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Abstract

We deal with an image jigsaw puzzle problem, which is
defined as reconstructing an image from a set of square and
non-overlapping image patches. It is known that this is a
NP-complete problem, and it is also challenging for hu-
mans, since in the considered framework the original image
is not given. Recently a graphical model has been proposed
to solve this problem, where each patch location is a node
and each image patch is a label. The target label probability
function is then maximized using loopy belief propagation.
In this paper we use the same target function and exactly
the same pairwise potentials. Our main contribution is a
novel inference approach in the sampling framework of Par-
ticle Filter (PF). Usually in the PF framework it is assumed
that the observations arrive sequentially, e.g., the observa-
tions are naturally ordered by their time stamps in the track-
ing scenario. Based on this assumption, the posterior den-
sity over the corresponding hidden states is estimated. In
the jigsaw puzzle problem all observations (puzzle pieces)
are given at once without any particular order. In this pa-
per we relax the assumption of having ordered observations
and extend the PF framework to simultaneously estimate the
posterior density while exploring different orders of obser-
vations. This significantly broadens the scope of applica-
tions of the PF inference. Our experimental results demon-
strate that the proposed inference framework significantly
outperforms loopy belief propagation in solving the image
jigsaw puzzle problem. In particular, the extended PF in-
ference triples the accuracy of the label assignment of the
loopy belief propagation.

1. Introduction and Problem Formulation

As shown in [4] the jigsaw puzzle problem is NP-
complete if the pairwise affinity among jigsaw pieces is un-
reliable. Following [2], we focus on reconstructing the orig-
inal image from square and non-overlapping patches. This
type of puzzles does not contain the shape information of
individual pieces, which is quite important to determine the
pairwise affinities among them. This makes the problem

more challenging, since it is more difficult to evaluate pair-
wise affinities among puzzles. Thus, only the image content
information of the puzzle pieces is available. This is differ-
ent from most of the previous approaches [10, 7, 13, 17],
where the shape of the puzzle pieces is utilized.

Now we briefly review the PF inference. We begin with
a classical tracking example. A robot is moving around
and taking images at discrete time intervals. The images
form a sequence of observations Z = (z1, . . . , zm), where
zt is an image taken at time t. With each observation zt

there is associated a hidden state xt. In our example the
value of xt is the robot pose (its 2D position plus orien-
tation). The goal of PF inferences, is to derive the most
likely sequence of the hidden states, i.e., to find a state
vector x1:m = (x1, . . . , xm) that maximizes the posterior
p(x1:m|Z). We observe that here the observations are or-
dered following their time stamps. In PF inference, this or-
der is utilized to sequentially infer the values of states xt

for t = 1, . . . , m. Now imagine that the robot’s clock broke
and the time stamps are random. Thus, we are given a set
of observations Z = {z1, . . . , zm}, they are indexed but
their index is irrelevant. Of course, we can still associate
state xt with observation zt, but the set of observations is
not ordered, and consequently, there state vectors x t are not
ordered. Thus, we deal with unordered observations. This
is exactly the scenario of the image jigsaw puzzle problem,
see Fig. 1. We are given m square puzzle pieces described
by a set of m observations Z = {z1, . . . , zm}. Each ob-
servation zt describes part of the original image on piece
t and is given by a vector of features, which are the color
values of the pixels on piece t in our experimental results.
The puzzle pieces are numbered with index t, but their num-
bering is random, e.g., the number in Fig. 1(b). The value
of the state xt of puzzle piece t is a location of an empty
square in the square grid, e.g., the value of x t is the index
of an empty square in the square gird shown in Fig. 1(c).
Our goal is to determine the state vector x1:m that maxi-
mizes the posterior probability p(x1:m|Z). Since the orig-
inal image is not provided, this probability is determined
based on pairwise appearance consistency of the local puz-
zle images, i.e., the posterior distribution is a function of
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(a) (b) (c)
Figure 1. The goal is to build the original image (a) given the jigsaw puzzle pieces (b). The original image is not known, thus, it needs to
be estimated given the observations shown in (b). The empty squares in (c) form possible locations for the puzzle pieces in (b).

how well adjacent pieces fit together once they are placed
on the grid. In other words, a vector of grid locations x 1:m

maximizes p(x1:m|Z) if the puzzle pieces placed at these
locations form the most consistent image. We observe that
the posterior distribution p(x1:m|Z) usually is very compli-
cated and has many local maxima. This is particulary the
case when the local image information of the puzzle pieces
is not very descriptive.

Our main contribution is a new PF inference framework
that works in this scenario. In the proposed framework we
extend PF to handle the situations where we have unordered
set of observations that are given simultaneously. One of
our key ideas is the fact that it is possible to extend the im-
portance sampling from the proposal distribution so that the
particle resampling automatically determines most informa-
tive orders of observations. This allows us to simultane-
ously consider different orders of observation in the process
of estimating the posterior distribution. If our goal is max-
imizing the posterior distribution, we can view the order of
observations that led to the global maximum as a most in-
formative. Of course, this order does not have to be unique,
since it is possible that other orders of observations lead to
the same global maximum.

In our experimental results, we compare the solutions of
(??) obtained by the proposed inference framework to the
solutions of the loopy believe propagation used in [2] under
identical settings on the dataset provided in [2]. In partic-
ular, we use exactly the same dissimilarity-based compati-
bility D as defined above. The proposed PF inference sig-
nificantly outperforms the loopy believe propagation in all
evaluation measures. The main of these measures is the ac-
curacy of the label assignment, where the difference is most
significant. The accuracy of the loopy believe propagation
is 24% while the accuracy of the proposed PF inference is
69%.

The classical PF framework has been developed for se-
quential state estimation like tracking [9, 14] or robot local-
ization [15, 5]. There, the observations arrive sequentially
and are indexed by their time stamps, as our tracking ex-
ample illustrates. It is possible to apply the classical PF
framework as stochastic optimization to solve this problem

by utilizing a fix order of observations. However, by doing
so, we would have selected an arbitrary order, and the puz-
zle construction may fail because of the selected order. If
we would have selected a different order, the labeling task
could have been successful. Moreover, the observations are
given simultaneously at the same time. Consequently, there
is no reason to favor any particular order without utilizing
this fact.

The rest of the paper is organized as follows. Section 7
describes several closely related approaches. The details of
the proposed framework are explained in Section ??. Sec-
tion 6 shows and evaluates the experimental results not only
the dataset from [2], but also an extended dataset.

2. Basic Facts about Particle Filters

In this section we summarize basic facts about Particle
Filters (PFs). They will be utilized in the following section
when we introduce the proposed framework. Given is a se-
quence of observations Z = {z1, . . . , zm}, i.e., the obser-
vations are ordered. Our goal is to maximize the posterior
distribution p(x1:m | Z), i.e., to find the values x̂t of states
xt such that

x̂1:m = argmax
x1:m

p(x1:m | Z), (1)

where x1:m = (x1, . . . , xm) ∈ Xm is a state space vector.
We observe that each state xt corresponds to observation zt

for t = 1, . . . , m.

This goal can be achieved by approximating the posterior
distribution with a finite number of samples in the frame-
work of Bayesian Importance Sampling (BIS). Since it is
usually difficult to draw samples from the pdf p(x1:m|Z),
we will draw samples x

(i)
1:m ∼ q(x1:m|Z) for i = 1, . . . , N

from a proposal pdf q, form which samples are easily gen-
erated. Then approximation to the density p is given by

p(x1:m|Z) ≈
N∑

i=1

w(i)δ(x1:m − x
(i)
1:m), (2)

2



216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

CVPR
#****

CVPR
#****

CVPR 2011 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

where δ is the Dirac delta function and

w(i) =
p(x(i)

1:m|Z)

q(x(i)
1:m|Z)

(3)

are normalized weights (so that they sum to one). The state
vector x

(i)
1:m with the largest weight w(i) is then taken as the

solution of (1).
Since it is still computationally intractable to draw sam-

ples from q due to high dimensionality of x1:m, Sequen-
tial Importance Sampling (SIS) is usually utilized. In the
classical PF approaches, samples are generated recursively
following the order of dimensions in state vector x1:m =
(x1, . . . , xm):

x
(i)
t ∼ qt(x|x1:t−1, Z) = qt(x|x1:t−1, z1:t) (4)

for t = 1, . . .m, and the particles are built sequentially
x

(i)
1:t = (x(i)

1:t−1, x
(i)
t ) for i = 1, . . . , N . The subscript t

in qt indicates from which dimension of the state vector the
samples are generated. We use this notation to stress that qt

is a probability density function (pdf) from which we sam-
ple. (For t = 1, x1:t−1 = x1:0 denotes an empty vector,
thus, we sample x

(i)
1 ∼ q1(x|Z).) Since q factorizes as

q(x1:m|Z) = q1(x1|Z)
m∏

t=2

qt(xt|x1:t−1, Z), (5)

we obtain that x
(i)
1:m ∼ q(x1:m|Z). In over words, by sam-

pling recursively x
(i)
t from each dimension t according to

(4) and appending the samples to a vector x
(i)
1:m we obtain a

sample from q(x1:m|Z)
Since at a given iteration we have a partial sample vector

x
(i)
1:t for t < m, we also need an evaluation procedure of this

partial sample vector. For this we observe that the weights
can be recursively updated according to [16]:

w(x(i)
1:t) =

p(zt|x(i)
1:t, z1:t−1)p(x(i)

t |x(i)
1:t−1)

qt(x
(i)
t |x(i)

1:t−1, z1:t)
w(x(i)

1:t−1).

(6)

The key observation is that when t = m, the weight
w(x(i)

1:m) of particle (i) is equal to w(i) (defined in (3)).
Consequently, we have arrived at the SIS theorem:

Theorem 1. By sampling particles according to (4) and
weighting them according (6), we obtain a set of weighted
samples form p(x1:m|Z) once t = m. Hence we can ap-
proximate p(x1:m|Z) with any precision if the number of
particles N is sufficiently large. Thus, we can write

p(x1:m|Z) ≈
N∑

i=1

w(x(i)
1:t)δ(x1:m − x

(i)
1:m). (7)

Weight equation (6) can be simplified by making a com-
mon assumption that qt(x

(i)
t |x(i)

1:t−1, z1:t) = p(x(i)
t |x(i)

1:t−1),
i.e., we take as the proposal distribution the conditional pdf
of the state at time t conditioned on the current state vec-
tor x

(i)
1:t−1. This assumption simplifies the recursive weight

update formula to

w(x(i)
1:t) = w(x(i)

1:t−1)p(zt|x(i)
1:t, z1:t−1), (8)

and implies that the samples are generated from

x
(i)
t ∼ pt(x|x(i)

1:t−1). (9)

Analog to (4) we added the index t to p in (9) to indicate the
dimension of the state space from which the samples are
generated.

Now we summarize the derived standard PF algorithm.
For every time step t = 1, . . . , m and for every particle
i = 1, . . . , N execute the following three steps:
1) Importance sampling / proposal: Sample followers of
particle (i) according to (9) (a special case of (4)) and set

x
(i)
1:t = (x(i)

1:t−1, x
(i)
t ).

2) Importance weighting / evaluation: An importance
weight is assigned to each particle x

(i)
1:t according to (8) (a

special case of (6)).
3) Resampling: Sample with replacement N new particles
form the current set of N particles

{x(i)
1:t|i = 1, . . . , N}

according to their weights. We obtain a set of new particles
x

(i)
1:t for i = 1, . . . , N , and renormalize their weights to sum

to one. This procedure is a variant of Sampling Importance
Resampling (SIR) [16]. It is an important part of any PF
algorithm, since resampling prevents weight degeneration
of particles.

3. Unordered Observations

In the proposed approach, the order of the observations
is not predetermined, in particular, we do not follow the or-
der of indices of the observations in Z . Our key idea is
to extend the PF framework to examine all possible orders
of observations and to follow the most informative orders.
This way we are able to utilize the the most informative ob-
servations first. Intuitively, it makes sense, for example, if
the first puzzle piece has a local image very similar to many
other puzzle pieces and the second puzzle pieces has a very
distinctive local image that matches only a few other pieces,
then our approach will first process the second puzzle piece,
since it is more informative.

We stress that the standard SIS in Eq. 9 and particle
evaluation in Eq. 8 utilize the sequential order of the states
x1:m = (x1, . . . , xm). In many applications, this order is

3
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determined naturally by the time stamp of the observations,
e.g., a single robot is collecting laser measurements at con-
secutive time points, in which case xt denotes the robot pose
at time t. The goal of our work is to extend SIS to applica-
tions in which there is no natural order of observations.

The key idea of the proposed approach is not to utilize
the fix order of the states, but instead explore the most likely
orders of the states (xi1 , . . . , xim) so that the corresponding
sequence of observations Z = (zi1 , . . . , zim) is most infor-
mative. To achieve this we modify the first step of the PF
algorithm so that the importance sampling is performed for
every dimension not yet represented by the current particle.

In order to formally define the proposed sampling rule,
w need to explicitly represent different orders of states with
a permutation σ : {1, . . . , m} → {1, . . . , m} and use the
shorthand notation σ(1 : t) to denote (σ(1), σ(2), . . . , σ(t))
for t ≤ m. For each particle (i) we may have a differ-
ent permeation σ(i), but we will drop the index (i) from

σ(i) in expressions like x
(i)
σ(1:t), since the state vector al-

ready carries the particle index (i). With reference to
our toy example, Fig. 1(c) shows the configuration at time
t = 2, where puzzle pieces numbered 3 and 1 in Fig. 1(b)
are placed at locations 1 and 2, correspondingly. Hence
σ(i)(1 : 2) = (3, 1) and x

(i)
σ(1:2) = (1, 2). We stress that

now the sequence of states xσ(1:t−1) visited before time t
is not a sequence of consecutive numbers (1, . . . , t− 1) but
any subsequence (i1, . . . , it−1) formed by t − 1 different
numbers in {1, . . . , m}.

We are ready now to precise formulate the proposed im-
portance sampling. At each iteration t ≤ m, for each parti-
cle (i) and for each s ∈ σ(i)(1 : t − 1), we sample

x(i)
s ∼ ps(x|x(i)

σ(1:t−1)), (10)

where σ(i)(1 : t − 1) = (1, . . . , m) \ σ(i)(1 : t − 1), i.e.,
the indices in 1 : m that are not present in σ (i)(1 : t − 1)
for t ≤ m, and the subscript s at the posterior pdf ps in-
dicates that we sample from values for state s. We gener-
ate at least one sample for each state s ∈ σ(i)(1 : t − 1).
This means that the single particle x

(i)
σ(1:t−1) is multiplied

and extended to several follower particles x
(i)
σ(1:t−1),s. Con-

sequently, at iteration t < m particle (i) has m − t + 1
followers. Each follower is a sample from a different di-
mension of the state vector (i.e., represents a location of
a different puzzle piece). Going back to our toy puzzle
example, we recall that the current state vector of particle
(i) in Fig. 1(c) at time t = 2 is x

(i)
σ(1:2) = (1, 2), where

σ(i)(1 : 2) = (3, 1). For sampling at time t = 3, we
have σ(i)(1 : t − 1) = (2, 4, 5, 6). Consequently, we sam-
ple four followers of particle (i) in (10), one for each state

s = 2, 4, 5, 6, where x
(i)
2 is the sampled location of puzzle

piece 2, x
(i)
4 is the sampled location of puzzle piece 4, and

so on.
In contrast, in the standard application of rule (9), at each

iteration t particle (i) has one follower. Even when some-
times each particle (i) has many followers, all followers are
samples form the same state, since there is a unique state
and only one state at time t, which means that we only de-
termine possible locations of say puzzle piece 2 and do not
consider locations of puzzle piece 4 for particle (i), since a
strict order of the state dimensions is followed in the classi-
cal setting.

We do not make any Markov assumption in (10), i.e., the
new state x

(i)
s is dependent on all previous states x

(i)
σ(1:t−1)

for each particle (i).

4. Particle Filter for Unordered Observations

We outline in this section the proposed PF for un-
ordered observations (PFUO) algorithm. The key change
is in the importance sampling step in comparison to the
standard PF algorithm presented in Section 2. The other
two steps are adjusted to accommodate this key change.
For every time step t = 1, . . . , m and for every particle
i = 1, . . . , N execute the following three steps:
1) Importance sampling / proposal: Sample followers
x

(i)
s of particle (i) from each dimension s ∈ σ (i)(1 : t − 1)

according to (10), which we repeat here for completeness,

x(i)
s ∼ ps(x|x(i)

σ(1:t−1)), (11)

and set x
(i,s)
σ(1:t) = (x(i)

σ(1:t−1), x
(i)
s ) and σ(i,s)(t) = s, which

means that σ(i,s)(1 : t) = (σ(1 : t − 1), s). As stated

before, we drop the superscript (i, s) in x
(i,s)
σ(1:t), since it is

already present as the particle index.
2) Importance weighting/evaluation: An individual im-
portance weight is assigned to each follower particle x

(i,s)
σ(1:t)

according to

w(x(i,s)
σ(1:t)) = w(x(i)

σ(1:t−1))p(zs|x(i,s)
σ(1:t), zσ(i)(1:t−1)), (12)

3) Resampling: Sample with replacement N new particles
form the current set of N × (m − t + 1) particles

{x(i,s)
σ(1:t)| i = 1, . . . , N, s ∈ σ(i)(1 : t − 1)}. (13)

according to the weights. We obtain a set of new particles
x

(i)
σ(1:t) for i = 1, . . . , N , i.e., we assign new indices

i = 1, . . . , N to the new particles. We also renormalize
their weights to sum to one. This is a variant of the standard
Sampling Importance Resampling (SIR) step [16] as in
the classical PF framework, but the set of particles that is
resampled is different.

4
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We observe that the particle weight evaluation in (12) is
analog to (8) in that the conditional probability of obser-
vation zs is a function of two corresponding sequences of
observations and states plus the state xs. The only differ-
ence is that the sequences may not be in the original index
order but in the order determined by the permutation σ (i)

applied to 1 : t − 1.
When t = m all state dimensions are present in the state

vector x
(i)
σ(1:m) for each particle (i). Hence we can reorder

the sequence of state dimensions σ(i)(1 : m) to form the
original order 1 : m, i.e., we apply the inverse of σ (i) to
σ(i)(1 : m). We denote the so obtained state vector with

x
(i)
1:m, it is composed form the same state values as x

(i)
σ(1:m)

but sorted according to the original state indices 1 : m. We
set w(x(i)

1:m) = w(x(i)
σ(1:m)), i.e., the particle weight remains

invariant to the sorting. The following theorem guarantees
that PFUO computes an approximation to (2).

Theorem 2. For t = m the particles x
(i)
1:m with i =

1, . . . , N provide an approximation to the posterior distri-
bution p(x1:m|Z) for sufficiently large N , i.e.,

p(x1:m|Z) ≈
N∑

i=1

w(x(i)
1:m)δ(x1:m − x

(i)
1:m). (14)

Proof of Theorem 2. Let us fix a single particle index (i).
We have that

w(x(i)
1:m) = w(x(i)

σ(1:m)) = w(i) =
p(x(i)

σ(1:m)|Z)

q(x(i)
σ(1:m)|Z)

. (15)

To see this, let us take the state dimension order σ (i)(1 : m)
as the initial order of state dimensions. It will then not
change during the computation of particle (i), i.e., the re-
cursive weight update formula simply follows the standard
weight update of PF. Consequently, x(i)

σ(i)(1:m)
is a weighted

sample from p(x(i)

σ(i)(1:m)
|Z).

Now p(x(i)

σ(i)(1:m)
|Z) is the joint distribution of m ran-

dom variables, and as such the order of the random vari-
ables is not relevant. (This follows from the fact that a joint
probability is defined as the probability of the intersection
of the sets representing events corresponding to the value
assignments of the random variables, and set intersection is
independent of the order of sets.) Consequently, we have

p(x(i)

σ(i)(1:m)
|Z) = p(x(i)

1:m|Z). (16)

The equation (16) is true for every particle (i), although we
may have different permutations σ (i)(1 : m) for different

particles. Consequently, x
(i)
1:m is a weighted sample from

p(x1:m|Z) for every i = 1, . . . , N , which proves the theo-
rem.

We stress again that the particular order of dimensions
σ(i)(1 : m) is extremely important for the proposed PFUO.
However, once we have this state vector, we can simply
present the state vector in the original order of dimensions.

The Sampling Importance Resampling (SIR) replaces
current particles with N new particles with the weights
normalized to sum to one, which provides an approxima-
tion to the same target pdf. This proves the theorem.

The fact that we can consider more than one follower of
each particle and reduce the number of followers by resam-
pling is known in the PF literature and is referred to as prior
boosting [8, 1]. It is used to capture multi-modal likelihood
regions. We stress that the resampling in our framework
plays an additional and a very crucial role. It selects the
the most informative orders of states. Since the weights of
w(x(i,s)

σ(1:t)) are determined by the corresponding order of ob-
servations zσ(i)(1:t−1), and the resampling uses the weights

to selects new particles x
(i)
σ(1:t), the resampling determines

the order of state dimensions. Consequently, the order of
state dimensions is heavily determined by their correspond-
ing observations, and this order may be different for each
particle (i). This is in strong contrast to the classical PF,
where observations are considered only in one order Z .

In order to utilize the derived PF algorithm to solve the
jigsaw puzzle problem, we need to define the proposal pdf
(11) and the conditional pdf of a new observation (12). Both
are defined in the next section.

5. Implementation Details

Given is an rectangular grid of m empty squares G =
{g1, . . . , gm}, as illustrated in Fig. 1(c) for m = 6, where
each gi is the index of a square in the grid. In order to
solve an image jigsaw puzzle with the puzzle pieces P =
{1, . . . , m}, we need to assign locations on S to the puzzle
pieces in P . The observation associated with each puzzle
piece is the local image depicted on it, i.e., zi is a K ×
K × 3 matrix of pixel color values for i ∈ P and Z =
{z1, . . . , zm} is the set of observations.

A state value assignment at time t ≤ m of our PF algo-
rithm is given by a state vector xσ(1:t) = (xσ(1), . . . , xσ(t)),
where each σ(i) ∈ P is an index of a puzzle piece for
j = 1, . . . , t and xσ(j) ∈ S meaning that puzzle piece σ(i)
is placed on the grid square with index xσ(i). The vector
of corresponding observations zσ(1:t) = (zσ(1), . . . , zσ(t))
represents the local images of the puzzle pieces. In this sec-
tion we drop the particle index (i), since all definitions ap-
ply to every particle.

We define now an affinity matrix A representing the
compatibility of the local images on the puzzle pieces. It
is a 3D matrix with the third dimension being an adjacency
type, since two puzzle pieces can be adjacent in four differ-
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ent ways: left/right, right/left, top/bottom, and bottom/top,
which we denote with LR, RL, TB, and BT. Hence the di-
mension of A are m × m × 4.

In order to be able to compare our experimental results
to the results in [2] we define A following the definitions in
[2]. They first define the dissimilarity-based compatibility
D. D measures dissimilarity between puzzle piece images
zj , zi by summing the squared LAB color difference along
the boundary, e.g., the left/right (LR) dissimilarity is defined
as

D(j, i, LR) =
K∑

k=1

3∑
c=1

(zj(k, u, c) − zi(k, v, c))2, (17)

where u indexes the last column of zj and v indexes the
first column of zi. (D(xj , xi) is not a distance, since it is
not symmetric, i.e., D(xj , xi) �= D(xi, xj).) Finally, the
weight of the LR connection is given by

A(j, i, LR) = exp(−D(j, i, LR)
2σ2

), (18)

where σ is adaptively set as the difference between the
smallest and the second smallest D values between puzzle
piece i and all other pieces in P , see [2] for more details.

Given is a vector xσ(1:t) of state values (i.e., grid loca-
tions) at time t. Let C(σ(j)) ⊂ {LR, RL, TB, BT} de-
notes a set of possible connections of puzzle piece σ(j)
for j = 1, . . . , t, e.g., if the left and top sides of σ(j) are
adjacent to the other puzzle pieces σ(1 : t) and the right
and bottom sides are adjacent to empty grid squares, then
C(σ(j)) ⊂ {RL, BT}. We can extend this definition to the
whole state vector by

C(σ(1 : t)) =
⋃

{C(σ(j)) | j = 1, . . . , t}.

The proposal distribution ps(·|xσ(1:t−1)) : G → R is as-
signs a probability of placing puzzle piece s to each grid
square x. ps(x|xσ(1:t−1)) = 0 if x is occupied or is not ad-
jacent to any square in σ(1 : t − 1). Now say x is adjacent
and is to the right of grid square xσ(j) for some j = 1, . . . , t.
Then

ps(x|xσ(1:t−1)) ∝ A(s, σ(j), RL). (19)

Intuitively, this probability is proportional to the LR simi-
larity between puzzle pieces s and σ(j).

Now let xs be a sample from (11) at time t, and as above
xs is adjacent and is to the right of grid square xσ(j) for
some j = 1, . . . , t. Then

p(zs|xσ(1:t), zσ(1:t−1)) ∝ A(s, σ(j), RL), (20)

where we recall that σ(t) = s and σ(1 : t) = (σ(1 :
t − 1), σ(t)). The definitions for other adjacency types
LR, TB, BT are analogous.

To summarize the proposal distribution is a function of
how well puzzle piece s fits to the already placed pieces
and assigns the probability of placing s to all grid squares,
while in the evaluation we already know the grid location
of puzzle piece s as well as its adjacent square. We then
use this information to compute the evaluation probability
according to A. Hence, both the proposal and evaluation of
a given particle are functions of how well adjacent pieces
fit together following the order in which the pieces has been
added. In order to compare the proposed PF inference to the
loopy believe propagation for solving the image jigsaw puz-
zle, we use exactly the same functions to define the proba-
bilities as in [2]. The comparison is presented in the next
section.

For a given image jigsaw puzzle with m pieces, the
time complexity of the proposed inference framework is
O(m2N), where N is the number of particles.

6. Experimental Results

We compare the image jigsaw puzzle solutions obtained
by the proposed PF inference framework to the solutions
of the loopy believe propagation used in [2] under identical
settings. We ran the software released by the authors of
[2] to obtain their results. The results are compared on the
dataset provided in [2], which we call MIT Dataset. It is
composed of 20 images. In addition, we also consider an
extended dataset composed of 40 images, i.e., we added 20
images. As we will see below the results of both methods
on the original and extended datasets are comparable.

The experimental results in [2] are conducted in two dif-
ferent settings: with and without any prior on the target im-
age layout. In [3] the prior of the image layout is given by
a low resolution version of the original image. [2] weakens
this assumption to a statistics of the possible image layout.
We focus on the results without any prior of the image lay-
out. Consequently, we focus on a harder problem, since we
only use the pairwise relation between the image patches.
It is given by pair-wise compatibilities of located puzzle
pieces as defined in Section 5.

In the probabilistic framework in [2], each grid location
is assigned a puzzle piece. In our PF framework, it is more
natural to assign a grid location to a puzzle piece. The so-
lutions of both methods are equivalent, since a final puzzle
solution is a set of m pairs composed of (puzzle piece, grid
location), where m is the number of pairs. We call such
pairs the solution pairs.

Three types of evaluation methods are used in [2]. Each
focuses on different aspects of the quality of the obtained
puzzle solutions. The most natural and strict one is Direct
Comparison. It simply computes the percentage of cor-
rectly placed puzzle pieces, i.e., for a puzzle with m pieces,
Direct Comparison is the number of correct solution pairs
divided by the total number of solution pairs m.
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The second measure is Cluster Comparison. It is less
strict than Direct Comparison. It tolerates an assignment
error as long as the puzzle piece is assigned to a location
that belongs to a similar puzzle piece. The puzzle pieces
are first clusters into clusters of similar pieces and only the
cluster labels are used in the count of the number of correct
solution pairs.

Moreover, due to lack of prior knowledge of target im-
age, the reconstructed image may shift compared to the
ground truth image. Therefore, the third measure called
Neighbor Comparison is used to evaluate the label con-
sistency of adjacent puzzle pieces independent of their grid
location, i.e., the location of two adjacent puzzle pieces is
considered correct if two puzzle pieces are left-right neigh-
bors in the ground truth image and they are also left-right
neighbors in he inferred image and similarly for the other
three possible adjacency relations. Neighbor Comparison is
the fraction of correct adjacent puzzle pieces. This measure-
ment do not penalize the accuracy as long as the adjacent
patches in original image are adjacent in the reconstructed
image.

The results on the MIT Dataset are shown in 1 and on the
extended dataset in Table 2. We stress that the proposed PF
inference framework outperforms the loopy believe prop-
agation in all three performance measures. Moreover, the
reconstruction accuracy of the original images by our al-
gorithm is three times better according to the most natural
measure of Direct Comparison.

In order to demonstrate that the considered image jig-
saw puzzle problem is also very challenging to humans,
we show some example results in Fig. 2. There we show
the original images, but we stress again in our experimental
evaluation, the original images are not provided. Fig. 2 also
demonstrates that the reconstructed images obtained by the
proposed algorithm compare very favorably to the results of
[2].

Both methods are initialized with one anchor patch, i.e.,
with one correct (puzzle piece, grid location) pair. We al-
ways assign a correct image patch to the top left corner of
the image. In all our experiments we divide each test image
into 108 square patches resulting in m = 108 puzzle pieces.
Of course, the more more patches, the smaller are the im-
ages on the puzzle pieces, thus, larger number of patches
makes the problem harder. Since the performance of [ 2] on
108 puzzle pieces is already very low, in particular, as mea-
sured by Direct Comparison, a larger number of pieces does
not seem to lead to any meaningful results.

In order to demonstrate the dynamic of the proposed PF
inference, we show reconstructed images of the best par-
ticle at different times (iterations) in Fig. 3. The puzzle
pieces of the best particles at different iterations are differ-
ent. This illustrates the facts that different dimensions of
the state vector are considered by different particles and the

[2] Our algorithm
Direct Comparison 0.2366 0.6921

Neighbor Comparison 0.6628 0.8620
Cluster Comparison 0.4657 0.7810

Table 1. Experimental results on MIT Dataset.

[2] Our algorithm
Direct Comparison 0.2137 0.7097

Neighbor Comparison 0.6458 0.8770
Cluster Comparison 0.4500 0.8018

Table 2. Experimental results on the extended dataset.

orders of considered dimensions are different.

7. Related Work

The first work on Jigsaw Puzzle Problem is [6]. Since
shape is an important clue for accurate pairwise relation,
many methods [10, 7, 13, 17] focus on matching distinct
shapes among jigsaw pieces to solve the problem. The pair-
wise relations among jigsaw pieces are measured by the fit-
ness of shapes. It is straightforward to consider both the
shape and image content [11, 12, 18]. Most methods solve
the problem with a greedy algorithm and report results on
just one or few images. Recently, Cho et. al [2] propose
to use loopy belief propagation to solve the problem and
evaluate on a test dataset.

describe PF approaches

8. Conclusion

We introduce a novel inference framework for solving la-
beling or assignment problems expressed as dynamic state
estimation. Our key contribution is an extension of the
PF framework to work with unordered observations. Intu-
itively, this means that the weighted particles explore differ-
ent orders of label assignment hypothesis. We prove that so
obtained weighted particles represent samples form the tar-
get, posterior distribution of label assignments. We evaluate
the labeling performance on a problem of image jigsaw puz-
zles, which is very challenging even for humans. As the ex-
perimental results demonstrate, the proposed PF inference
significantly outperforms the loopy belief propagation.
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Figure 2. The images in the first row are the original images. The jigsaw puzzle solution of Cho et. al [2] are shown in the second row. The
solutions of our algorithm are in the third row.
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Iter = 60 Iter = 70 Iter = 80 Iter = 90 Iter = 100 Iter = 107

Iter = 1 Iter = 10 Iter = 20 Iter = 30 Iter = 40 Iter = 50

Iter = 60 Iter = 70 Iter = 80 Iter = 90 Iter = 100 Iter = 107

Figure 3. The reconstructed images of the best particle at different iterations.
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