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Abstract. In recent years, AI has achieved significant milestones in the
gaming sector, often serving as a challenging benchmark and milestone
in its development process. Notable achievements have been made in
domains such as chess, Go, and video games, where players and AIs
are presented with complete information to make relatively better deci-
sions. However, poker, the quintessential game of imperfect information,
poses greater challenges and offers better opportunities to refine model’s
decision-making ability. In this article, we review and analyze several
AI models that have achieved professional player status to explore and
theorize the computational and decision-making advancements possible
for AGI, especially the NARS model, in the realm of poker. This study
aims to further the capabilities of AGI, which aspires to try to solve all
representable problems.

1 Introduction

Over the years, many games have been successfully utilized in the field of artificial
intelligence research. Studies in chess, checkers, and Go have produced powerful
deep learning models and achieved significant success. NARS, an AGI model,
has also demonstrated excellent performance and potential in the Pong game.

The games mentioned above share beneficial attributes such as well-defined
rules for possible actions, and clear goals and objectives. Poker also possesses
these traits; however, its characteristic of imperfect information—where one can-
not observe opponents’ cards and randomness in the distribution of private and
public cards—impacts the rules defining possible actions. This uncertainty, which
can lead to changes in the rules of possible actions, is clearly beneficial for AGI
research.

Past AI research on poker can broadly be classified into two main categories.
The first category addresses the issue as a whole, creating autonomous systems
that can play the game and make decisions. The second category aims to an-
alyze subsets of isolated problems. Due to the exceptional results of the first
category, mature models in this category typically possess algorithms capable of
calculating comprehensive strategy blueprints, enriching the tactical details of
sub-games achieved during play, and tailoring the overarching strategy blueprint
in response to opponents. This article focuses on analyzing the feasibility and
effectiveness of these algorithms when applied to AGI.
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In this article, we first review and analyze several high-level deep learning
models, identifying their common features and unique innovations. We then at-
tempt to apply these insights to the AGI model NARS, exploring potential
modifications and prospects for NARS’s eighth layer of decision-making while
adhering to NARS’s principles of limited knowledge and resources. Finally, we
summarize the results obtained.

The remainder of this section will briefly introduce the rules of the poker
variant: Texas Hold’em.

1.1 Texas Hold’em

Texas Hold’em consists four stages: pre-flop, flop, turn, and river. Before the
game begins, two players must make forced bets, known as the small and big
blinds. The big blind is typically twice the amount of the small blind. The player
to the left of the blinds initiates the action, which includes folding, calling, or
raising.

The different actions in poker include:

– Fold: The player no longer contributes to the pot and forfeits the right to
win the current pot.

– Check/Call: If no additional chips are needed to continue, the player can
check; if more chips are required to stay in the game, the player must call.

– Bet/Raise: A player may choose to bet if no bets have been made previ-
ously; if there has been a bet, the player can also choose to raise, increasing
the amount of chips in the pot.

In each stage, players combine their two private cards with the community
cards to form the best possible hand. Each stage ends with a betting round. The
game continues until the river round is completed, at which point any remaining
players reveal their cards. The player with the best hand wins all the chips. If
more than one player shares the highest hand, the chips are split equally among
them.

2 Related Works

In this section, we will focus on the study of three deep learning models: Pluribus,
Libratus, and DeepStack. These models engage in games of incomplete informa-
tion, which require more complex reasoning than similarly sized games with
perfect information. Each of these models, as well as most artificial intelligence
systems designed to tackle poker, employs Counterfactual Regret Minimization
(CFR) to reason through the game. This approach involves generating a complete
strategic blueprint before the start of each game, as mentioned in the discussion
above.



Title Suppressed Due to Excessive Length 3

2.1 Introdution of CFR

Counterfactual Regret Minimization (CFR) is an iterative algorithm used to
solve games with large information sets and complex strategy spaces under con-
ditions of incomplete information. CFR dynamically adjusts players’ strategies
to minimize "regret." Here, "regret" refers to what players could have achieved
had they chosen a different action at a certain decision point in the past, in
terms of better average payoff.

How CFR Works:

1. Initialization: At the start of the game, all strategies are random, and all
cumulative regrets are set to zero.

2. Game Iteration: For each iteration, the CFR algorithm simulates a game.
At each decision point, an action is chosen based on the current strategy.

3. Regret Update: At the end of the iteration, the algorithm revisits each
decision point and updates the regret values. Regret is quantified as the
difference in average payoff that could have been achieved, had a different
action been taken relative to the action actually taken.

4. Strategy Update: The strategy is adjusted based on the regret values. If
an action has a high regret value, it is more likely to be chosen in future
iterations.

5. Repeat Process: This process is repeated multiple times until the strategy
converges.

2.2 Simplified calculations and strategy optimization

The computation required to generate a complete strategy blueprint before each
game is immense. Therefore, simplification of decision points, calculations, and
the overall blueprint is essential. The blueprints of all three models translate the
original game into an abstract game to some extent. For example, in the original
game, a pair of aces and a pair of kings have certain differences, but these
differences do not significantly impact decision-making, meaning that within
certain limits, differences in hands and stakes do not affect decision choices. This
allows the original poker scenarios, which could amount to 10160 situations, to
be compressed into approximately 1014 abstract scenarios. Even so, this number
is still vast.

To address this, Libratus and DeepStack simplify calculations and enhance ef-
ficiency by breaking the complex poker game into smaller subgames. This method
enables them to focus on the most critical decision points at the moment, reduc-
ing the number of strategy combinations they need to process and thus lowering
the demand for computational resources. By dynamically adjusting their strate-
gies to adapt to their opponents’ behavior and the progression of the game,
these systems can make precise decisions in real-time. The subgame structure
also allows these models to learn from each independent decision, giving them
the ability to adjust their strategies to cope with high-level opponents.
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Fig. 1: Example of a decision tree from the model "DeepStack". Nodes represent
public states, whereas edges represent actions.

3 Method

Clearly, we cannot achieve the same level of precision and completeness in NARS
as with the aforementioned deep learning models. However, we can still integrate
NARS’s eighth layer with poker rules. The goal can be succinctly described as
obtaining as much revenue as possible, even if this revenue might be negative.
The possible operations include fold, check, call, bet, and raise. The number
of operations should remain constant. Most statements in this case are events
because the sequence of time, which can also be referred to as the order of
events, is especially important in poker. For example, "Player A has a pair of
aces" is only relevant in the current round of the game and does not affect the
next or previous rounds. Similarly, "Player A makes a $5 raise" has different
implications depending on whether it occurs before or after Player B’s check.
All external updates related to the game should carry timestamps and desire
values for this system.
A statement should be an interpretation based on the knowledge NARS has
learned so far, combined with currently "valid" events, such as "Based on Player
A’s hand, they can win," accompanied by a truth value.
Ideally, in each round of the game, whenever a new event occurs, it should
conform to the relationship of

(condition, operation) 7→ consequence

That is, whenever a new event occurs, the system makes the most appropriate
operation based on current knowledge and different expected values of events.
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The resulting consequence updates the value of currently valid events and gen-
erates new statements.

3.1 Implementation of CFR

In order to introduce the concept of an event’s desire value and Counterfactual
Regret Minimization (CFR) in NARS, I will present a specific example. Suppose
at the start of this round of the game, player A has a pair of aces. Thus, the event
S is “player A has a pair of aces", and the desired state D in this case would be
how to maximize expected benefits from this advantageous hand. The desired
state would similarly apply if there were a very poor hand. In such S → D
scenarios, the desire value quantifies the degree of contribution to achieving the
maximum return.
Since CFR focuses on decision-making to minimize regret for not taking alterna-
tive strategies, for “player A has a pair of aces": CFR would involve calculating
the regret associated with all possible actions (such as folding, calling, raising)
given the hand of a pair of aces, and then choosing the action that leads to
the least regret based on past outcomes. It also evaluates the impact of each
potential action on the desired state. The desire value indicates which actions
are more aligned with achieving the desired outcome, thus guiding the CFR
process to prioritize strategies that not only minimize regret but also maximize
alignment with the desired value outcomes. The desire value can influence the
CFR strategy by adjusting the importance or weight of different actions based
on their anticipated contribution to the desired state. For example, if raising
significantly increases the likelihood of maximizing returns (high desire value),
CFR would adapt to prioritize raising, unless historical regret data suggest a
better strategic choice.
Of course, how to implement CFR is an issue I have not been able to solve due
to my limitations, which is why there are no practical experiments to prove these
theories.

3.2 Monte Carlo simulation

Regarding how NARS can deduce that "Player A has a pair of aces" is advanta-
geous for the player, it can be evaluated by simulating thousands of game hands
using Monte Carlo simulations to assess the performance of this hand under
various game conditions. During the simulation process, the potential hands of
opponents and the progress of the game are randomly varied to evaluate the win
rate of a pair of aces in different scenarios. The obtained win rate can be quanti-
fied as the strength of the hand pair of aces in actual games. Combined with the
Counterfactual Regret Minimization (CFR) strategy optimization method, the
results of the Monte Carlo simulations can be used to fine-tune the decision tree
in NARS, ensuring that the system can make the optimal decisions when fac-
ing different opponents and game situations. Through Monte Carlo simulations,
NARS can not only quantitatively analyze the potential value of a pair of aces
but also adjust its decision-making framework based on the dynamic changes in
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actual games, making its decisions more scientific. The information provided to
the system’s beliefs through simulation is relatively accurate and effective, and
they can also serve as reliable experiences within the system.

However, since the accuracy of Monte Carlo simulations changes with the
number of simulations, and given that NARS is based on a system with limited
knowledge and resources, I do not believe it is the best possible application for
NARS.

4 Conclusion

The best choices in incomplete information games can be applied not only in
poker, but also have implications in real-world scenarios involving asymmetric
information. For example, medical diagnostic systems and poker systems both
involve statistical issues and the need to make relatively stable decisions. If
NARS can demonstrate certain prospects and performance in poker games, it can
also show potential and a certain degree of reliability in making stable judgments
in medical diagnostic systems.
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