
Research on Deep Learning and Comparison with Naive Bayesian
Analysis

Janki Kansara
Computer and Information Science
College of Science and Technology

Guided by: Prof. Pei Wang
Temple University

janki.kansara@temple.edu

Abstract— This paper is a research on predicting the prob-
ability of a dataset of S and P Stock Market , gathering
it into the specific format and applying the Deep Learning
Model using Tensorflow on that dataset to find the probability
and accuracy of the same. For carrying out the same task
using Naive Bayesian Analysis, dataset of the patients dealing
with the diabetes have been taken which basically contains
females over 21 years of age at Pima Indian Heritage. Many
constraints have been added to the dataset in order to find the
accuracy of the dataset used. Prior to testing the Deep Learning
tensorflow model on this dataset, I developed a comparison
dataset program to test the prediction power (which basically
included the example of making the dataset of multiple days
when a person goes for running or not and predicting the
probability from that dataset if he would be going to run in
the morning the next day or not). Comparison of Deep Learning
and Naive Bayesian Analysis is leveraged as the end result.

I. INTRODUCTION
Deep learning allows computational models that are com-

posed of multiple processing layers to learn representations
of data with multiple levels of abstraction. These methods
have dramatically improved the state-of-the-art in speech
recognition, visual object recognition, object detection and
many other domains such as drug discovery and genomics.
Deep learning discovers intricate structure in large data sets
by using the backpropagation algorithm to indicate how
a machine should change its internal parameters that are
used to compute the representation in each layer from the
representation in the previous layer. Deep convolutional nets
have brought about breakthroughs in processing images,
video, speech and audio, whereas recurrent nets have shone
light on sequential data such as text and speech.

On the other hand Naive Bayes Classifiers are highly
scalable, they require a number of parameters linear in
the number of variables(features/predictor) in a learning
problem. Maximum-likelihood(a method of estimating the
parameters of a statistical model given observations, by
finding the parameter values that maximize the likelihood of
making the observations given the parameters) can be done
by evaluating a closed form expression, which takes linear
time rather than by expensive iterative approximation as used
for many other types of classifiers.

For some types of probability models, naive Bayes classi-
fiers can be trained very efficiently in a supervised learning

setting. In many practical applications, parameter estimation
for naive Bayes models uses the method of maximum
likelihood; in other words, one can work with the naive
Bayes model without accepting Bayesian probability or
using any Bayesian methods.Despite their naive design and
apparently oversimplified assumptions, naive Bayes classi-
fiers have worked quite well in many complex real-world
situations. In 2004, an analysis of the Bayesian classification
problem showed that there are sound theoretical reasons for
the apparently implausible efficacy of naive Bayes classi-
fiers.Still, a comprehensive comparison with other classifi-
cation algorithms in 2006 showed that Bayes classification
is outperformed by other approaches, such as boosted trees
or random forests. In this paper, we use the naive bayes
classifier to find out the probability of the given dataset using
the Naive Bayes Algorithm.

II. DEEP LEARNING MODEL AND TYPES

Playing around with data and using Deep Learning with
Tensorflow gives a brief introduction about how a heavy
dataset can be trained and tested within no time. Con-
ventional machine-learning techniques were limited in their
ability to process natural data in their raw form. Constructing
a pattern-recognition or machine-learning system required
careful engineering and domain expertise to design a feature
extractor that transformed the raw data (such as the pixel
values of an image) into a suitable internal representation or
feature vector from which the learning subsystem, often a
classifier, could detect or classify patterns in the input.

Deep Learning has been successful in discovering intricate
structures in high-volume of data and therefore is applicable
in many domain of science. In addition to beating records in
image recognition and speech recognition, it has beaten other
machine-learning techniques at predicting the activity of
potential drug molecules, analysing particle accelerator data
reconstructing brain circuits11, and predicting the effects
of mutations in non-coding DNA on gene expression and
disease.

A. Summary of Supervised Learning for Deep Learning

The most common form of machine learning, deep or
not, is supervised learning. Imagine that we want to build

a system that can classify images as containing, say, a
house, a car, a person or a pet. We first collect a large
data set of images of houses, cars, people and pets, each
labelled with its category. During training, the machine is
shown an image and produces an output in the form of
a vector of scores, one for each category. We want the
desired category to have the highest score of all categories,
but this is unlikely to happen before training. We compute
an objective function that measures the error (or distance)
between the output scores and the desired pattern of scores.
The machine then modifies its internal adjustable parameters
to reduce this error. These adjustable parameters, often called
weights, are real numbers that can be seen as knobs that
define the inputoutput function of the machine. In a typical
deep-learning system, there may be hundreds of millions of
these adjustable weights, and hundreds of millions of labelled
examples with which to train the machine.

In practice, most practitioners use a procedure called
stochastic gradient descent (SGD). This consists of showing
the input vector for a few examples, computing the outputs
and the errors, computing the average gradient for those
examples, and adjusting the weights accordingly. The process
is repeated for many small sets of examples from the
training set until the average of the objective function stops
decreasing. It is called stochastic because each small set of
examples gives a noisy estimate of the average gradient over
all examples. This simple procedure usually finds a good
set of weights surprisingly quickly when compared with
far more elaborate optimization techniques After training,
the performance of the system is measured on a different
set of examples called a test set. This serves to test the
generalization ability of the machine its ability to produce
sensible answers on new inputs that it has never seen during
training.

B. Summary of Naive Bayes Classifier

Naive Bayes Classifier is a conditional probabilistic model:
given a problem instance to be classified, represented by a
vector x=x1,...,xn representing some n features(independent
variables) it assigns to this instance probabilities

p(Ck | x1, . . . , xn) for each of K possible outcomes or
classes Ck.

The problem with the above formulation is that if the
number of features n is large or if a feature can take on
a large number of values, then basing such a model on
probability tables is infeasible. We therefore reformulate the
model to make it more tractable. Using Bayes’ theorem, the
conditional probability can be decomposed as p(Ck | x) =
p(Ck) p(x | Ck)

p(x)
Using Bayesian Probability, the posterior probability can

be written as: posterior =
prior× likelihood

evidence
where, we have a prior assumption that the probability

distribution function is p(x) and the likelihood function is
probability of the evidence is given by the parameter: p(x |
Ck)

In practice, there is interest only in the numerator of
that fraction, because the denominator does not depend on
C and the values of the features xi are given, so that
the denominator is effectively constant. The numerator is
equivalent to the joint probability model and can be rewritten
as follows, using the chain rule for repeated applications of
the definition of conditional probability:

p(Ck, x1, . . . , xn)

C. Convolutional Neural Networks

ConvNets are designed to process data that come in
the form of multiple arrays, for example a colour image
composed of three 2D arrays containing pixel intensities
in the three colour channels. Many data modalities are in
the form of multiple arrays: 1D for signals and sequences,
including language; 2D for images or audio spectrograms;
and 3D for video or volumetric images. There are four key
ideas behind ConvNets that take advantage of the properties
of natural signals: local connections, shared weights, pooling
and the use of many layers.

The architecture of a typical ConvNet is structured as
a series of stages. The first few stages are composed of
two types of layers: convolutional layers and pooling layers.
Units in a convolutional layer are organized in feature maps,
within which each unit is connected to local patches in the
feature maps of the previous layer through a set of weights
called a filter bank. The result of this local weighted sum is
then passed through a non-linearity such as a ReLU which
is basically an activation function used as the positive part
of the argument and the unit corresponding to this rectifier
function is known as Rectified linear unit whose approxima-
tion is always analytical f(x) = log(1 + exp(x)). All units
in a feature map share the same filter bank. Different feature
maps in a layer use different filter banks.

III. EXPLORING IMAGE UNDERSTANDING USING DEEP
CONVOLUTIONAL NEURAL NETWORK

ConvNets have been applied with great success to the
detection, segmentation and recognition of objects and re-
gions in images. These were all tasks in which labelled
data was relatively abundant, such as traffic sign recogni-
tion, the segmentation of biological images particularly for
connectomics, and the detection of faces, text, pedestrians
and human bodies in natural images. A major recent practical
success of ConvNets is face recognition. Importantly, images
can be labelled at the pixel level, which will have applications
in technology, including autonomous mobile robots and self-
driving cars.

When deep convolutional networks were applied to a data
set of about a million images from the web that contained
1,000 different classes, they achieved spectacular results,
almost halving the error rates of the best competing ap-
proaches. This success came from the efficient use of GPUs,
ReLUs, a new regularization technique called dropout, and
techniques to generate more training examples by deforming
the existing ones Recent ConvNet architectures have 10 to

20 layers of ReLUs, hundreds of millions of weights, and
billions of connections between units. Whereas training such
large networks could have taken weeks only two years ago,
progress in hardware, software and algorithm parallelization
have reduced training times to a few hours. The performance
of ConvNet-based vision systems has caused most major
technology companies to initiate research and development
projects and to deploy ConvNet-based image understanding
products and services.

ConvNets are easily amenable to efficient hardware im-
plementations in chips or field-programmable gate arrays. A
number of companies are developing ConvNet chips to en-
able real-time vision applications in smart phones, cameras,
robots and self-driving cars.

A. Distributed representations and language processing

Deep-learning theory shows that deep nets have two
different advantages over classic learning algorithms that do
not use distributed representations. Both of these advantages
arise from the power of composition and depend on the
underlying data-generating distribution having an appropriate
componential structure.
• First, learning distributed representations enable gener-

alization to new combinations of the values of learned
features beyond those seen during training (for example,
2n combinations are possible with n binary features.

• Second, composing layers of representation in a deep
net brings the potential for another exponential advan-
tage (exponential in the depth).

The hidden layers of a multilayer neural network learn to
represent the networks inputs in a way that makes it easy
to predict the target outputs. This is nicely demonstrated by
training a multilayer neural network to predict the next word
in a sequence from a local context of earlier words. Each
word in the context is presented to the network as a one-of-
N vector, that is, one component has a value of 1 and the rest
are 0. In the first layer, each word creates a different pattern
of activations, or word vector In a language model, the other
layers of the network learn to convert the input word vectors
into an output word vector for the predicted next word, which
can be used to predict the probability for any word in the
vocabulary to appear as the next word. The network learns
word vectors that contain many active components each of
which can be interpreted as a separate feature of the word, as
was first demonstrated in the context of learning distributed
representations for symbols.

B. Recurrent Neural Networks

For tasks that involve sequential inputs, such as speech
and language, it is often better to use RNNs. RNNs process
an input sequence one element at a time, maintaining in
their hidden units a state vector that implicitly contains
information about the history of all the past elements of the
sequence. When we consider the outputs of the hidden units
at different discrete time steps as if they were the outputs of
different neurons in a deep multilayer network it becomes
clear how we can apply backpropagation to train RNNs.

RNNs are very powerful dynamic systems, but training
them has proved to be problematic because the backprop-
agated gradients either grow or shrink at each time step,
so over many time steps they typically explode or vanish.
RNNs have been found to be very good at predicting the
next character in the text or the next word in a sequence, but
they can also be used for more complex tasks. For example,
after reading an English sentence one word at a time, an
English encoder network can be trained so that the final
state vector of its hidden units is a good representation of
the thought expressed by the sentence. This thought vector
can then be used as the initial hidden state of (or as extra
input to) a jointly trained French decoder network, which
outputs a probability distribution for the first word of the
French translation.

IV. EXPERIMENT

Data was exported from the already available dataset on
github of the S&P Stock Market. The dataset contains n =
41266 minutes of data ranging from April to August 2017 on
500 stocks as well as the total S&P 500 index price. Index
and stocks are arranged in wide format.

#Importdata data = pd.readcsv(
′data stocks.csv′)

#Dropdatevariable data = data.drop([′DATE′], 1)
#Dimensionsofdataset n = data.shape[0]
p = data.shape[1] #Makedataanumpyarray data =

data.values
The file that was used for extracting the information

had already cleaned and prepared data, meaning missing
stocks and index prices were LOCF’s(last observation carried
forward) so that the file did not contain any missing value.
The dataset was split into training and test data. The training
data contained 80% of the total dataset. The data was not
shuffled but sequentially sliced.

A look at the Training and Testing code:
#Trainingandtestdata
train start = 0
train end = int(np.floor(0.8 ∗ n))
test start = train end
test end = n
data train = data[np.arange(train start, train end), :

]
data test = data[np.arange(test start, test end), :]

A. Applying the Recurrent Neural Network on the model

After having defined the placeholders, variables, initializ-
ers, cost functions and optimizers of the network, the model
needs to be trained. Usually, this is done by minibatch
training. During minibatch training random data samples
of n = batch size are drawn from the training data and
fed into the network. The training dataset gets divided
into n/batch size batches that are sequentially fed into the
network. At this point the placeholders X and Y come into
play. They store the input and target data and present them
to the network as inputs and targets.

A sampled data batch of X flows through the network
until it reaches the output layer. There, TensorFlow compares

the models predictions against the actual observed targets
Y in the current batch. Afterwards, TensorFlow conducts
an optimization step and updates the networks parameters,
corresponding to the selected learning scheme. After having
updated the weights and biases, the next batch is sampled
and the process repeats itself. The procedure continues until
all batches have been presented to the network. One full
sweep over all batches is called an epoch. The training of
the network stops once the maximum number of epochs is
reached or another stopping criterion defined by the user
applies.

The results to the epochs were, after 10 epochs the dataset
worked pretty well and adaptive to the model. The mean
absolute percentage error of the forecast on the test set is
equal to 5.31% which is pretty good. Note, that this is just a
fit to the test data, no actual out of sample metrics in a real
world scenario.

B. Calculating the Probability using Naive Bayes on a
different dataset for comparison

I used an already generated data model which had dataset
generated in it. To find out the extent to which Naive Bayes
Classifier can predict the probability, I took the dataset of
”Pima Indians Diabetes Problem”. I used a dataset of about
200 patients out of the given 768 medical observations of
Pima Indians Patent. The records describe instantaneous
measurements taken from the patient such as their age, the
number of times pregnant and blood workup. All patients
are women aged 21 or older. All attributes are numeric, and
their units vary from attribute to attribute.

Each record has a class value that indicates whether the
patient suffered an onset of diabetes within 5 years of when
the measurements were taken (1) or not (0). This is a standard
dataset that has been studied a lot in machine learning
literature. A good prediction accuracy is 70%-76%. Below
is a sample from the pima-indians.data.csv file to get a sense
of the data I worked with.

6,148,72,35,0,33.6,0.627,50,1
1,85,66,29,0,26.6,0.351,31,0
8,183,64,0,0,23.3,0.672,32,1

1,89,66,23,94,28.1,0.167,21,0
0,137,40,35,168,43.1,2.288,33,1

Table 2

The detailed description about this numbers is given in the
table below:

1. Number of times pregnant
2. Plasma glucose concentration a 2 hours in an

oral glucose tolerance test
3. Diastolic blood pressure (mm Hg)
4. Triceps skin fold thickness (mm)
5. 2-Hour serum insulin (mu U/ml)

6. Body mass index (weight in kg/m2)
7. Diabetes pedigree function

8. Age (years)
9. Class variable (0 or 1)

Table 3

The purpose of using 200 dataset instead of 768 was to
generate faster results on a whole. After getting the relevant
dataset, we begin testing. The steps performed in predicting
the probability are as follows:

C. Handling and Summarizing the Data

The first thing we need to do is load our data file. The
data is in CSV format without a header line or any quotes.
We can open the file with the open function and read the
data lines using the reader function in the csv module.

We also need to convert the attributes that were loaded as
strings into numbers that we can work with them. Below is
the loadCsv() function for loading the Pima indians dataset.
Next we need to split the data into a training dataset that
Naive Bayes can use to make predictions and a test dataset
that we can use to evaluate the accuracy of the model. We
need to split the data set randomly into train and datasets
with a ratio of 67% train and 33% test (which is a common
ratio for testing an algorithm on a dataset).

The naive Bayes model is comprised of a summary of the
data in the training dataset. This summary is then used when
making predictions.

The summary of the training data collected involves the
mean and the standard deviation for each attribute, by class
value. For example, if there are three class values and 9
numerical attributes, then we need a mean and standard de-
viation for each attribute (9) and class value (3) combination,
that is 27 attribute summaries.

These are required when making predictions to calculate
the probability of specific attribute values belonging to each
class value. The source from where I fetched the dataset
used an easy method to summarize data by breaking down
the preparation into following tasks:
• Separate Data By Class: The first task is to separate the

training dataset instances by class value so that we can
calculate statistics for each class. We can do that by
creating a map of each class value to a list of instances
that belong to that class and sort the entire dataset of
instances into the appropriate lists.

• Calculate Mean and Standard Deviation:
• Summarize Dataset: For a given list of instances (for

a class value) that has been obtained by performing
the above function, we can calculate the mean and the
standard deviation for each attribute.
The zip function groups the values for each attribute
across our data instances into their own lists so that we
can compute the mean and standard deviation values for
the attribute.

• Summarize Attributes By Class: We can pull it all
together by first separating our training dataset into in-
stances grouped by class. Then calculate the summaries
for each attribute.

V. PREDICTING THE PROBABILITY

Making predictions involves calculating the probability
that a given data instance belongs to each class, then selecting
the class with the largest probability as the prediction. As we

are now ready with the summary of our dataset, generated
from the following functions, we can use a Gaussian function
to estimate the probability of a given attribute value, given
the known mean and standard deviation for the attribute
estimated from the training data.

Given that the attribute summaries where prepared for
each attribute and class value, the result is the conditional
probability of a given attribute value given a class value.

In summary known details are been pulled into the
Gaussian (attribute value, mean and standard deviation) and
reading off the likelihood that our attribute value belongs to
the class. From the above methods, as we can predict the
largest probability now,

The predictions can be compared to the class values in the
test dataset and a classification accuracy can be calculated as
an accuracy ratio between 0 & and 100%. The table showing
the accuracy generated after calculating the probability on
200 instances is as follows:

Sr. No. Dataset Accuracy
1 15 0.6455
2 20 0.6455
3 50 0.6478
4 70 0.6343
5 120 0.6404
6 200 0.6545

Hence the above table shows that when I tried to test the
dataset with different number of outcomes, the accuracy
level varies for every outcome, depending on the number
of iterations,performance of the computer,quality of the data
etc. When the accuracy increases, it mainly corresponds to
the performance of the machine and how it takes the data on
a whole.

VI. COMPARISON OF DEEP LEARNING AND
NAIVE BAYES ANALYSIS

Naive Bayes belongs to a category of models called gener-
ative. This means that during training (the procedure where
the algorithm learns to classify), Naive Bayes tries to find
out how the data (Pima Diabetes Dataset) was generated in
the first place. It essentially tries to figure out the underlying
distribution that produced the examples that are inputed to
the model.

On the other hand Recurrent Neural Network is a dis-
criminative model. It tries to figure out what the differences
are between your positive and negative examples, in order
to perform the classification. The deep learning models are
hard to implement but the prediction is more accurate than
that for the Naive Bayes Analysis.

VII. DIFFICULTIES FACED IN IMPLEMENTING
DEEP LEARNING USING TENSORFLOW

This is by far the most important weakness and something
which requires a little bit of extra effort. In the calculation
of outcome probabilities using the tensorflow method, the
implicit assumption is that all the attributes are mutually
independent. This allows us to multiply the class conditional
probabilities in order to compute the outcome probability.

When it is known beforehand that a few of the attributes
are correlated , it is easy to ignore one of the correlated
attributes. However, it is very hard to predict when we don’t
know which attribute is correlated with which other attribute
in the dataset. That can lead to assuming the accuracy results
without keeping in mind the conditions in which it is actually
inter-related with another attribute.

When an attribute is continuous, computing the proba-
bilities by the traditional method of frequency counts is
not possible. In this case we would either need to convert
the attribute to a discrete variable or use probability den-
sity functions to compute probability densities (not actual
probabilities!). Most standard implementation automatically
account for nominal and continuous attributes so the user
does not need to worry about these transformations. However
as a data scientist, it is important to be aware of the subtleties
in the tool application.

The learning process of implementing Deep Learning
using Tensorflow was a challenging one as it had lot of
new topics that need to be covered. Developing a normal
file of dataset of images (about 10) and testing and training
the data using Tensorflow helped me get an idea about how
Tensorflow works in finding the results of the dataset.

VIII. FUTURE SCOPE OF DEEP LEARNING

The release of TensorFlow was a landmark event in deep
learning research. Its flexibility and performance allows re-
searchers to develop all kinds of sophisticated neural network
architectures as well as other ML algorithms. However,
flexibility comes at the cost of longer time-to-model cycles
compared to higher level APIs. Nonetheless, I feel that
TensorFlow will make its way to the de-facto standard in
neural network and deep learning development in research
and practical applications. Many researchers and data scien-
tists are already using TensorFlow or have started developing
projects that employ TensorFlow models.

IX. CONCLUSION

This paper is the basic implementation to gain the knowl-
edge of Deep Learning using Tensorflow on a set of Stock
Market dataset to predict the fluctuating daily results in
the market based on the given parameters. Keeping aside
the drawbacks, Deep Learning is a good inference model
for predicting the probabilities and finding out the possible
outcome from the given dataset.

Deep Learning model using Tensorflow is a complex
model to implement and use for predicting the probabilities
but is important when it comes to finding out wide range of
results for a huge set of data. It can also be used to find the
usage of data in the next few years keeping in mind it’s usage
in the past years and using that as the dataset. There is still
a wide scope of enhancement in the field of Deep Learning
and one such is a need of a neat graphical user interface
for designing and developing neural net architectures with
TensorFlow backend.

Naive Bayes Classifier is a good inference model for
predicting the probabilities and finding out the possible

outcome from the given dataset. Though it is not as accurate
as the Recurrent Neural Network, it is less complex and
faster in implementation, thus providing a flexible way to get
the prediction results. Naive Bayes Model is tremendously
appealing to use because of its simplicity to implement,
elegance and robustness. It is one of the oldest formal
classification algorithms, and yet it is surprisingly effective
being very easy. A large number of modifications have been
introduced in this field using statistical, data mining, machine
learning, and pattern recognition communities in an attempt
to eliminate the possible drawbacks it has and to make it
more flexible than before.

REFERENCES

[1] Krizhevsky, A., Sutskever, I. & Hinton, G. ImageNet classification
with deep convolutional neural networks. In Proc. Advances in Neural
Information Processing Systems 25 10901098 (2012).

[2] Farabet, C., Couprie, C., Najman, L. & LeCun, Y. Learning hierar-
chical features for scene labeling. IEEE Trans. Pattern Anal. Mach.
Intell. 35, 19151929 (2013).

[3] Tompson, J., Jain, A., LeCun, Y. & Bregler, C. Joint training of a
convolutional network and a graphical model for human pose estima-
tion. In Proc. Advances in Neural Information Processing Systems 27
17991807 (2014).

[4] Szegedy, C. et al. Going deeper with convolutions. Preprint at
http://arxiv.org/ abs/1409.4842 (2014).

[5] J. Hellerstein, Jayram Thathachar, and I. Rish. Recognizing end-user
transactions in performance management. In Pro- ceedings of AAAI-
2000, pages 596602, Austin, Texas, 2000.

[6] J. Hilden. Statistical diagnosis based on conditional independence does
not require it. Comput. Biol. Med., 14(4):429435, 1984.

[7] R. Kohavi. Wrappers for performance enhancement and oblivious de-
cision graphs. Technical report, PhD thesis, Department of Computer
Science, Stanford, CA, 1995.

[8] H. Schneiderman and T. Kanade. A statistical method for 3d detection
applied to faces and cars. In Proceedings of CVPR- 2000, 2000.

[9] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[10] Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E. & Svetnik, V. Deep

neural nets as a method for quantitative structure-activity relationships.
J. Chem. Inf. Model. 55, 263274 (2015).

[11] Helmstaedter, M. et al. Connectomic reconstruction of the inner
plexiform layer in the mouse retina. Nature 500, 168174 (2013).

[12] Kaggle. Higgs boson machine learning challenge. Kaggle
https://www.kaggle. com/c/higgs-boson (2014).

[13] Leung, M. K., Xiong, H. Y., Lee, L. J. & Frey, B. J. Deep learning of
the tissueregulated splicing code. Bioinformatics 30, i121i129 (2014).

[14] Xiong, H. Y. et al. The human splicing code reveals new insights into
the genetic determinants of disease. Science 347, 6218 (2015)

[15] Jones, K. S. (1972). A statistical interpretation of term specificity and
its application in retrieval. Journal of Documentation, 28, 1121.

[16] Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction,
and functional architecture in the cats visual cortex. J. Physiol. 160,
106154 (1962)

[17] Jean, S., Cho, K., Memisevic, R. & Bengio, Y. On using very
large target vocabulary for neural machine translation. In Proc. ACL-
IJCNLP http://arxiv.org/ abs/1412.2007 (2015)

[18] Bottou, L. & Bousquet, O. The tradeoffs of large scale learning. In
Proc. Advances in Neural Information Processing Systems 20 161168
(2007).

[19] Duda, R. O. & Hart, P. E. Pattern Classification and Scene Analysis
[20] Sutskever, I. Vinyals, O. & Le. Q. V. Sequence to sequence learn-

ing with neural networks. In Proc. Advances in Neural Information
Processing Systems 27 31043112 (2014).

[21] Rosenblatt, F. The Perceptron A Perceiving and Recognizing Automa-
ton. Tech. Rep. 85-460-1 (Cornell Aeronautical Laboratory, 1957).

[22] Parker, D. B. Learning Logic Report TR47 (MIT Press, 1985).
[23] Friedman, N. (1998). The Bayesian structural EM algorithm. Proc.

UAI-98 (pp. 129138).
[24] Bengio, Y., Lamblin, P., Popovici, D. & Larochelle, H. Greedy

layer-wise training of deep networks. In Proc. Advances in Neural
Information Processing Systems 19 153160 (2006).

