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Topological Equivalence between a 3D Object anc
the Reconstruction of its Digital Image

Peer Stelldinger, Longin Jan Latecki and Marcelo Siqueira

Abstract— Digitization is not as easy as it looks. If . INTRODUCTION
one digitizes a 3D object even with a dense sampling
grid, the reconstructed digital object may have topologica A fundamental task of knowledge representation and
distortions and in general there exists no upper bound processing is to infer properties of real objects or situa-
for the Hausdorff distance. This explains why so far no tiong given their representations. In spatial knowledge
algor'thnl. has been known which guarantees topology representation and, in particular, in computer vision
preservation. and medical imaging, real objects are represented in

However, as we will show, it is possible to repair the & Pictorial way as finite and discrete sets of pixels or
obtained digital image in a locally bounded way so that VOXels. The discrete sets result by a quantization process,
it is homeomorphic and close to the 3D object. The in which real objects are approximated by discrete sets.
resulting digital object is always well-composed, which h& In computer vision, this process is called sampling or
nice implications for a lot of image analysis problems. digitization and is naturally realized by technical degice
Mqreovgr, we will shovy that the surface of the origirjal like computer tomography scanners, CCD cameras or
ESLeeCSt EI;'lS| Qﬁtrr?riorq'ﬂrighif rgoa”thesurfs;i“s'itn Ofsit::se ri':arfg';?]gs document scanners. A fundamental question addressed
that the v%ell knoWn topologica)ll prot?lemsgof the marching ?n spatial knowlgdge representation. is: Which propgrties
cubes reconstruction simply do not occur for digital images inferred  from d|screte. represenj[atlops., of real objects
of r-reglar objects. Based on the trilinear interpolation Correspond to properties of their originals, and under
we also construct a smooth isosurface from the digital What conditions this is the case? While this problem is
image that has the same topology as the original surface. well-understood in the 2D case with respect to topoology
Finally we give a surprisingly simple topology preserving [1]-[6], it is not as simple in 3D, as shown in [7]. In
reconstruction method by using overlapping balls instead thjs paper we present the first comprehensive answer to
of cubical voxels. This is the first approach of digitizing g guestion with respect to important topological and
3D objects which guarantees topology preservation and g, mayic properties of 3D objects. Some of the results

gives an upper bound for the geometric distortion. Since . .
the output can be chosen as a pure voxel presentation, apresented here can also be found without proofs in [8]-

union of balls, a reconstruction by trilinear interpolation, a 0].
smooth isosurface or the piecewise linear marching cubes The description of geometric and, in particular, topo-
surface, the results are directly applicable to a huge class logical features in discrete structures is based on graph
of image analysis algorithms. theory, which is widely accepted in the computer science
community. A graph is obtained when a neighborhood

i .~ relation is introduced into a discrete set, e.g., a finite sub-
volume and the surface area of 3D objects by looking set ofZ? or Z3, whereZ denotes the integers. On the one
at their digitizations. Measuring volume and surface area ' . A o
of digital objects are important problems in 3D image hand, graph _theory e_lllows investigation _|nto connectivity
analysis. Good estimators should be multigrid convergent, @nd separability of discrete sets (for a simple and natural
i.e. the error goes to zero with increasing sampling density definition of connectivity see Kong and Rosenfeld [11],
We will show that every presented reconstruction method for example). On the other hand, a finite graph is an
can be used for volume estimation and we will give a elementary structure that can be easily implemented
solution for the much more difficult problem of multigrid-  on computers. Discrete representations are analyzed by
convgrgent surfape area estimation. Our solutioq is based algorithms based on graph theory, and the properties
on simple counting of voxels and we are the first to be o, a0taq are assumed to represent properties of the
able to give absolute bounds for the surface area. . . . . C

original objects. Since practical applications, for exaenpl

in image analysis, show that this is not always the case,
it is necessary to relate properties of discrete representa
tions to the corresponding properties of the originals.

Moreover, we show how one can efficiently estimate the

Index Terms—r-regular, topology, digitization, 3D,
marching cubes, trilinear interpolation, well-composed.



Since such relations allow us to describe and justitjuestion how to guarantee topology preservation during
the algorithms on discrete graphs, their characterizatidigitization in 3D remained up to now unsolved.
contributes directly to the computational investigation In this paper we provide a solution to this question.
of algorithms on discrete structures. This computationdle use the same digitization model as Pavlidis and Serra
investigation is an important part of the research msed, and we also useregular sets (but ifR?) to model
computer science, and in particular, in computer visidhe continuous objects. As already shown in [7] the
(Marr [12]), where it can contribute to the developmergeneralization of Pavlidis’ straightforward reconstroiat
of more suitable and reliable algorithms for extractinmethod to 3D fails since the reconstructed surface may
required shape properties from discrete representationst be a 2D manifold. For example, Fig. 3(a) and (b)
It is clear that no discrete representation can eghows a continuous object and its digital reconstruction
hibit all features of the real original. Thus one has twhose surface is not a 2D manifold. However, as we
accept compromises. The compromise chosen depewnds show it is possible to use several other reconstruc-
on the specific application and on the questions whition methods that all result in a 3D object with a 2D
are typical for that application. Real objects and theinanifold surface. Moreover we will show that these
spatial relations can be characterized using geometrconstructions and the original continuous object are
features. Therefore, any useful discrete representatttomeomorphic and their surfaces are close to each other.
should model the geometry faithfully in order to avoid The first reconstruction method, Majority interpola-
false conclusions. Topology deals with the invariand®n, is a voxel-based representation on a grid with
of fundamental geometric features like connectivity artbubled resolution. It always leads to a well-composed
separability. Topological properties play an importarget in the sense of Latecki [13], which implies that a lot
role, since they are the most primitive object featured problems in 3D digital geometry become relatively
and our visual system seems to be well-adapted to cagpeple.
with topological properties. The second method is the most simple one. We just
However, we do not have any direct access to spatigde balls with a certain radius instead of cubical voxels.
properties of real objects. Therefore, we represent rédhen choosing an appropriate radius the topology of an
objects, as commonly accepted from the beginning ofregular object will not be destroyed during digitization.
mathematics as bounded subsets of the Euclidean spackhe third method is a modification of the well-known
R3, and their 2D views (projections) as bounded contidMarching Cubes algorithm [14]. The original Marching
uous subsets of the plai®. Hence, from the theoretical Cubes algorithm does not always construct a topologi-
point of view of knowledge representation, we will relateally sound surface due to several ambiguous cases [15],
two different pictorial representations of objects in thEl6]. We will show that most of the ambiguous cases can
real world: a discrete and a continuous representatiomot occur in the digitization of am-regular object and
Already two of the first books in computer visionthat the only remaining ambiguous case always occurs in
deal with the relation between the continuous object aad unambiguous way, which can be dealt with by a slight
its digital images obtained by modeling a digitizatiomodification of the original Marching Cubes algorithm.
process. Pavlidis [1] and Serra [2] proved independenilyius the generated surface is not only topologically
in 1982 that an--regular continuous 2D se&f and the sound, but it also has exactly the same topology as the
continuous analog of the digital image 6f have the original object before digitization.
same shape in a topological sense. Pavlidis used 2[Moreover we show that one can use trilinear interpo-
square grids and Serra used 2D hexagonal sampliagon and that one can even blend the trilinear patches
grids. smoothly into each other such that one gets smooth
An analogous result in 3D case remained an opebject surfaces with the correct topology.
question for over 20 years. Only recently one of the Each of these methods has its own advantages such
authors proved together withdthe that the connectivity that our results are applicable for a lot of very different
properties are preserved when digitizing a 8Begular image analysis algorithms.
object with a sufficiently dense sampling grid [7]. But We also analyse the question if these reconstruction
the preservation of connectivity is much weaker thamethods are suitable to estimate object properties like
topology. They also found out that topology preservatiorolume and surface area. We show that all the reconstruc-
can even not be guaranteed with sampling grids tdn methods can be used for multigrid convergent vol-
arbitrary density if one uses the straightforward voxelme estimation, but that surface area estimation requires
resonstruction, since the surface of the continuous anatutper methods. We analyse the problem of multigrid
of the digital image may not be a 2D manifold. Thus theonvergent surface area estimation and suggest that one



should usesemi-localalgorithms, since local algorithmsz and eitherB%(c) € A° or B2(c) C (A°)°. Since all
do not seem to be multigrid-convergent and there existsthe known topology preserving sampling theorems in
no proof for any global algorithm. We give an exampl@D require the object to be-regular [1], [2], [7], we
of a semi-local surface area estimator and prove thawiill use the 3D generalization for our approach (refer to

is multigrid-convergent. Fig. 1):
Definition 1: A set A C R3 is calledr-regular if, for
Il. PRELIMINARIES each pointr € 9A, there exist two osculating open balls
The (Euclideanylistancebetween two points: andy of radiusr to 8_A at z _such_ that one lies entirely id
in R is denoted byi(z, y), and the (HausdorfRlistance @nd the other lies entirely inl®. ©

between two subsets ®" is the maximal distance Note that the boundary of a 3b-regular set is a 2D

between each point of one set and the nearest pd?ﬁ"im'fc’ld surfac_e. . .
of the other. LetA c R™ and B c R™ be sets. A AY SQGISSWhICh is a translated and rotated version of
. . .,,.,/ . . / - .
function f : A — B is called homeomorphisnif it the set%Z |s.called. acubic r’-grid ano! its elements
is bijective and both it and its inverse are continuou&'® calledsampling pon;tsNote that the distancé(z, p)
If f is a homeomorphism, we say that and B are from egch pointz € R® to the nearest sampling pomt
homeomorphicLet A, B be two subsets oR3. Then ¢ € S IS at mostr’. The voxel Vs(s) of a sampling
a homeomorphisny : R3 — R? such thatf(A) = B points € S is its Voronoi reglonR3: VS(_s) = {x € R?|
and d(z, f(z)) < r, for all z € R?, is called anr- 9(%;5) < d(z,q), ¥q € 5}, i.e.,Vs(s) is the set of al
homeomorphisn_mf A to B and we say thad and B points of R?> which are at least as close toas to any
are r-homeomorphicA Jordan curveis a setJ ¢ R” other point inS. In particular, note thaVs(s) is a cube
which is homeomorphic to a circle. Let be any subset WNOse vertices lie on a sphere of raditisind centes.

of R3. The complementof A is denoted byAc. All Definition 2: Let S be a cubicr’-grid, and letA be
points in A are foregroundwhile the points inA¢ are 2"y subset oR3. The union of all voxels with sampling

called background The open ballin R3 of radiusr and points lying in A is thedigital reconstruction of4 with

centerc is the setB%(c) = {z € R3 | d(z,c) < r}, 'eSPect1os, A=Uesna Vsls). %
and thceclosed ballig(cﬂ)@?’ of{fadiuw Lnéxcce)ntercri}s This method for reconstructing the object from the set of

the setB,(c) = {z € R® | d(z,c) < r}. Whenever included sampling points is the 3D generalization of the

¢ = (0,0,0) € R, we write 5° and B,. We say thatd 2D Gauss digitizatior(see [17]) Which has beep used by
IrGauss to compute the area of discs and which has also

been used by Pavlidis [1] in his sampling theorem.
For any two pointsp and ¢ of S, we have that

is openif, for eachz € A, there exists a positive numbe
r such thatBY(z) C A. We say thatA is closedif its

complement,A¢, is open. Theboundaryof A, denoted Vv Vv i< eith ¢ ¢ d
0A, consists of all points € R? with the property that if s(p)NVs(q) is either empty or a common vertex, edge

B is any open set dk? such thatr ¢ B, thenBN A # ( or face of both. IfVs(p)NVs(¢) is a common face, edge,

andBNA° . We defined® — A\9A andA — AUJA. or vertex, then we say thats(p) and Vgs(q) are face-
adjacent edge-adjacentor vertex-adjacentrespectively.

o Two voxelsVs(p) andVs(q) of A areconnected ind if

® -~ there exists a sequend&(si), ..., Vs(sg), with k € Z
and k > 1, such thats; =p Sk = q ands; € A
(or equivalently,Vs(s;) C A), for eachi € {1,...,k},
(2D) (3D) and Vs(s;) and Vg(s;+1) are face-adjacent, for each

Fig. 1. For each boundary point of a 2D/3Bregular set exists an J e {1’ ook =13 A (ConneCted):quponenbf Alis a

outside and an inside osculating opexlisc/ball. maximal set of connected voxels i,

Note thatA® is open andA is closed, for any4d c R3. .;I : F'

Note also thatB’(c) = (B,(c))" and B,(c) = B(c). '

The r-dilation A BY of a setA is the union of all open (@) (b)

r-balls with center inA, and ther-erosion 4 © BY is y o y o

h t of all center points of openballs Iving inside Fig. 2. (a) Critical conf_lguratlon (C1). (b) Critical configuration
the se p p X ying (C2). For the sake of clarity, we show only the voxels of foreground
of A. We say that an open ball’(c) is tangentto A  or background points.

at a pointr € 9A if 9ANOBY(c) = {z}. We say that

an open ballB%(c) is anosculating open ball of radius  Definition 3: Let S be a cubicr’-grid, and letT

r to OA at pointz € 9A if BY(c) is tangent todA at be any subset of. Then, we say thatJ,. Vs(t) is



well-composedf 9(|J, Vs(t)) is a surface inR?, or is (r — ¢)-regular withr — e > 7/, and A @ B, has the
equivalently, if for every point € O(lJ,. Vs(t)), there same digital reconstruction as. In what follows, we
exists a positive number such that the intersection ofwill locally characterize the topology and geometry of
(U,er Vs(t)) and B (z) is homeomorphic to the openA.
unit disk iNR2, D = {(z,9) e R? |22 + 42 < 1}. ©
Well-composed digital reconstructions can be char-
acterized by two local conditions depending only
on voxels of points ofS. Let si,...,s4 be any
four points of S such that(’_, Vs(s;) is a com-

mon edge ofVs(s1),...,Vs(s4). We say that the o4 Th . . o | oh el
. . "y ig. 4. e surface of an object only needs to have an arbitrarily
set {VS(81>’ T ’VS(84)} is an instance of thecrit small, but nonzero curvature in order to make occurrences of the

ical configuration (C1) with respect tdJ;.;Vs(t) critical configuration (C1) possible in the digital reconstruction.
if two of these voxels are inJ,.,Vs(t) and the

other two are in(J,.rVs(t))¢, and the two voxels
in Uer Vs(t) (resp. (U;er Vs())9) are edge-adjacent,
as shown in Fig. 2(a). Now, let;,...,ss be any
eight points of S such thatﬂf:1 Vs(si) is a com-
mon vertex of Vg(s1),...,Vs(ss). We say that the
set{Vs(s1),...,Vs(s4)} is an instance of theritical

Consider any cube iiR® whose (eight) vertices are
points ofS whose corresponding voxels share a common
vertex. By our above assumption, each vertex of such a
cube is either inside (i.e., a foreground point) or outside
(i.e., a background pointji. So, there are at mogb6

. : : : distinct configurations for a cube with respect to the
configuration (C2) with respect o), Vs (1) if two of binary “status” of its vertices. However, it has been

these voxels are i)yer Vs(t) (resp.(User Vs(t))) and shown [18] that up to rotational symmetry, reflectional

the other six are ir(.UtGT Vs(t))® (resp.Uyer VS(t)C)’ symmetry, and complementarity (switching foreground
and the two voxels ifJyer Vs(t) (resp.(Uer Vs(t))) and backgroud points), thesgh6 configurations are

are vertex-adjacent, as shown in Fig. 2(b). The fOIIOWIn<—9¢:|uivalent to thel4 canonical configurations in Fig. 5.

theorem from [13] establishes an important equivalenﬁ? ell-composed sets only cases 1 to 7 can occur
between well-composedness and the (non)existence oﬁ\v order to analyse the local topology changes due

critical configurations (C1) and (C2): to digitization, we need to define certain paths and

. i _cyri
b TheorerE 4t((£;3]T)'hLetS be ‘;Clib'.@ gr:ld and Iele surface patches spanned between sampling points and
e any subset of. Then,{J,.; Vs(t) is well-compose the regions inside which these can be localized:

iff the set of voxels{V(s) | s € S} does not contain
any instance of the critical configuration (C1) nor any

i it igurati i i ] =7 ==
instance of the critical configuration (C2) with respect Eg \<p | EFB Q
to UteT VS(t)- L~ |~

1) 2) 3) (4)
I11. DIGITAL RECONSTRUCTION OFr-REGULAR 7 1 =1 -
SETS El; K@ E@ ‘<E

(5) (6) (7) (8)

“ 0 g Ofg 0Od
oo oo

(13) (14) (9to 11) (12 to 14)
Fig. 3. The digital reconstruction (b) of anregular object (a) may

not be well-composed, i.e. its surface may not be a 2D manifold ggy. 5. There are256 distinct configurations for neighboring
can be seen in the magnification. sampling points that are either inside or outside a digitized set.
However, up to rotational symmetry, reflectional symmetry, and

Let A c R3 be anr-regular object, letS be a cubic complementarity (switching foreground and backgroud points), these
' 256 configurations are equivalent to the abavkcanonical config-

r'-grid, and consider the digital reconstructienof A ations. Configuration8 to 11 (resp.12 to 14) can be summarized
with respect toS. Assume that no sampling point ¢f in special cases with “don’t care” sampling points and ps (resp.
lies ondA. This assumption is not a restriction, as there andps).

always exists ar > 0 such that the--opening A & B



Definition 5: Let z, y be two points inR3. Further let Ps(z,v) is a simple cut set for any with % ~d(z,y) <
s > d(z,y). Then, the intersectiof;(x, y) of all closed s < r. Now, suppose there exists a pointon the
s-balls containingr andy, Ps(x,y) = (\{Bs(v) | z,y € direct path lying outside of’(x,y). Then the outside
Bs(v)}, is calleds-path region between and y. Now, osculating open-ball of A in p must cover either: or
let z,y, z be three points iR3, and assume that > y which implies that they cannot lie 084 or inside
s max{d(z,y),d(z, 2),d(y,z)}. Then, the intersection A. Thus, the direct path has to be insid&(z,y). If
Ps(z,y,z) of all closeds-balls containingz, y andz, x,y € A the analog is true by looking at the — ¢)-
Py(z,y,z) = ({Bs(v) | z,y,z € Bs(v)}, is calleds- regular setA @ B.)c for a sufficiently smalk > 0, since
surface region between, y and z. Further, a nonempty there alway exists an such that: andy remain outside
convex setB such that at no point € 0B exists an A @ B. ands < (r — ¢). [ ]
inside osculating-ball, is called an--simple-cut set® | emma 9:Let A be anr-regular set and leB be an
As we will show below (Lemma 8) under certain Cond'?s-simple-cut set withs < 7. Further, letB° N A° # )

tions P;(x, y) is anr-simple-cut set and B N A¢ # (). Then the intersectiofA N 9B of the
Theorem 6:Let A be anr-regular set and;, y be two  5undaries is a Jordan curve.

different points inA with d(z,y) < 2r. Further, letL be

the straight line segment fromto y. Then, the function

/ mapping each point of. to the nearest point ial is

well-defined, continuous and bijective, and the range

f is a simple path fromx to .

Proof: Let ¢; and ¢, be two arbitrary points in
BN A and letP be the direct path from; to ¢o. ThenP
I(i)(?s inside of B due to lemma 8 an® C Ps(cy, c2). This
implies thatB N A must be one connected component.
Now, consider the two points; andcs lying in BN A°.

A DE(z,ot(()qui-rEeaiTaKr)i?lrltr\LeTeAe;Z;ftz 1?o\l\r”;2cek? re;trlt)ﬂo:\n2|n Then the direct path does not necessarily liedinsince
) 9 y b this set is open, but inlc. Thus for any open superset of

exactly one nearest point 4 since each of these points

has a distance smaller thanto the boundary. Thug th? intersection of alk-ballg cqntaml_ngcl andc, therg
. ) . exists a path from; to ¢y inside this superset having
must be a continuous function since fifwould not be

. ) ) ) a minimal distance to the direct path itf. Due to the
continuous at some point, this point would have more

c c\0
than one nearest point ilA. Note that any point of. hlgher curvature, not only3 N A but also(3 rz A9)
) o is such a superset. Thus bathn A and B N A€ have
lies on the normal vector adA in its nearest boundary

. . to be one component and thus the intersection of the
point. Now suppose one point of A would be the .
: ; . boundaries] = 9ANdB, must also be one component.
nearest point to at least two different poifsandis of ) ) .
. . It remains to be shown thdtis a Jordan curve. Since
L. Thenly and iy both lie on the normal obA in p. . N )
L o . . separated B in one part inside ofl and one part outside
This implies that any point irl. including z andy lies o . : .
. . of A, itis a Jordan curve iff there exists no point where
on this normal. Since the normal vectors of lengtbf

anr-regular set do not intersect, the distance betweer[B and 4 meet tangentially. Such a point would imply
andy has to be at leastr which contradictsi(z, y) < hat either the inside or the outside osculating ball4of

or. Thus  is bijective. Since every bijective continuou at this point covers3. Both cases are impossible since
L ) ' . y bl . . enB°NA° =0 or BN A° = (. Thus,0ANJB is a
function of a compact metric space is continuous in bo Lrdan curve =

directions, f must be a homeomorphism and range is@a
simple path fromz to . - Definition 10: Let A be anr-regular set and let, y, z

Definition 7: Let A be anr-regular set and:,y be P€ three arbitrary points inside of’ & B,. Then, the
two different points inA with d(z,y) < 2r. Further, let inner surface patctl;(z,y, 2) of z,y, z regardingA is
L be the straight line segment fromto y. Then, the the set defined by mapping each point of the triangle
range of the functiory mapping each point of. to the T spanned b_y ppmts:,y,z to itself if it lies |nS|.de .of
nearest point ind is called thedirect pathfrom z to y 4 and mapping it to the nearest boundary poindin
regardingA. ¢ Otherwise. Now, let;, y, z be three arbitrary points inside
Lemma 8:Let A be anr-regular set and:, y be two ©Of A° © B,. Then theouter surface patctOs(z, y, z)
points both insided or both outsided with d(z,y) < ©f @,y,2 regardingA is the set defined by mapping
2r. Then, P,(z,y) is a simple-cut set for any with each point of the trianglé” between the points to itself
1.d(x,y) < s < r, the direct path from: to y regarding inside of (A ® B.)¢ and mapping them to the nearest
A lies inside A N P,(x,y) and the direct path from to boundary poinD(A @ B.)¢ otherwise, withe being half
y regarding(A © B.)c lies inside 4° N P,(z,y), for a the minimal distance from the sampling pointsAf to
sufficiently smalle > 0. OA. <
Proof: First, letxz,y € A. Sinced(z,y) < 2r, Lemma 11:Let A be anr-regular set andz,y, z



be three points insided with max{d(z,y), d(x,z), the boundings-path regions. Since both and p, lie
d(y,z)} < 2r. Then Ps(z,y, z) is a simple cut set for outside Ps(p1, p4, ps), the path frome to p, must go
any s with %-d(x,y) < s < r and the inner surface patchthrough the surface patch and thus there has to exist a
is homeomorphic to a disc, lies insiden P (z,y) and is point lying both in A and A°. It follows that ¢ cannot
bounded by three paths, one going franto y inside of be in the foreground. Analogously, cannot be in the
Ps(z,y,z) N Ps(z,y), another going fromy to z inside background sincePs(c, p1) intersectsPs(p2, p3, ps) in
of Ps(z,y,z) N Ps(y, z) and the third going fromx to the same way as can be seen in Fig. 6(c). Thus cases
x inside of Py(x,y, z) N Ps(z,x). The analog is true for 12 to 14 cannot occur in the digital reconstruction of an
x,y, z lying outside ofA and the outer surface patch. r-regular object if2r’ < r. [ ]
Proof: The mapping used in definition 10 is a Theorem 13:Configurations 9 to 11 in Fig. 5 cannot
direct generalization of the mapping in definition 7 andccur in the digital reconstruction of anregular object
it is @ homeomorphism for the same reasons.,if, = with a cubicr’-grid with 27" < r.
lie inside A andmax{d(z,y),d(z, z),d(y,z)} < 2r. Its Proof: We only have to show that the configuration
boundaries are equal to the direct paths between eabtlown in Fig. 5(9 to 11) is impossible since this is a
two of the three points. Ifr,y, 2 lie outside of A the generalization of the three mentioned cases. The proof
proof is analog. B is analog to the previous one. The surface patch between
The problem of topology preserving digitization is thathe pointspy, ps, ps and ps which can be defined by
several of the 14 cases are ambiguous, which measnbining the two triangular surface patches between
that there are more than one possibilities to reconstrygt ps and ps, respectivelyp,, p3 and ps has to be hit
the object locally. This is not true for sufficiently densbéy the direct path fromp, to p7 (which both lie outside
sampledr-regular objects, as shown by the followinghe regionP;s(p1, ps, ps) U Ps(p1, p3, ps)) as can be seen

theorems: in Fig. 6(a). Thus, the cases 9 to 11 cannot occur in the
digital reconstruction of am-regular object if2r’ < r.
(3 B -
L { ] Theorem 14:In the digital reconstruction of am-
(@) (b) regular object4 with a cubicr/-grid such thatr’ < r,

case 8 always occurs in pairs, one configuration having

Fig. 6. Cases 9 to 14 in a dense digitization would imply thg background voxels and the other having 6 foreground
existence of a foreground path intersecting the background. voxels (refer to Fig. 7(a))

Theorem 12:Configurations 12 to 14 in Fig. 5 cannot
occur in the digital reconstruction of anregular object
with a cubicr/-grid with 27" < 7.

Proof: We only have to show that the configuration
shown in Fig. 5(12 to 14) does not occur. In the followingig. 7. Case 8 only occurs in complementary (a) and not in equal
let the red sampling points in Fig. 5(12 to 14) be inairs ().
the foreground and the white sampling points in the
background. Further, let the sampling poiptsps, . . . ps Proof: Since case 8 is the only remaining case with
be numbered as shown in Fig. 5(12 to 14). Supposeachessboard configuration, i.e. four sampling points on
the contrary, such a configuration occurs in the digitahe facet such that one pair of opposing sampling points
reconstruction of am-regular objectA. Further, suppose lies inside and the other outside of, case 8 has to
the point ¢ in the center of the configuration is inoccur in pairs. There are two possibilities: Both configu-
the foreground. Since the distance franto p, is +/, rations have a different number of foreground voxels (see
there exists a foreground path between these poifig. 7(a)) or they have the same number (see Fig. 7(b)).
lying completely insideP;(c, p2). On the other side, the We only have to show that both configurations cannot
three background points;, p4, p¢ have each a distancehave the same number of foreground voxels. Without
being smaller thar2r. Thus, due to Lemma 11, therdoss of generality let them have each 6 background and
exists a surface patch between them lying completelyforeground voxels, see Fig. 7(b). The proof for the
outside A. This patch lies inside’s(p1, p4, pe) With its other case (2 background and 6 foreground voxels) is the
surface boundary lying inside the union &%(p;,ps), Same, we simply have to look at the digital reconstruction
Py(p1, ps) and Py(p4, ps)- Fig. 6(b) shows thaP;(c,ps) of (A @ B.)c for a sufficiently smalls > 0 in order to
goes through the-surface region without intersectingget the first case. The proof is analog to the previous




ones. The surface patch between the pojntsps, po, configurations of type 8 is divided by the boundary
p2, ps and py which can be defined by combining of the reconstructed object into two parts, each
triangular surface patches, each defined by Lemma 11, being homeomorphic to a ball (i.e. the boundary
has to be hit by the direct path fropg to p; as can be part inside the cube is homeomorphic to a disc),
seen in Fig. 6(a). Thus, this combination of two case 8 such that the part representing the foreground of
configurations cannot occur in the digital reconstruction the reconstruction contains all the sampling points
of an r-regular object if2r" < r. ] of the configuration which are inside the original set
Theorem 13 tells us that cannot contain an instance of ~ and none of the sampling points which are outside
the critical configuration (C2), as the presence of an in- the original set.

stance of (C2) would imply the occurrence of the canon- S

ical configuration9 in Fig. 5 during the reconstruction

of A.Aln addition, Theorem 12 and Theorem 14 tell us ﬁcﬁ Fij ‘/ﬁa( ‘qu
that A has an instance of the critical configuration (C1) | p | /E\ | D
e ~_ <~

iff the canonical configuratios in Fig. 5 occurs during (1) 2) 3) (4)
the reconstruction ofA. Furthermore, each instance of o . . it
(C1) is defined by the voxels of the four points $fin [ : [ Vkﬁ m \l PL‘

the common face of two cubes having complementary (5) () 7 ()
types of the canonical configuratio, as shown in

Fig. 7(a). A§ already S_hown n [_7]’ CO”f'gl{ra“P“ 8 Caneig. 8. The surface of the result of a topology preserving recon-
even occur in~-regular images with an arbitrarily big struction method is homeomorphic to a disc inside any of the cubes
with respect to the sampling constah{see Fig. 4). This of case 2t07 and the double-cube of case 8. The cube of case 1
implies that the digital reconstruction of anregular 90S notintersect the surface.

set cannot be guaranteed to be well-composed just by _ )

restricting the sampling density — in contrast to the 2D T_he?rer_n 16_.Let1,4 be anr-regular object and' be a
case. Since the surfaces of non-well-composed sets &8iC7’-grid with 27" < 7. Then the result of a topology
not 2D manifolds and since the surface of aregular Préserving reconstruction methodrihomeomorphic to
object is always a 2D manifold, one has to considét-

other reconstruction methods than the straightforward

way of reconstructing the object by taking the union of e .. . ‘W s
voxels corresponding to the sampling points (i.e. digital %/ . : 7
reconstruction). There are a lot of other methods known (@) (b) (c) (d)

to reconstruct a 3D object given the set of samplin
) 9 P rgg. 9. In order to construct a surface between three sampling points

points lying inside of the _O”gmal object. Some of the_rBeing not all in the foreground (a), we combine the inner (b) and the
reconstruct the volume, like voxel based reconstructi@oter surface patch (c) such that the result (d) is cutdby into

methods, some reconstruct the surface of the volume, exgctly two parts.
the marching cubes algorithm [14]. With the knowledge
of which configurations can not occur in the digitization ~ Proof: Due to Theorems 13, 12 and 14, the only
of anr-regular image by using arf-grid with 2/ < r, cases which can occur in the digitization of anegular
we can derive a sampling theorem which can be applietlject with a cubicr’-grid with 2’ < r are cases 1 to
to a big variety of such reconstruction methods, whic®, with case 8 always occurring in complementary pairs.
we call topology preserving Now consider a configuration of case 2 to 7 anddget
Definition 15: A reconstruction method is calleddenote the cube defined by the eight sampling points. In
topology preservingf it behaves in the following way these cases the intersection@f and the boundary of
(see Fig. 8): a topology preserving reconstruction is a Jordan curve.
o Any cube defined by the sampling points of conNow each faceF; of the cube can be constructed by
figuration 1 contains no boundary part or the rewo triangles. Since the cube with diametdf’ < r
constructed object. The cube lies completely insidetersectso A, every of its boundary points lies inside
or outside of the reconstructed object regarding thé A° @ BY. Thus both the inner and the outer surface
sampling points lying inside or outside of it. patch are defined. We define a new surface patch for such
« Any cube defined by the sampling points of configa triangle between three sampling points in the following
uration 2 to 7 and any double cube defined by theay: If all three sampling point®, po, p3 lie inside
sampling points of the pair of two complementarpf A, we take the inner surface patch. Analogously if



all three sampling points lie outside of, we take the is always well-composed, no such criterion is known for
outer surface patch. If only one sampling pointlies the 3D case. In [7] it is proven thatregularity does
inside of A, we use the mapping of the inner surfaceot enough to imply well-composedness. To deal with
patch for each point lying inside the smaller triangléhis problem there are two different approaches known:
A(py, P2 PrEps) and the mapping of the outer surfac€irst, as suggested by two of the authors together with
patch otherwise, see Fig. 9 for an illustration. In ordésallier in a previous paper, nondeterministic changing
to get a connected surface, we further add the straigtitthe voxels at positions where well-composedness is
line connections between the inner and the outer surfawa fulfilled [19], and second, interpolating voxels on
patch for any point lying on the straight line fro@ﬁ% a grid with higher resolution in a well-composed way.
to ’%. If one sampling point lies outside and the otheFhere is a method known for the 2D case using this
two inside of A, we define the mapping analogouslyapproach [20], which can directly be generalized to three
This leads to a surface patch between the three poidimensions in order to guarantee 3D well-composedness.
which is always homeomorphic to a disc. Furthermore, The advantage of the first approach is that it does
since any of the added straight line connections followst need to increase the number of sampling points. The
a normal of 9A and thus cuts)A exactly once, the disadvantage is that changes can propagate which makes
intersection of the surface patch withd is a simple it impossible to guarantee the preservation of topology.
curve. By combining the surface patches of the cullhe second approach is purely local and deterministic,
faces we get a surface homeomorphic to the cube surfaggl thus control of topology is possible, but it has the
intersectingd A in a Jordan curve. For case 8 we simplgisadvantage that it requires to increase the sampling
look at the union of the cube pair. This box also cuigensity. In case of the mentioned method [20] the reso-
the surface of the topology preserving reconstruction jgtion has to be tripled in any dimension, i.e. there are
one Jordan curve, see Fig. 10(8)a+b. By using surfag® times as much sampling points used as in the original
patches in the same way as above we get a surfagRl. We show that this is also possible by only doubling
homeomorphic to the box intersectirdi in a Jordan the resolution in any direction, i.e. using 8 times as much
curve. If we have a cube of case 1, we also can take #jisxels and give a guarantee for topology preservation for
above surface patch construction, since it only consistgjitizations ofr-regular objects.

of triangles lying completely inside respectively outside pefinition 17: Let A ¢ R3 be a binary object and

of A and thus the surface patches are well-defined. TBe; cubic sampling grid. Further I&& denote the grid
resulting combined surface does not intersgdtat all. of doubled resolution in any dimension containisg

Thus we have partitioned the whole space into regiopsnew sampling point inS’ \ S lying directly between
separated by the surface patches. The original objectig old ones is called dace pointsince it lies on the
homeomorphic to the result of the topology preservinggmmon face of the two voxels of the sampling points. A
reconstruction inside each of the regarded cubes/cuQ&y sampling point lying directly between 4 face points
pairs. The combination of the local homeomorphisms callededge pointsince it lies on the common edge of
(each being an2r’ + ¢)-homeomorphism) leads to a4 old sampling points and a new sampling point lying
global 7-homeomorphism fromA to the reconstructed girectly between 6 edge points is calledrner point
set. B since it lies on the common corner of 8 old sampling
Now we are able to define reconstruction methods, whiglints. Now themajority interpolation (Ml)of A on S

guarantee to preserve the original topology of 7an s the union of voxels of all sampling points € S’
regular object if one uses a cubitgrid with 27" < 7. fylfilling one of the following properties:

e s is an old sampling point inside of, or
IV. WELL-COMPOSEDDIGITIZATION BY MAJORITY « sis aface point and both neighboring old sampling
INTERPOLATION points are inside of4, or

As shown in [13], a lot of difficult problems in 3D * is an edge point and at least 4 of the 8 neighboring

digital geometry are much easier if the images are well- Old, sampling and face points are inside.f or
composed, e.g. there exists only one type of connected ° IS a corner point gnd at least 12 of t_he 26
component, a digital version of the Jordan-Brouwer- na_ghbormg old sampling face and edge points are
theorem holds and the Euler characteristic can be com- inside of A.

puted locally. Unfortunatlely most 3D binary imagedhe Ml surfaceis the boundary of the MI. Theomple-
are not well-composed. In contrast to the 2D casment majority interpolation (CMIpf A is defined as the
where the digital reconstruction of anregular shape complement of the Ml ofd¢ and analogously th€MiI



surface <& from their complements, so here we have to consider
Theorem 18:The majority interpolation of any setsubcases a and b. As Fig. 10 shows, the requirements
A C R? is well-composed. are fulfilled in every of the 8+4 cases. [ ]
Proof: It only needs to be shown that the Ml is Corollary 20: The CMI algorithm is a topology pre-
well-composed for every local configuration of 8 neighserving reconstruction method and thus the result of the
boring old sampling points. The proof simply followsCMI algorithm isr-homeomorphic to the original object
with checking all cases, see Fig.10. Thus the resultiifgA is r-regular and the sampling grid is a cubiegrid
digital binary image is well-composed. B with 20" <.
Note that for all cases except of case 12b a simpler
definition of MI is possible: A new sampling point
simply is regarded as foreground if more than half of _
the neighboring 2, 4, respectively 8 old sampling points, The MI approach needs 8 times as much voxels as
i.e. at least 2,3 respectively 5 sampling points are in tﬁémp“ng points in order to guarantee topology preser-
foreground. Only in case 12b this leads to a differeNtion. We will now show that this is not necessary if
result which is not well-composed. But if one deals witRN€ Uses balls instead of cubical voxels: An object with
the digitization of an--regular image with a cubic-grid  CO'Tect topology can also be constructed by using the
(27 < r), this simplification always leads to a well-Union of balls with an appropriate radius at the positions

composed set, since then case 12b can not occur.  ©f the original sampling points. This idea is related to
splat rendering in computer graphics [21]. The radius

== of the balls has to be chosen such that the result inside
| any of the eight cube configurations fulfills the criterion

V. BALL UNION

BIEED

n,,(,,l)a ()b (\2§a (2)b K of a topology preserving reconstruction. Thus since in

= T = —— case of configuration 1, when all eight sampling points

j ‘J‘g g é are inside the sampled object, the whole cube has to be

(3)b (Z)a (4)b (5) covered by the balls, their radius has to be at least
o I __ Otherwise the radius has to be smaller than the distance
9] DR r ] r ) : : : :

| L 3 LAl | of two neighboring sampling points since a ball centered

(\7) (g)a (8)b (9)a (9)b in one of the points must not cover the other. This upper

radius in between these values, we will show that the

, e , bound for the radius is%r' ~ 1.155'. For any ball
- + r'\"rf ™ V3
[1‘([ w H'/‘Wg :

(16361 (16)b (11) (\ié)a (12)b resultis topologically the same. For our illustrations we
o - use the mean value, = 3 + L ~ 1.077
e | i . Z V3 .
a LJ‘/\ L Definition 21: Let A C R? be a binary object and
(13) (14) (8)a+b a cubic sampling grid. Theall union (BU)of A on S
is the union of all ballsB,,(s) with s € SN A and
Fig. 10. The 22 different cases of Majority Interpolation (14 caseg <« 1 < 24/, &

plus complementary cases). The complementary occurences (8)a an . . .
(8)b of case 8 can be combined such that the surface inside the doublérheorem 22'_The BU algorithm is a topology preserv-
cube is homeomorphic to a disc (8)a+b. ing reconstruction method and thus the result of the BU
algorithm isr-homeomorphic to the original object A
Theorem 19:The MI algorithm is a topology preserv-is r-regular and the sampling grid is a cubiegrid with

ing reconstruction method and thus the result of the N < r.

algorithm isr-homeomorphic to the original object A Proof: Changingm in between the given interval
is r-regular and the sampling grid is a cubiegrid with does not change the topology of the BU result for any
2r’ < r. of the configurations, since a topology change would

Proof: We only have to check if in any of the 8require that at least two of the eight, resp. twelve
cases the result of the Majority interpolation algorithraampling points have a distance d to each other with
fulfills the requirements for a topology preserving red or 2d being inside this interval. Thus we only have to
construction method. Since majority interpolation is naheck the eight configurations for one sueh Fig. 11
dual (i.e. the reconstruction of the complement of a sgtows the reconstruction for the different configurations
is different from the complement of the reconstruction ofith m = %Jr % As can be seen the requirements of a
a set), we also have to check the complementary casgsology preserving reconstruction are fulfilled for any
of the 8 configurations. Only configurations 1 to 4 diffeconfiguration. [ ]
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fé]i changed: As already stated byiidt [15], it is sufficient
. to add the two triangles making up the quadrilateral

Db (2)a (2)b (the four intersection points along the edges of the
e~ : ambiguous face, see Fig. 12(8) and (8)MC). Nielson
and Hamann [16] mentioned that this method may lead

(3)b (4)a to edges being part of more than two triangles and

. thus non-manifold surfaces, but this does not happen
\ | for the only possible occurrence of case 8. Since we
5) 6) Kﬁ) need only one quadrilateral in such a configuration we

simply have to differentiate between the complementary
Fig. 11. Cases 1 to 8 with complementary subcases for ball unid¥@rts of configuration 8 and add the quadrilateral (i.e.
two triangles) only to the list of triangles of one of
the two parts. In the following this slight modification
VI. MARCHING CUBES: POLYGONAL SURFACE of the original marching cubes algorithm will be called
REPRESENTATION modified marching cubes (MMC)
Theorem 23:The result of the MMC algorithm is-
One of the most common reconstruction method®meomorphic to the surface of the original objectif
is the marching cubes algorithm, introduced 1987 ly r-regular and the sampling grid is a cubiegrid with
Lorensen and Cline [14]. This algorithm analyses local’ < r.
configurations of eight neighboring sampling points in  Proof: As can be seen in Fig. 12, the MMC surface
order to reconstruct a polygonal surface. Although ndivides in any of the eight cases the cube/double-cube
mentioned in the initial publication [14] the algorithmregion into two parts, one containing all foreground and
does not always produce a topologically consistent siwhe containing all background sampling points (except
face and might produce holes in the surface. In order 6 the first case). If one fills the foreground part, one
deal with these problems one has to introduce alternattyets a volume reconstruction method which is topology
configurations and decide in a non-local way, whicpreserving. Since the marching cubes result is just the
of the ambiguous configurations fit together [15], [16kurface of such a reconstruction, theorem 16 implies that
Thus a lot of research has been done on how to deaé MMC result has to be-homeomorphic to the surface
with these ambiguous cases and to guarantee that ¢fiehe original object. u
resulting surface is topologically consistent [15], [16],

[22]-[26]. But topological consistency only means that —— —— = - S
the result is always a manifold surface — none of the Zfo r’\\F[f \z\ ﬁ !\D \zﬁ
proposed modifications of the marching cubes algorithm (1)a (2) 3) 4) (5)
guarantees that the reconstructed surface has exactly t A T r;,,(,_;», 1 r:,,f;;%f 1
same topology as the original object before digitization L\ /l b gl L~ /A‘ L\I;v

The ambiguous cases of the marching cubes algorithm (6) ) (8) (8)MC

are exactly the cases which can not occur in a 3D

well-composed image. Thus using the above presenﬁé@l,lz- Casgs 1 to 8 for thg MMC algorithm and case 8 for the
. . . . original Marching Cubes algorithm.

majority interpolation algorithm to generate a well-

composed image and then applying marching cubes on

this new set of points would lead to a polygonal surface

representation with no ambiguous cases. But this would VII. TRILINEAR INTERPOLATION

require to double the resolution in any dimension which If one wants to reconstruct a continuous object from a

leads to approximately four times as much triangulaiscrete set of sampling points, one often uses interpola-

surface patches than in the original resolution. Forttien. The simplest interpolation method in 3D is the tri-

nately this is not necessary: Since cases 9 to 14 can lo¢ar interpolation which can be seen as the combination

occur in the sufficiently dense digitization of asregular of three linear interpolations, one for each dimension.

image and since the only remaining ambiguous casdrBour case only the binary information if a sampling

always occurs in a defined way, a slight modificatiopoint is inside or outside of the sampled object is given.

of the original marching cubes algorithm is all we needhus we take the values for the foreground and-1

to guarantee a reconstructed surface without any hol&s. the background sampling points and interpolate the

Only the triangulation of the eighth case has to lgrayscale values in between. Then thresholding With
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will lead to a continuous representation of the sampledanyC> functions fromR? to R is called apartition of
object. The interpolation result consists of smooth anhity on R? if it satisfies two conditions. First, for each
nice looking patches. As we will show, the result of thé € N, ¢, is a nonnegative and compactly supported
trilinear interpolation of the sampled version of an function, i.e., px(p) > 0 for every p € R3, and
regular object has the same topology as the original{fupp(yx)}ren is a locally finite cover ofR3, where
the sampling grid is am’-grid with 27" < r. supp(yz) is the closure of the sdp € R? | ¢(p) # 0}.
Definition 24: Let A C R? be a binary object and a Second,} ", . ¢k(p) = 1, for everyp € R3. A parti-
cubic sampling grid. Then thtgilinear interpolation (TI) tion of unity is typically used to blend locally defined
of A on S is the zero level set of a function: R3 — R functions into one global function. More specifically,
with v being 1 at any sampling point inside afl, © suppose that we have a partition of uniyy}reny ON
being—1 at any sampling point outside ¢f andu being R? and we want to smoothly blend overlapping patches
trilinearly interpolated between the eight sampling peinof functions f;, : supp(¢x) — R into each other. This
of the surrounding cub€);, (see Fig. 13 for the different leads to a globally defined functiofi : R*> — R in
possible cases). <& terms of the sef fi }ren Of local patches andyy }ren
Theorem 25:The Tl algorithm is a topology preserv-as f(p) = >_en vk(p) fi(p), for all p € R3. Since the
ing reconstruction method and thus the result of the Tilinear interpolation leads to smooth (C€°) zero level
algorithm isr-homeomorphic to the original object £ sets, the smoothness of the resulting surface does solely
is r-regular and the sampling grid is a cubiegrid with depend or{ ¢y } ken.
2r' < r. The above partition of unity approach has long been a
Proof: Since the trilinear interpolation inside ofkey ingredient of finite element meshless methods [27],
a cube configuration solely depends on the values ad it has more recently been used for reconstructing
the cube corners, we only have to check the eightirfaces from point sets [28] and for approximating iso-
possible configurations. As can be seen in Fig. 13 tegrfaces from multiple grids [29].
requirements of a topology preserving reconstruction areWithout loss of generality lets = Z* be the cubic

fulfilled for any configuration. m sampling grid (i.e.r’ = @) and A be anr-regular
set with 2/ > r. Our goal is to define a function
T T — m— f : R3 — R, which locally approximates the trilinear
{E E r‘ \/ D L;’fi interpolation7'] and which is as smooth as necessary. In
\(\1) (\2[)/ \(\3) \4) order to blend the trilinear patches into each other their
e D — domains have to overlap, thus instead of using the non-
6 E) W :E@ _overlapping cubeg’; as in tht_a' definition 01f the trilinear
5) (6) 7) 8) Egirpolftlon, Wel choose_ bigger fubésC - {p €
p1—sk1l < 5+d,|p2—sk2| < 5+d, |p3—sk3| <
Fig. 13. Cases 1 to 8 for trilinear interpolation. %""d} with s, being the sampling points and< d < %

being the amount of overlap.

Our construction is similar to the ones in [28] and [29],
as they also subdivide the Euclidean space into cubes,
and assign a weight function and a shape function with

While the surfaces of the above reconstruction metbach cube. However, the constructions in [28] and [29]
ods are only continuous but not necessarily differentiabdéfer from ours in two important ways. First, the support
at any point, they can not be used if one needs ¢ a weight function in [28] and [29] is a ball centered
compute local surface properties like tangents, curvatuat the center of the cube assigned with the function,
etc. Therefore we need to reconstruct a smooth surfaaad each shape function is either a general quadric, a
Depending on the application the surface should™¥e bivariate quadratic polynomial in local coordinates or a
C?, C3, ..., or evenC®. In this section we will show piecewise quadric surface [28], or a radial basis function
how to construct such surfaces based on the triling®BF) interpolant [29]. Second, the zero level get (0)
interpolation. Again the resulting reconstructed objects§ f built by either construction is not guaranteed to be
will have the same topology as the original objects of lsomeomorphic to the surface one wants to reconstruct
is r-regular with sufficiently bigr. from a point set [28] nor to the iso-surface one wants to

The idea is to smoothly blend between the trilineapproximate from multiple grids [29].
patches (see Fig. 15) by using a partition of unity of There are different types of intersections of the cubes
weight functions. A sef{ ¢y }reny Of at most countably Cy (see Fig. 14):

VIII. SMOOTH SURFACE REPRESENTATION
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« Center regions are the cubic regions of points whic¢H algorithm isr-homeomorphic to the original object if
lie in only one cube. They have three sides of length is r-regular and the sampling grid is a cubitgrid
1—2d. The center region inside a culég is noted with 2" < r.
asC}.

o Face regions are the cuboidal regions of points
which lie in exactly two cubes. They have two sides . ‘
of length1 — 2d and one side of lengtRd.

« Edge regions are the cuboidal regions of pointsg. 15. Left: Examples of trilinear interpolation without blending.
which lie in exactly four cubes. They have one sidBight: The same examples with withi>-blending.
of length1 — 2d and two sides of lengtRd.

« \ertex regions are the cubic regions of points which

lie in exactly eight cubes. They have three sides o
length 2d. ’

373 = T (2) (©)
1%3 3 P L L L=
Fig. 14. The intersections of neighboring cubes define Vertex (a)

Edge (b), Face (c) and Center regions (d).

The partition of unity blending functiong,, are defined Fig. 16. Digitization of anr-regular object (a) with a cubi¢ -

as the product of three one-dimensional partition of umqyld (b) digital reconstruction (Note that the surface is not a manifold
functlon&pk( ) 77( . 1) 77(p2—3k 2) 77(]33_3k 3) inside the circle) (c) ball union,(d) trilinear interpolation, (e) majority

: . N interpolation and (f) modified marching cubes.
where sy, is the sampling point in the center 6f; an P ® g
n:R — R is given by

H 1
1 if Jt] <5 —d IX. VOLUME AND SURFACE ESTIMATION
i 1 . . .
n(t) = 0 o it |t >3 +d In the previous sections we showed different methods
h(1*+) | to reconstruct a sampled object with only a small geo-
h(l_\uf(%fw)%(mfé—d)) else metric and no topological error. In this section we will

discuss how appropriate these reconstruction methods are
whereh : (0,1) — R* is a bounded strictly mono-to measure the volume and the surface of the original
tonic increasing function starting in the origin, i.egbject.

lim, o h(z) = 0. Possible choices fat are: The estimation of object properties like volume and
e h(z) = z for linear blending: This leads to &@;- surface area given only a digitization is an important
continuous surface, problem in image analysis. In this section we will show
o h(z) =223 —322+1 for cubic blending: This leads that both can be computed with high accuracy if the
to aCs- contlnuous surface original object isr-regular. At first we show that the
o h(z) = ev1e /2 + e for 0- -blending. This above reconstruction methods can directly be used for
leads to aC°° and thus smooth surface. volume estimation and we give absolute bounds for the

Due to the definition ofp;, it is 1 inside of the Center difference between the reconstructed and the original
regionC? and it is0 outside ofC}. Inside a face region volume:

it is constant in any direction parallel to the regarded Let A’ be the digital reconstruction of anregular
face and similarly inside any edge region it is constanbject A with a cubicr’-grid S with 27" < r. Without

in edge direction. loss of generality letS = Z3 (A and S can always
Lemma 26:Letd = 0.2. Then the zero level set of thebe transformed such that this is true). Now {et} =
smoothed functiory is homeomorphic to the zero levelZ® — (%,%,%) be the set ofcorner pointsof voxels
set of the trilinear interpolation inside any cubg. centered ins; € S. Then each/’-ball B, (c;) has
The proof can be found in the appendix. exactly eight sampling points; on its surface. The

Corollary 27: The smooth blending is a topologyvoxels of these eight sampling points contain as
preserving reconstruction method and the result of teerner point. Now letC' C {¢;} be the set of corner
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points whose eight sampling points are not all inside ¢ the grid size, sincéimgy_.q O(;/é) = oo. We will call

all outside the objectd. Then the unionU of all 7- such methodsemi-local Note that in their experiments
balls with centers inC' supercovers the boundary4, Coeurjolly et al. used a fixed minimal size for the used
since ther-homeomorphism constructed in the proof dbcal area, such that their implementation is not multigrid
Theorem 16 is equal to the the identity outsidelof convergent.

Moreover U covers not only the surface of the digital We think that using a semi-local approach for surface
reconstruction, but also the surface of any topologrea estimation is the right choice. In this paper we will
preserving reconstruction method for the same reasosisow that semi-local surface area estimation can be done
Thus the original set and all the different reconstructian a much more simple way than proposed by Coeurjolly
methods differ only inside aff and sinceV(U) < n7r™? et al. by simply counting certain sampling points. While
with n being the number of points i@, the difference in [33] the estimation of surface normals was used to
between the original volume and the volume of one afpproximate the surface area, we will measure the vol-
the reconstructions, i.e. the volume reconstruction ername of a thick representation of the surface. The idea is
is at mostnmr’?. With lim, o V(U) = 0 follows that that with the thickness of this volume going to zero, the
this volume estimation method is multigrid convergergurface can be approximated by dividing the volume by
for any r-regular image. the thickness. The volume can be estimated by counting

Multigrid convergence of a functiorf,, on a digital voxels. Since the volume estimation has to converge
representation of an object with sampling grid siZe faster than the size reduction of the surface, we have to
means thatlim,. .o f,» iS equal to the value for theincrease the sampling density faster than decreasing the
continuous object. thickness of the surface representation. That is why our

Surface estimation is not as simple as volume estipproach is semi-local. The basic property which makes
mation. Kenmochi and Klette showed that local surfacr approach possible, the connection between surface
estimation methods are not multigrid convergent [30drea and volume, is given by the following lemma:

This is quite reasonable, since any local surface ared.emma 28:Let A be anr-regular object. Then the
estimation method (local means that the size of the amaface area\(0A) is equal tolimg_, 21—3 V(0A @ By),
around a local cube which is used for approximating thveheredA & B can be seen as a thick representation of
surface locally is fixed relatively to the sampling gridhe surfaced A with thickness2s.

size) based on binary images allows only a finite number Proof: Let {T}} be a polygonal surface approxi-
of different surface patches, while even the number ofation of 94 such that each polygoff;, is a triangle
different orientations of planar surfaces is infinite. such that the distance between any two of the three

This means we need a non-local method in the sertsangle pointsty 1, tx2,tx3 € O0A is bounded bys
that the size of the area around a local cube which is ugd@dhis can be done by using the MMC algorithm).
for approximating the surface locally has to increase witllow let ny, 1,1 2, 7 3 be the normal vectors a¥A in
increasing sampling density. tr1,tk2, tr,3, and letVy, and W, be the triangles which

In the literature, two main approaches for globaine gets by projecting}. along the normals onto the
surface area estimation exist. While Klette et al. [3Xjvo planes being parallel to the plane containingwith
use a digital plane segmentation process without givigistances. Further letP, be the convex hull of the six
a proof of multigrid convergence, Sloboda et al. [3%orner points ofi, andW,. Then P, is a prismoid and
define a multigrid convergent method based on tliis volume isV(Py) = $(A(Vi) + 4A(Ty) + A(Wy)).
relative convex hull of the discrete object, but no efficiefthe union of the prismoids approximat§$0A @ Bs),
algorithm exists to compute the relative convex hull. thus:

The first and as far as we know up to now the s
only approach giving a multigrid convergent algorithm prk) - Z (g
was introduced by Coeurjolly et al. [33]. They estimate ke
the surface normals and use this to compute a surface _— f(z A(Vy) +4ZA<T’€) + ZA(Wk))
area approximation. They prove that their algorithm is 3 keN keN keN
multigrid convergent if the size of the local area which i|§ [
used to estimate a surface normal vector decreases iqra .
O(v/0), wheref is a measure for the grid size. Thuvigd:]tl:JSA(Vk) = ATk) and A(W) — A(Ti)- This
their approach is local in the sense that the used area
converges to zero relatively to the object size, but it is lim iV(aA @ B,) = lim Z V(P)
global in the sense that it converges to infinity relatively s—0 28 =0 2s

(A(Vi) + 4A(Ty) + A(Wk)))
N keN

— 0 the vectors of any triangl&), become parallel
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.1 s; of ther/-grid -+ - Z3 with A.
= lim = AVy)+4) AT, AW, ! V3 .
520 6 (% (Vi) + 1%1:\1 (Tk) +1§w ( k)> (5) Compute the seC of center pointsc; of the

cubic neighborhood configuratiorts; which consist of
o1 _ both foreground and background sampling points.
- l{%g <6ZA(Tk)> - lLH}]ZA(Tk) = A(9A). (6) Count the numbelN of sampling pointss; with
helt ren distance smaller thas to somec; € C.
" (7 Anzr';s-N; n=n+1
(8) loop until convergence af.,.

‘ ‘ ’ ’ (9) returnA,,.
n=2~0 n=1 n=2

n=3 The presented method is local relatively to the regular-
ity constraintr, i.e. relatively to the object size, but it is
global relatively to the size of the sampling grid. That's

why we call our approackemi-local We think that the
Now we can use the measurement of volumes for surfage;; of 4 semi-local method is the best choice for dealing

area estimation. In order to get a multigrid convergeiiii, the problem of surface area estimation, since local
method for surface estimation, we must measure tieshods are not multigrid convergent and it seems to be
volume of a thick representation of the surface angiicyit to prove the convergence of global methods. Our
we must guarantee that (1) the thickness parametegq,tion to the problem of multigrid convergent surface
converges to zero and (2) the estimation accuracy gf., estimation is extremely simple. In order to find the
its voI_ume‘ also converge§ to/zero. ThIS is possible '%mpling points with distance smaller than(step (6)
choosing lim s = 0 and lim = = 0, i.e. 7 CONVerges o e aigorithm), one can use a linear-time algorithm
faster to zero thans. The last remaining problem isfor Euclidean distance transform [34]. Then the above
to estimate the volume of a thick representation of th@gorithm only needs linear time for a given sampling

surface by using only the information which samplingesolution relatively to the number of sampling points.
points are inside the object and which sampling points . _
are outside. This is done as follows: We know that the Although the class of-regular objects is very general,

unionU of all '-balls with centers i’ coversdA. Thus @ 10t of objects of interest are notregular for anyr.
the s + +/-dilation of C' coversdA @ B.. i.e. the thick Nevertheless our algorithm is multigrid convergent if the
sy 1.

representation oA of thickness2s. Otherwise since SUrface of an object is almost everywhere differentiable,

dA & B, S C for any r-regular setd with ' < r, we SINce then _the percentage of the surface which bghgves
Know that@AEBg(Tur(s_w)) covers the(s — 1)-dilation r-regulgr (i.e. there exists an outside ans an inside

of C. Thus the volume 0dA @ B, can be approximated ogcglatmgr-ball) goes toloo% for I 0. Note that

by counting the sampling points inside® B, (see Fig. this is true for nearly any object of interest.

17). With N .= {s; | |si — ¢;| < s,¢; € C} follows for ~ Theorem 29:Let A be a continuous object with

Fig. 17. C @ B, appoximates)A with increasingn.

the volume of the thick representation: bounded curvature with except a sBtthat is a finite
_ . " union of curves of finite length (sharp edges). Then the
V(OA® Bs) = lim —r" - N. above surface area estimation algorithm converges to
=0 /3 i - :
h A(0A), i.e., the mulitgrid convergence is true fdr.
us _
A(9A) = lim iV(@A ©B,) ~ Proof: Let By = 0A\ (E®By) be the surface oft
5—0 2s without at-neighborhood of2. ThenB; is a finite union
2 3 of compact surface patchels U- - -UA,,. The patches are
= lm ——r"-N= Ilm — N isioi ' ‘
0.0 25 73 =0, 20 /35 disjoint, and their curvature is bounded by some constant

u. Taking r = min(t,u), By is an r-regular surface,
Thus the output of the following algorithm converges toe., for every surface interior point € B;, there exist

the true surface area: two differentr-balls that intersecB, in exactlyz. This
implies the convergence of the above algorithmtd3, ).

(1) Let A be anr-regular set; n =20 If t goes to zero, the error due to the wrong surface area

(2) do measurement insid@A N (E & B;) converges to zero

@ =3)" s=03)" and the surface area &f, goes to the surface area af

(4) Compute the intersection of the sampling poinfBhus the algorithm converges (0 A). |



X. CONCLUSIONS

(2]

We have analysed the problems of topology presegs,

vation during digitization ofr-regular objects in 3D.

We showed that with a sufficient sampling density sev-

ing sampling points are not possible. We used this to
derive the first sampling theorem for topology preservings]
digitization in 3D. Since this theorem is not restricted
to a certain method for digital reconstruction, we in- 6]
troduced several different methods which do all fulfill
the requirements of the sampling theorem. That makes

our theorem directly applicable to a large variety o

approaches.

f[7]

The first presented method is suitable for voxel-based
approaches. Since the straightforward voxel reconstruc-

we introduced Majority Interpolation, a method to in-
terpolate new voxels at doubled resolution such that thie]

topology is always well-defined and in caserefegular

objects even identical to the original topology. Since tf}(fO]
resulting digital object is always well-composed, several

3D digital geometry problems are much simpler.

We also modified the Marching Cubes algorithm sudh!]

that the generated surface has exactly the same topology

as the original surface. This is the first modification
of the Marching Cubes algorithm which guarantees [
surface with exactly the same topology as the originHP]

object instead of only a topologically sound surface.

[14]

In addition to that we showed that the trilinear interpo-
lation also fulfills the requirements of the theorem and
that it is even possible to blend between the trilinear
patches in order to get a surface which is everywhens;

smooth without changing the topology.

Finally we showed that one can simply use balls with®!
an appropriate radius instead of cubical voxels and it is

also guaranteed that the topology is exactly the same as

for the original object.
Further on we showed that every of these methods

[17]

Q] A. Lopes and K. Brodlie.

be used for multigrid convergent volume estimation of
r-regular objects. We discussed why it is not possible to
use our reconstruction methods for surface area estima-

algorithm which we proved to be multigrid-convergent.
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Proof: To proof the lemma, we will construct a

homeomorphism of the spad®®, which maps the zero
level sets onto each other, for any Center, Face, Edge
and Vertex region separately.

Inside a Center regio®’?, the blending functionpy,
is 1 and all othery; are zero. Thusf is equal to the
trilinear interpolation and the homeomorphism is given
by the identity.

Inside a Vertex region the homeomorphism can also

be chosen as the identity if it is guaranteed that the zero
level set does never touch a Vertex region. Suppose the
sampling point inside a Vertex region has valuerhen

the smallest possible value of the trilinear interpolant
inside the Vertex region is achieved at the pdintd, d)

if all surrounding sampling points have the valud.
This value is2 - (1 — d)® — 1 = 0.024 > 0. Analogously

for a background sampling point (valuel) the trilinear
interpolation inside the Vertex region is always smaller
or equal to—0.024. Since f is at any point a convex
combination of trilinear interpolants which have all the



