjective Y has an opposite meaning to adjective X (healthy versus 

 sick are antonyms).  

Similar to: The adjective Y has a similar meaning to adjective X (costly and 

 expensive are similar). 

Pertainym (pertains to noun): An adjective that classifies its noun (musical 

 classifies instrument in musical instrument).  

In WordNet, both nouns and verbs are organized into hierarchies, defined by a 

hypernym or IS-A relationship. Each set of synonyms (synset) has a unique index and 

shares its properties, such as a gloss (or dictionary) definition for dog as shown in (10). 

(10) dog, domestic dog, Canis familiaris 

    => canine, canid 

       => carnivore 

         => placental, placental mammal, eutherian, eutherian mammal 

           => mammal 

             => vertebrate, craniate 

               => chordate 

                 => animal, animate being, beast, brute, creature, fauna 

                   => ... 

The adjectives are organized into clusters. Most adjective clusters contain two 

antonymous parts. They are connected via synonym relations. Some special symbols, 
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called pointers, are used to represent the relations among the words across the synsets. 

Although there are many pointer types, only certain types of relations are permitted, for 

example, in (11). 

(11) The pointers for nouns 

! Antonym  

@ Hypernym  

@i Instance Hypernym  

 ~ Hyponym  

 ~I Instance Hyponym  

#m Member holonym  

#s Substance holonym  

#p Part holonym  

%m Member meronym  

%s Substance meronym  

%p Part meronym 

The pointers for verbs 

! Antonym  

@ Hypernym  

 ~ Hyponym  

. Entailment 

The pointers for adjectives 

!    Antonym  

&    Similar to  
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\    Pertainym (pertains to noun) 

Hypernyms are basic-level category consisting of hierarchical relations. For 

example, when the following representations retrieved from WordNet is input to NARS, 

it can easily output the simple reasoning shown in (12). 

(12) Input 

 dog → animal 

  A dog is an animal 

 collies → dog 

  Collies are dogs 

 collies → animal? 

  Are collies animal? 

 Output 

 collies → animal. <1, 0.81>. 

  With 81% confidence, the system 100% believes that collies are  

   animal. 

Antonyms are for the words that are incompatible to be in the same class. They 

are in the form that “A is X” entails “A is not Y.” For example, “if it is a cat, then it 

entails that it cannot be a dog” can be represented in NARS as in (13) where $ represents 

a variable. 

(13) $x → cat ⇒ (--, $x → dog). 

 -- represents negation in NARS 

One concept covered for the adjectives in WordNet is gradable antonymy: Some 

adjectives, such as fat and thin, can be better expressed in a comparative way because 
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they contain some degree of fuzziness, or subjectivity depending on personal experience. 

The comparative adjectival “fatter than” is represented in NARS as shown in (14). In this 

example, John's degree of membership to fuzzy concept "tall boy" depends on the extent 

to which he is taller than the other boys. The system’s belief is determined according to 

available evidence/counter evidence. Note that “/” represents extensional image while 

“◊” is a special symbol indicating the location a term in the product (see Wang, 2013a for 

details).  

(14) Input 

 {John} → boy. 

  John is a boy. 

 {Tom} → (/ taller_than  ◊  {John}). 

  John is taller than Tom. 

 {Tom} → (/ taller_than  ◊  boy)? 

  Is Tom  is taller than boys?  

 Output 

 {Tom} → (/ taller_than  ◊  boy). <1, 0.45> 

  With 45% confidence, the system totally believes that Tom is taller  

   than boys. 

 Input 

 {David} → boy. 

  David is a boy. 

 (--, {Tom} → (/ taller_than  ◊, {David})). 

  Tom is not taller than David. 
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 {Tom} → (/ taller_than ◊ boy)? 

  Is Tom  is taller than boys? 

  Output 

 {Tom} → (/ taller_than ◊ boy). <0.5, 0.62> 

  With 62% confidence, the system 50% believes that Tom is taller  

   than boys.  

Moreover, NARS can easily represent the holonymy, which is the relationship 

between a term denoting the whole and a term denoting a part of, or a member of, the 

whole, and the meronymy, which denotes a constituent part of, or a member of 

something. These two semantic relations are opposite of each other. For example, a limb 

and a trunk are holonyms for a tree while a tree is a meronym for the two. NARS uses 

compound terms to represent such relationships. For example, tree → (bark × trunk × 

limb × roots × leaves) represents that a tree is composed of bark, trunk, limbs, roots and 

leaves. 

WordNet has entailments to represent semantic relations among the concepts. For 

example, if it is given that “All A are B.  All B are C,” then the entailment will be “All A 

are C.” Entailment is an automatic reasoning process performed by NARS as shown in 

(15). 

(15) Input 

 A → B. 

  A is B. 

 B → C. 

  B is C. 
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 Output 

 A → C. <1, 0.81>. 

  With 81% confidence, the system is sure that A is C. 

Finally, pertainymy and antonymy for adjectives should be discussed. An 

adjective that classifies its noun is called a pertainym. For example, musical classifies 

instrument as in musical instrument. In other words, musical instrument is an extensional 

intersection of the concept instrument with intensional property [musical] as shown in 

musical_instrument   → ([musical] ∩ instrument). Antonynmy refers to concepts with 

opposite meaning. For example, healthy and sick have opposite meanings because a 

person cannot be both in a healthy and sick state as simulated in (16). 

(16) Input 

 <<$x → [sick]> ⇒ (--, <$x → [healthy]>) >. 

  If the person X is sick, then X is not healthy. 

  <{Joseph} → [sick]>. 

  Joseph is sick. 

 Output 

 <{Joseph} → [healthy]>. <0, 0.81>. 

  It is very unlikely that Joseph is healthy.  

As a part of the current study, an interface that searches WordNet database and 

converts the corresponding results into Narsese (NARS’s language). In order to 

understand the process, WordNet’s logical structure is briefly explained below. 
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4.1.2 Logical forms in WordNet  

The concepts in WordNet are also represented as logical forms (see Clark et al., 

2008; Fellbaum 1998; Fellbaum, 2005) developed by University of California, 

Information Sciences Institute. For example, the second most common sense of the noun 

ambition which is defined as “ambition#n2: A strong drive for success,” is represented as 

in (17). This example is re-written by omitting eventuality argument in the original 

WordNet notation. Eventuality argument is used to represent co-occurrence or temporal 

order of events. Since the eventuality notations in WordNet are not fully correct, and 

NARS represents eventuality not as an argument but different operators, they are omitted 

in the current study for simplicity. The other arguments starting with x represent the 

subject/actor of the concepts while the other arguments are object/direct/indirect objects 

of the concepts.    

(17) ambition(x1) → a(x1) & strong(x1) & drive(x1) & for(x1,x6) & 

 success(x6)   

In this representation, if something represented by x1 is ambition, then it is a 

strong drive for another thing represented by x6. The corresponding sentence in NARS is 

given in (18). 

(18) <($x1 → ambition)>   ⇒ ($x1 → [strong] ˄ 

     ($x1 × #x6) → drive_for  ˄ 

     (#x6 → success) 

The example in (18) basically states that if something is ambition, that thing is 

strong and it has a drive_for relation with a certain type of success. Here is another 
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example re-written from WordNet given in (19) for the most common sense of politician 

as “politician#n1: a leader engages in civil administration.” 

(19)  politician(x1) → leader(x1) & engage_in(x1,x2) & civil(x2) & 

 administration(x2). 

The representation in (19) stands for that if someone is a politician, that person is 

a leader, and engaged in something, which is both civil and administration. It is 

represented in NARS as in (20). 

(20) <($x1 → politician)>   ⇒ ($x1 → leader ˄ 

      ($x1 × #x2) → engage_in ˄ 

     #x2 → [civil] ˄ 

     #x2 → administration). 

In WordNet logical forms, the concepts are followed by a letter either n, v, a, or r 

with a number. The letter corresponds to noun, verb, adjective, and adverb categories 

while the number shows the most common sense. The logical form of a concept is 

generally a compound concept formed by sub-concepts. For the conversion task, the 

simple copula “→” is used to represent the noun sub-concepts. The verbs are represented 

as relations among concepts. Finally, adjectives and adverbs are used as properties of 

succeeding concepts. Therefore, the argument structure and parameters are very 

important for a translation task from WordNet to Narsese.  

In the current study, a graphical user interface is prepared in Java as shown in 

Figure 4.1.  



48 

 

Figure 4.1: WordNet to NARS interface 

This interface allows researchers to search words in WordNet, and convert the 

logical forms from WordNet to Narsese. Unfortunately, the WordNet logical forms are 

semi-automatically created and incomplete., The names of the variables shown by the 

arguments starting with x are especially important for the automatic translation task 

because these variables determine the order of sub-concepts and creating extensional 

images. The errors and incomplete logical forms in WordNet cause erroneous Narsese 

translation. However, the interface is still much useful for NARS researchers to retrieve a 

sketch of semantic representations from a trusted source, WordNet.     

4.2 ImageNet 

ImageNet is an ongoing research effort to provide researchers around the world an 

easily accessible image database. It is an image dataset organized according to the 
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WordNet hierarchy. Each meaningful concept in WordNet, possibly described by 

multiple words or word phrases, is called a "synonym set" or "synset". ImageNet aims to 

provide on average 1000 images to illustrate each synset. Images of each concept are 

quality-controlled and human-annotated. The following sections summarize statistics 

from image net and deep neural networks for image categorization via ImageNet. 

4.2.1 ImageNet Statistics 

ImageNet has a total number of 21,841 non-empty synsets which are equivalent to 

WordNet synsets. It contains 14,197,122 images. It contains only nouns because they are 

visually representable. On the other hand, verbs can be considered as relations among 

these nouns while adjectives contain specifying information about nouns, such as their 

colors and sizes. Adverbs modify adjectives or verbs or a whole premise. Table 4.1 

shows statistics for noun superclasses.   
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Table 4.1: Statistics of high level categories. 

High level category # synset Avg # images per synset Total # images 

amphibian 94 591 56K 

animal 3822 732 2799K 

appliance 51 1164 59K 

bird 856 949 812K 

covering 946 819 774K 

device 2385 675 1610K 

fabric 262 690 181K 

fish 566 494 280K 

flower 462 735 339K 

food 1495 670 1001K 

fruit 309 607 188K 

fungus 303 453 137K 

furniture 187 1043 195K 

geological 

formation 
151 838 127K 

invertebrate 728 573 417K 
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Table 4.1: Statistics of high level categories (continued). 

High level category # synset Avg # images per synset Total # images 

mammal 1138 821 934K 

musical instrument 157 891 140K 

plant 1666 600 999K 

reptile 268 707 190K 

sport 166 1207 200K 

structure 1239 763 946K 

tool 316 551 174K 

tree 993 568 564K 

utensil 86 912 78K 

vegetable 176 764 135K 

vehicle 481 778 374K 

person 2035 468 952K 

 

 ImageNet provides an online interface to query their image databaseix, Table 4.2 

shows the summary of results when the word truck is queried.   

 

                                                   

ix ImageNet is available online at http://image-net.org/index 
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Table 4.2: Some results for querying truck. 

Images Synset Definition 

   

 

 

 

fire engine, fire 

truck 

any of various large 

trucks that carry 

firemen and 

equipment to the site 

of a fire 

   

 

 

 

truck, motortruck an automotive vehicle 

suitable for hauling. 

 

   

pickup, pickup 

truck 

a light truck with an 

open body and low 

sides and a tailboard 

   

garbage truck, 

dustcart 

a truck for collecting 

domestic refuse; "in 

Britain a garbage truck 

is called a dustcart". 

 

It is also possible to see the results of a query in the form of a tree in ImageNet as 

shown in Figure 4.2.  
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Figure 4.2: Tree view of a query 

ImageNet also has 1,034,908 bounding box annotations. The bounding boxes are 

annotated and verified through Amazon Mechanical Turk, which is a crowdsourcing 

Internet marketplace that enables individuals and to coordinate the use of human 

intelligence to perform tasks that computers are currently unable to do. An example with 

some boxes showing foxes are given in Figure 4.3x. The boxes are used to train image 

processing tools more accurately.   

  

                                                   

x Retrieved from http://image-net.org/index 
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Figure 4.3: Boxes around kit foxes  

Currently, ImageNet has bounding boxes for over 3000 popular synsets available. 

For each synset, there are on average 150 images with bounding boxes. ImageNet also 

provides scale-invariant feature transform values (SIFT) which are derived by an 

algorithm to detect and describe local features in images (Lowe, 2004). For any object in 

a training image, interesting points on the object, especially the ones in the boxes, can be 

extracted by this algorithm to provide a "feature description" of the object. This 

description, extracted from a training image, can then be used to identify the object when 

attempting to locate the object in a test image containing many other objects. It is 

important that the features extracted from the training image be detectable even under 

changes in image scale, noise and illumination. These points are usually on high-contrast 

regions of the image, such as object edges. SIFT key points of the objects are first 

extracted from a set of reference images. These features are saved to recognize an object 

in a new image by comparing each feature from the new image to the saved features. The 
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method uses Euclidean distance between the features from the training images and the 

features from the test image. A full list of matches are used to determine good matches as 

subsets of key points that agree on the objects and its location, scale, orientation, and 

such (see Lowe, 1999 for details). ImageNet provides 1000 synsets with SIFT features 

and 1.2 million images with extracted SIFT features for image processing researchers.  

One very successful implementation of image recognition using ImageNet is 

Caffexi. Caffe is a deep learning framework developed by the Berkeley Vision and 

Learning Center (Jia et al., 2014). The framework is a licensed C++ library with Python 

and MATLAB bindings for training and deploying general purpose convolutional neural 

networks and other deep models.  

In deep learning, each layer in deep architecture uses weights from preceding 

layer to have a higher level representation as exemplified in Figure 4.4.   

 

                                                   

xi Caffe is available online at http://demo.caffe.berkeleyvision.org/ 
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Figure 4.4: DNN example 

The online demonstration of the framework is based on convolutional neural 

networks (for the details of the framework, algorithms, and improvements see Deng, 

Berg, Li & Fei-Fei, 2010; Fei-Fei, Ferrgus & Perona, 2006; Griffin, Holub & Perona, 

2007; Lowe, 2004). A convolutional neural network (or CNN) is a type of feed-forward 

artificial neural network where the individual neurons are tiled in such a way that they 

respond to overlapping regions in the visual field. In other words, A CNN consists of 
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multiple layers of small neuron collections which look at small portions of the input 

image as shown in Figure 4.5. It is first introduced by Kunihiko Fukushima in 1980 

(Fukushima, 1980). It is inspired by biological processes: It consist of multiple layers of 

small neuron collections which look at small portions of the input image, called receptive 

fields. The results are combined so that they overlap to get a better representation of the 

original image (Ciresan, Meier, & Schmidhuber, 2012).     

 

Figure 4.5: CNN example 

An example representation for a CNN implementation is taken from Krizhevsky 

et al. (2004) as in. It is a CNN with 8 layers (5 convolutional versus 3 fully connected 

layers). The convolutional layers are called as pooling layers. They summarize the 

outputs of neighboring groups of neurons in smaller maps as shown in Figure 4.6 

(Krizhevsky et al., 2004). 



58 

 

Figure 4.6: CNN max pooling 

The resulting pool of the extracted features actually represents WordNet 

categories. When an image is input, its local features are extracted. For example, the 

features of different images of dog show more resemblance than those of bird as 

visualized in Figure 4.7 (Jia et al., 2014). 

 

Figure 4.7: Features extracted for CNN visualized in a 2-dimensional space 

The pre-trained CNN and a Support-Vector Machine are used to classify the input 

image given the previously extracted set of features from ImageNet to train the CNN as 
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explained by Girshick, Donahue, Darrel and Malik (2014) and Guadarrama et al. (2014). 

The online demonstration of Caffe provides the top 5 possible category of an object from 

WordNet as exemplified in Figure 4.8 (Jia et al., 2014) in which an SVN is used in the 

step 4.  

 

Figure 4.8: Caffe categorization example 

4.2.2 WordNet and ImageNet Cooperate with NARS 

The interface mentioned in Section 4.1 has an option to input an image to be 

queried in ImageNet. An example input for a toy cat’s picture is shown below. Since the 

picture is not very representative of the cat class, the CNN’s top guess is not a cat; and it 

also returns dog among the possible categories.  
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Figure 4.9: ImageNet to NARS interface 

 The interface returns all possible noun senses for the top 5 categories from 

WordNet; and translates them into Narsese whose simplified versions are given in (21). 

The top 5 categories are domestic animal, domestic cat, cat, carnivore, and dog.  

(21) <$x1 → domestic_animal>  ⇒ ($x1 → [various] ˄ 

      $x1 → [domestic]  ˄ 

      $x1 → animal). 

 <$x1 → domestic_cata>  ⇒ ($x1 → [various] ˄ 

      ($x1 × Felis)→ descend_from). 

 <$x1 → cat> ⇒ ($x1 → feline  ˄ 

    $x1 → mammal  ˄ 

    $x1 → [domestic]  ˄ 

    ($x1 × fur) → has ˄ 
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    ($x1 × claw) → has ˄ 

    ($x1 × roar) → unable). 

 <$x1 → carnivore> ⇒ ($x1 → animal ˄ 

     ($x1 × meat) → eat) 

 <$x1 → dog> ⇒ ($x1 → canis  ˄ 

    $x1 → [domestic]  ˄ 

    ($x1 × Wolf) → descend_from). 

The possible noun categories for the image have been retrieved from WordNet by 

the CNN using the ImageNet. When the Narsese form of the categories are input to 

NARS, the system is assumed to know these categories. The next step is to name this 

picture and assume that it can be any of these categories. As the system gains more 

information, it can consider that one of the concepts is more likely than the other. 

Moreover, the system can revise its decision depending on future experience as explained 

in the following section. 

4.3 NARS and Contextual Dependency of Concepts and Terms 

One area of research in human memory and learning is about contextual-

variability: People distinguish two seemingly identical events or items that happened or 

were experienced at different times. Van Dantzig, Raffone and Hommel (2010) state that 

conceptual knowledge is acquired through recurrent experiences, by extracting 

regularities at different levels of granularity: Patterns of feature co-occurrence are 

categorized into objects, and patterns of concept co-occurrence are categorized into 
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contexts. In other words, features determine the object’s category while concept co-

occurrence creates a context.  

When humans interact with an object, the object automatically activates related 

knowledge about similar objects previously encountered. Therefore, conceptual 

knowledge is mostly experience-related (O’Connor, Cree, & McRae, 2009; Rogers & 

McClelland, 2004). This suggests that besides the perception-related aspects of the 

concepts (such as visual and auditory properties), context itself plays a role in the mental 

representation of the concepts. The interaction between the two provides a degree of 

variability in the concept’s mental representation from person to person. Indeed, as social 

animals, humans share similar conceptual knowledge as a result of continuous 

communication, but it is dynamic and subjective. Many theories of memory address this 

issue by making a distinction between item and context information (Dennis & 

Humphreys, 2001; Shiffrin & Steyvers, 1997): Item information represents a stimulus, 

and context information represents the environment in which the stimulus was 

encountered. 

Surprisingly, functional and contextual aspects of an object sometimes become 

more distinguishing than its perceptual properties: For example, it is possible to hear a 

professor asking a volunteer student to come to the blackboard although the boards in 

classrooms are white. Similarly, people still use the term “dialing a phone” although it is 

specific to archaic rotary phones. These examples show that blackboard has evolved to 

represent whatever is used in the classroom, hanging on the wall, facing students and 

used for teaching, and that dialing a phone still means calling someone on the phone. 

Although every English speaker today can understand the term dialing a phone, there was 
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surely a time when a rotary phone, pushbutton phone, and even smartphones co-existed. 

The term evolved from one concept to another in context. Actually, the term now 

represents a different concept, which is to compose a number while the literal concept of 

dialing a rotary phone exists. These examples urge us to make a clear distinction between 

a concept and a term representing the concept, and to allow a transfer between the two.    

NARS allows us to make a distinction, for example, between the term/word cat 

and the concept CAT as {“cat” × cat} → represent where represent is a relation between 

a sign (or symbol) “cat” and an internal concept cat. In Narsese, an English sentence Cats 

eat fish can be represented as {“cat” × “eat” × “fish”} → sentence (see Wang, 2013b for 

a broader discussion). The example in (22) is taken from Wang (2013b) to show that the 

system can make distinction between concepts and words while reasoning on them. 

(22) {“cat” × cat} → represent <1, 0.9> 

 {“fish” × fish} → represent <1, 0.9> 

 {“food” × food} → represent <1, 0.9> 

 {{“cat” × “eat” × “fish”} × ((cat × fish) → food} → represent <1, 0.9> 

NARS outputs the following conclusion through induction in (23). 

(23) ({$1 × $2} → represent)) ⇒ 

 ({{$1 × “eat”  × “fish”} × (($2 × fish) → food)} → represent) <1, 0.45> 

 (({$1 × $2} → represent) ∩ ({$3 × $4} → represent)) ⇒ 

 ({{$1 × “eat” × $3} × (($2 × $4) → food)} → represent) <1, 0.29> 

The terms in (23) with the $ prefix are independent variables, and each indicates 

an arbitrary term. The above conclusions will contribute to the meaning of the phrase “eat 

fish” and the word “eat" respectively. The example in (24) shows that when the terms 
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dog and meat input to the system, NARS produces its new understanding of the relations 

which are not seen by the system before. 

(24) Input 

 {“dog” × dog} → represent <1, 0.9> 

 {“meat” × meat} → represent <1, 0.9> 

 Output 

 {{“dog” × “eat” × “fish”} × ((dog × fish) → food} → represent  

 <1, 0.41> 

 {{“dog” × “eat” × “meat”} × ((dog × meat) → food} → represent  

 <1, 0.26> 

The example shows that the repeated patterns in the language will produce 

linguistic knowledge with higher frequency values, though all the knowledge remains 

revisable by new experience. By using words to represent concepts, NARS can 

differentiate syntactic relations from semantic ones because the former one is about the 

word and the latter one is about conceptual representation itself.  

To simulate the contextual dependency of concepts and words, the top 5 results 

from the example (21) was input to NARS with various degrees. Here are the definitions 

for these concepts for the picture in Figure 4.9: 

 Domestic animal: various domestic animals. 

 Domestic cat: various animals that descend from Felis. 

 Cat: a feline mammal that is domestic, unable to road and has fur and 

claws. 

 Carnivore: an animal that eats meat. 
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 Dog: a domestic Canis that descends from a wolf.   

    When the concepts in (21) are active in NARS memory, a word, kedi, is chosen 

to represent all of them with a decreasing order of confidence values as shown in (25). 

These values are in the same order with the one returned by ImageNet. When a context 

can be defined as collection of concepts that co-occur in a certain window of time and 

space, it is plausible to activate all related concepts from WordNed and their equivalents 

in Narsese returned by ImageNet.  

(25) (“kedi” × domestic_animal) → represent <1, 0.9>. 

 (“kedi” × domestic_cat) → represent <1, 0.85>. 

 (“kedi” × cat) → represent <1, 0.8>. 

 (“kedi” × carnivore) → represent <1, 0.75>. 

 (“kedi” × dog) → represent <1, 0.7>. 

When NARS is asked what kedi represents, it gives the same order in (19). In 

other words, the system mostly believes that it is a domestic animal, and with a 

decreasing confidence, it can represent a domestic cat, a cat, a carnivore, and a dog.   

When   (--, “kedi” → canis) is input to the system to tell kedi is not a canis, the system’s 

frequency on that kedi represents dog decreases to 0.24. On the other hand, when (“kedi” 

× claw) → has which means kedi has claws is input to system, NARS’ belief that (“kedi” 

× cat) → represent is restored to 0.8 frequency level. The frequency on that kedi 

represents domestic_animal or domestic_cat displays a decreasing pattern too. Therefore, 

depending on system experience, the ranking of what kedi represents will change to cat, 

domestic_animal, domestic_cat, carnivore and dog. Kedi actually means cat in Turkish. 
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CHAPTER 5 

CONCLUSIONS 

 

This thesis hypothesized that NARS can be used as a Cognitive Framework. In 

order to test this hypothesis, three research questions were put forward: 

1. Can NARS simulate U-shaped learning in language learning? 

2. Can NARS achieve pronoun resolution? 

3. Can NARS display a change of belief which corresponds to contextual 

 dependency of concepts?   

Learning English passive voice, resolving pronouns, and evolving context-

dependent concepts have been successfully simulated by NARS. An interface was 

developed to transfer conceptual definition from a reliable source, WordNet, to NARS. 

Moreover, ImageNet and an online convolutional neural network were used as a separate 

module which provides visual information to NARS. This study is about discovering 

NARS’ capacity on natural language processing. Since there is no similar study, it is not 

possible to compare the current results with any other literature.   

Formal models can be used descriptively (to describe human cognition) or 

normatively (artificial production of human rational) in Cognitive Science. NARS is 

designed as a normative model, the system shows some behaviors similar to those 

happens in human thinking, which are usually explained in terms of heuristics. For 

example, the system imitates human behavior in truth-value evaluation, membership 

estimation, and incremental learning. The system realizes a “relative rationality”, that is, 
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the solutions are the best the system can get given current history and limitations on 

resources (Wang, 2011).  

Humans are better at reasoning in domains that they are familiar with (Johnson-

Laird et al., 1972; Griggs & Cox, 1982). Therefore, individual history is crucial and 

influenced by limitations on computational resources as heavily emphasized and 

employed by NARS. Obviously, NARS is “less idealized" than traditional normative 

models, such as FOPL, Bayesian approach, and so on, because it assumes stronger 

knowledge and resource constraints. It represents a “relative rationality” (Wang, 2011), 

which is similar to, though not equal to, Simon’s “bounded rationality” (Simon, 1957). 

Compared to other normative models, the behavior of NARS is more similar to 

those of people; therefore, we have reason to believe that its assumptions are more 

“realistic" that is, more similar to the regularities behind the human cognitive mechanism. 

This result can be explained by the observation that the human mind evolved, and still 

works, in an environment where knowledge and resources are usually insufficient to 

solve its problems. Indeed, NARS is not proposed as a replacement of other models. 

Instead, it underlines that its approach is more appropriate when the system must be open 

to novel situations and problems, and to make reasonable responses in real time 

NARS is neutral about innateness hypothesis (Chomsky, 1972; Chomsky, 1988; 

Chomsky, 2012). It allows the system to have innate domain-specific knowledge, though 

such knowledge can be learned and revised, given proper experience. Nevertheless, it is 

closer to Cognitive Linguistics, which has the following assumptions (Croft & Cruse, 

2004): 

 Language is not an autonomous cognitive faculty, 
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 Grammar is conceptualization, 

 Knowledge of language emerges from language use. 

Furthermore, NARS’ approaches to NLP can be summarized as follows: 

Language-specific knowledge is learned from experience and prone to change according 

to the system’s experience. The learning process can follow different rules: deduction, 

induction, abduction, analogy, revision, and so on. A natural language is treated as a 

conceptual system that changes over time. New words, phrases, and sentences are 

introduced from time to time, and the existing ones may change their meaning gradually 

as shown in Chapter 4. Syntax, semantics, and pragmatics are not processed separately in 

the system. The processing of natural languages is unified with other cognitive processes, 

such as reasoning, learning, and categorizing.  

NARS proposes that some NLP task can be done without assuming a built-in 

linguistic competence. Indeed, reducing all NLP tasks to the current version of NARS is 

not possible. Yet, this thesis emphasizes that considering NLP within general cognitive 

capacities is possible because NARS displays a degree of success in some NLP tasks 

without any language-specific module.   

5.1 Future Directions 

The interaction between NARS and ImageNet in this study is one-way. It is a 

promising direction that some results from NARS can be used to tune the parameters of 

the convolutional neural network. Another future direction is to add to NARS linguistic 

functions, such as simple text concatenation. Although NARS is not a descriptive model 

of the human mind, and has no NLP-specific module, it can still be modified to simulate 
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human-level linguistic skills. For example, a speech-recognition and production module, 

or perceptual information sources can be added to NARS to allow an artificial general 

intelligence system to evolve some skill-specific sub-modules.    
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