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Abstract— Digitization is not as easy as it looks. If
one digitizes a 3D object even with a dense sampling
grid, the reconstructed digital object may have topological
distortions and in general there exists no upper bound
for the Hausdorff distance. This explains why so far no
algorithm has been known which guarantees topology
preservation.

However, as we will show, it is possible to repair the
obtained digital image in a locally bounded way so that
it is homeomorphic and close to the 3D object. The
resulting digital object is always well-composed, which has
nice implications for a lot of image analysis problems.
Moreover, we will show that the surface of the original
object is homeomorphic to the result of the marching
cubes algorithm. This is really surprising since it means
that the well known topological problems of the marching
cubes reconstruction simply do not occur for digital images
of r-reglar objects. Based on the trilinear interpolation
we also construct a smooth isosurface from the digital
image that has the same topology as the original surface.
Finally we give a surprisingly simple topology preserving
reconstruction method by using overlapping balls instead
of cubical voxels. This is the first approach of digitizing
3D objects which guarantees topology preservation and
gives an upper bound for the geometric distortion. Since
the output can be chosen as a pure voxel presentation, a
union of balls, a reconstruction by trilinear interpolatio n, a
smooth isosurface or the piecewise linear marching cubes
surface, the results are directly applicable to a huge class
of image analysis algorithms.

Moreover, we show how one can efficiently estimate the
volume and the surface area of 3D objects by looking
at their digitizations. Measuring volume and surface area
of digital objects are important problems in 3D image
analysis. Good estimators should be multigrid convergent,
i.e. the error goes to zero with increasing sampling density.
We will show that every presented reconstruction method
can be used for volume estimation and we will give a
solution for the much more difficult problem of multigrid-
convergent surface area estimation. Our solution is based
on simple counting of voxels and we are the first to be
able to give absolute bounds for the surface area.

Index Terms— r-regular, topology, digitization, 3D,
marching cubes, trilinear interpolation, well-composed.

I. I NTRODUCTION

A fundamental task of knowledge representation and
processing is to infer properties of real objects or situa-
tions given their representations. In spatial knowledge
representation and, in particular, in computer vision
and medical imaging, real objects are represented in
a pictorial way as finite and discrete sets of pixels or
voxels. The discrete sets result by a quantization process,
in which real objects are approximated by discrete sets.
In computer vision, this process is called sampling or
digitization and is naturally realized by technical devices
like computer tomography scanners, CCD cameras or
document scanners. A fundamental question addressed
in spatial knowledge representation is: Which properties
inferred from discrete representations of real objects
correspond to properties of their originals, and under
what conditions this is the case? While this problem is
well-understood in the 2D case with respect to topoology
[1]–[6], it is not as simple in 3D, as shown in [7]. In
this paper we present the first comprehensive answer to
this question with respect to important topological and
geometric properties of 3D objects. Some of the results
presented here can also be found without proofs in [8]–
[10].

The description of geometric and, in particular, topo-
logical features in discrete structures is based on graph
theory, which is widely accepted in the computer science
community. A graph is obtained when a neighborhood
relation is introduced into a discrete set, e.g., a finite sub-
set ofZ2 or Z

3, whereZ denotes the integers. On the one
hand, graph theory allows investigation into connectivity
and separability of discrete sets (for a simple and natural
definition of connectivity see Kong and Rosenfeld [11],
for example). On the other hand, a finite graph is an
elementary structure that can be easily implemented
on computers. Discrete representations are analyzed by
algorithms based on graph theory, and the properties
extracted are assumed to represent properties of the
original objects. Since practical applications, for example
in image analysis, show that this is not always the case,
it is necessary to relate properties of discrete representa-
tions to the corresponding properties of the originals.
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Since such relations allow us to describe and justify
the algorithms on discrete graphs, their characterization
contributes directly to the computational investigation
of algorithms on discrete structures. This computational
investigation is an important part of the research in
computer science, and in particular, in computer vision
(Marr [12]), where it can contribute to the development
of more suitable and reliable algorithms for extracting
required shape properties from discrete representations.

It is clear that no discrete representation can ex-
hibit all features of the real original. Thus one has to
accept compromises. The compromise chosen depends
on the specific application and on the questions which
are typical for that application. Real objects and their
spatial relations can be characterized using geometric
features. Therefore, any useful discrete representation
should model the geometry faithfully in order to avoid
false conclusions. Topology deals with the invariance
of fundamental geometric features like connectivity and
separability. Topological properties play an important
role, since they are the most primitive object features
and our visual system seems to be well-adapted to cope
with topological properties.

However, we do not have any direct access to spatial
properties of real objects. Therefore, we represent real
objects, as commonly accepted from the beginning of
mathematics as bounded subsets of the Euclidean space
R

3, and their 2D views (projections) as bounded contin-
uous subsets of the planeR

2. Hence, from the theoretical
point of view of knowledge representation, we will relate
two different pictorial representations of objects in the
real world: a discrete and a continuous representation.

Already two of the first books in computer vision
deal with the relation between the continuous object and
its digital images obtained by modeling a digitization
process. Pavlidis [1] and Serra [2] proved independently
in 1982 that anr-regular continuous 2D setS and the
continuous analog of the digital image ofS have the
same shape in a topological sense. Pavlidis used 2D
square grids and Serra used 2D hexagonal sampling
grids.

An analogous result in 3D case remained an open
question for over 20 years. Only recently one of the
authors proved together with Köthe that the connectivity
properties are preserved when digitizing a 3Dr-regular
object with a sufficiently dense sampling grid [7]. But
the preservation of connectivity is much weaker than
topology. They also found out that topology preservation
can even not be guaranteed with sampling grids of
arbitrary density if one uses the straightforward voxel
resonstruction, since the surface of the continuous analog
of the digital image may not be a 2D manifold. Thus the

question how to guarantee topology preservation during
digitization in 3D remained up to now unsolved.

In this paper we provide a solution to this question.
We use the same digitization model as Pavlidis and Serra
used, and we also user-regular sets (but inR3) to model
the continuous objects. As already shown in [7] the
generalization of Pavlidis’ straightforward reconstruction
method to 3D fails since the reconstructed surface may
not be a 2D manifold. For example, Fig. 3(a) and (b)
shows a continuous object and its digital reconstruction
whose surface is not a 2D manifold. However, as we
will show it is possible to use several other reconstruc-
tion methods that all result in a 3D object with a 2D
manifold surface. Moreover we will show that these
reconstructions and the original continuous object are
homeomorphic and their surfaces are close to each other.

The first reconstruction method, Majority interpola-
tion, is a voxel-based representation on a grid with
doubled resolution. It always leads to a well-composed
set in the sense of Latecki [13], which implies that a lot
of problems in 3D digital geometry become relatively
simple.

The second method is the most simple one. We just
use balls with a certain radius instead of cubical voxels.
When choosing an appropriate radius the topology of an
r-regular object will not be destroyed during digitization.

The third method is a modification of the well-known
Marching Cubes algorithm [14]. The original Marching
Cubes algorithm does not always construct a topologi-
cally sound surface due to several ambiguous cases [15],
[16]. We will show that most of the ambiguous cases can
not occur in the digitization of anr-regular object and
that the only remaining ambiguous case always occurs in
an unambiguous way, which can be dealt with by a slight
modification of the original Marching Cubes algorithm.
Thus the generated surface is not only topologically
sound, but it also has exactly the same topology as the
original object before digitization.

Moreover we show that one can use trilinear interpo-
lation and that one can even blend the trilinear patches
smoothly into each other such that one gets smooth
object surfaces with the correct topology.

Each of these methods has its own advantages such
that our results are applicable for a lot of very different
image analysis algorithms.

We also analyse the question if these reconstruction
methods are suitable to estimate object properties like
volume and surface area. We show that all the reconstruc-
tion methods can be used for multigrid convergent vol-
ume estimation, but that surface area estimation requires
other methods. We analyse the problem of multigrid
convergent surface area estimation and suggest that one
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should usesemi-localalgorithms, since local algorithms
do not seem to be multigrid-convergent and there exists
no proof for any global algorithm. We give an example
of a semi-local surface area estimator and prove that it
is multigrid-convergent.

II. PRELIMINARIES

The (Euclidean)distancebetween two pointsx andy

in R
n is denoted byd(x, y), and the (Hausdorff)distance

between two subsets ofRn is the maximal distance
between each point of one set and the nearest point
of the other. LetA ⊂ R

n and B ⊂ R
m be sets. A

function f : A → B is called homeomorphismif it
is bijective and both it and its inverse are continuous.
If f is a homeomorphism, we say thatA and B are
homeomorphic. Let A, B be two subsets ofR3. Then
a homeomorphismf : R

3 → R
3 such thatf(A) = B

and d(x, f(x)) ≤ r, for all x ∈ R
3, is called anr-

homeomorphismof A to B and we say thatA and B

are r-homeomorphic. A Jordan curveis a setJ ⊂ R
n

which is homeomorphic to a circle. LetA be any subset
of R

3. The complementof A is denoted byAc. All
points in A are foregroundwhile the points inAc are
calledbackground. The open ballin R

3 of radiusr and
centerc is the setB0

r(c) = {x ∈ R
3 | d(x, c) < r},

and theclosed ball in R
3 of radius r and centerc is

the setBr(c) = {x ∈ R
3 | d(x, c) ≤ r}. Whenever

c = (0, 0, 0) ∈ R
3, we writeB0

r andBr. We say thatA
is openif, for eachx ∈ A, there exists a positive number
r such thatB0

r(x) ⊂ A. We say thatA is closed if its
complement,Ac, is open. Theboundaryof A, denoted
∂A, consists of all pointsx ∈ R

3 with the property that if
B is any open set ofR3 such thatx ∈ B, thenB∩A 6= ∅
andB∩Ac 6= ∅. We defineA0 = A\∂A andA = A∪∂A.

2r

(2D) (3D)

Fig. 1. For each boundary point of a 2D/3Dr-regular set exists an
outside and an inside osculating openr-disc/ball.

Note thatA0 is open andA is closed, for anyA ⊂ R
3.

Note also thatB0
r(c) = (Br(c))

0 and Br(c) = B0
r(c).

Ther-dilation A⊕B0
r of a setA is the union of all open

r-balls with center inA, and ther-erosion A ⊖ B0
r is

the set of all center points of openr-balls lying inside
of A. We say that an open ballB0

r(c) is tangentto ∂A

at a pointx ∈ ∂A if ∂A ∩ ∂B0
r (c) = {x}. We say that

an open ballB0
r(c) is anosculating open ball of radius

r to ∂A at point x ∈ ∂A if B0
r(c) is tangent to∂A at

x and eitherB0
r(c) ⊆ A0 or B0

r(c) ⊆ (Ac)0. Since all
of the known topology preserving sampling theorems in
2D require the object to ber-regular [1], [2], [7], we
will use the 3D generalization for our approach (refer to
Fig. 1):

Definition 1: A set A ⊂ R
3 is calledr-regular if, for

each pointx ∈ ∂A, there exist two osculating open balls
of radiusr to ∂A at x such that one lies entirely inA
and the other lies entirely inAc. 3

Note that the boundary of a 3Dr-regular set is a 2D
manifold surface.

Any setS which is a translated and rotated version of
the set2·r

′
√

3
Z

3 is called acubic r′-grid and its elements
are calledsampling points. Note that the distanced(x, p)
from each pointx ∈ R

3 to the nearest sampling point
s ∈ S is at mostr′. The voxel VS(s) of a sampling
point s ∈ S is its Voronoi regionR

3: VS(s) = {x ∈ R
3 |

d(x, s) ≤ d(x, q), ∀q ∈ S}, i.e., VS(s) is the set of all
points of R

3 which are at least as close tos as to any
other point inS. In particular, note thatVS(s) is a cube
whose vertices lie on a sphere of radiusr′ and centers.

Definition 2: Let S be a cubicr′-grid, and letA be
any subset ofR3. The union of all voxels with sampling
points lying inA is thedigital reconstruction ofA with
respect toS, Â =

⋃

s∈(S∩A) VS(s). 3

This method for reconstructing the object from the set of
included sampling points is the 3D generalization of the
2D Gauss digitization(see [17]) which has been used by
Gauss to compute the area of discs and which has also
been used by Pavlidis [1] in his sampling theorem.

For any two pointsp and q of S, we have that
VS(p)∩VS(q) is either empty or a common vertex, edge
or face of both. IfVS(p)∩VS(q) is a common face, edge,
or vertex, then we say thatVS(p) and VS(q) are face-
adjacent, edge-adjacent, or vertex-adjacent, respectively.
Two voxelsVS(p) andVS(q) of Â areconnected inÂ if
there exists a sequenceVS(s1), . . . ,VS(sk), with k ∈ Z

and k > 1, such thats1 = p, sk = q, and si ∈ A

(or equivalently,VS(si) ⊂ Â), for eachi ∈ {1, . . . , k},
and VS(sj) and VS(sj+1) are face-adjacent, for each
j ∈ {1, . . . , k − 1}. A (connected)componentof Â is a
maximal set of connected voxels in̂A.

(a) (b)

Fig. 2. (a) Critical configuration (C1). (b) Critical configuration
(C2). For the sake of clarity, we show only the voxels of foreground
or background points.

Definition 3: Let S be a cubicr′-grid, and let T

be any subset ofS. Then, we say that
⋃

t∈T VS(t) is
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well-composedif ∂(
⋃

t∈T VS(t)) is a surface inR3, or
equivalently, if for every pointx ∈ ∂(

⋃

t∈T VS(t)), there
exists a positive numberr such that the intersection of
∂(
⋃

t∈T VS(t)) andB0
r(x) is homeomorphic to the open

unit disk in R
2, D = {(x, y) ∈ R

2 | x2 + y2 < 1}. 3

Well-composed digital reconstructions can be char-
acterized by two local conditions depending only
on voxels of points of S. Let s1, . . . , s4 be any
four points of S such that

⋂4
i=1 VS(si) is a com-

mon edge of VS(s1), . . . ,VS(s4). We say that the
set {VS(s1), . . . ,VS(s4)} is an instance of thecrit-
ical configuration (C1) with respect to

⋃

t∈T VS(t)
if two of these voxels are in

⋃

t∈T VS(t) and the
other two are in(

⋃

t∈T VS(t))c, and the two voxels
in
⋃

t∈T VS(t) (resp.(
⋃

t∈T VS(t))c) are edge-adjacent,
as shown in Fig. 2(a). Now, lets1, . . . , s8 be any
eight points of S such that

⋂8
i=1 VS(si) is a com-

mon vertex of VS(s1), . . . ,VS(s8). We say that the
set {VS(s1), . . . ,VS(s4)} is an instance of thecritical
configuration (C2) with respect to

⋃

t∈T VS(t) if two of
these voxels are in

⋃

t∈T VS(t) (resp.(
⋃

t∈T VS(t))c) and
the other six are in(

⋃

t∈T VS(t))c (resp.
⋃

t∈T VS(t)),
and the two voxels in

⋃

t∈T VS(t) (resp.(
⋃

t∈T VS(t))c)
are vertex-adjacent, as shown in Fig. 2(b). The following
theorem from [13] establishes an important equivalence
between well-composedness and the (non)existence of
critical configurations (C1) and (C2):

Theorem 4 ( [13]): Let S be a cubicr′-grid and letT
be any subset ofS. Then,

⋃

t∈T VS(t) is well-composed
iff the set of voxels{V(s) | s ∈ S} does not contain
any instance of the critical configuration (C1) nor any
instance of the critical configuration (C2) with respect
to
⋃

t∈T VS(t).

III. D IGITAL RECONSTRUCTION OFr-REGULAR

SETS

(a) (b)

Fig. 3. The digital reconstruction (b) of anr-regular object (a) may
not be well-composed, i.e. its surface may not be a 2D manifold as
can be seen in the magnification.

Let A ⊂ R
3 be anr-regular object, letS be a cubic

r′-grid, and consider the digital reconstruction̂A of A

with respect toS. Assume that no sampling point ofS

lies on∂A. This assumption is not a restriction, as there
always exists anǫ > 0 such that theǫ-openingA ⊕ Bǫ

is (r − ǫ)-regular withr − ǫ > r′, andA ⊕ Bǫ has the
same digital reconstruction asA. In what follows, we
will locally characterize the topology and geometry of
Â.

Fig. 4. The surface of an object only needs to have an arbitrarily
small, but nonzero curvature in order to make occurrences of the
critical configuration (C1) possible in the digital reconstruction.

Consider any cube inR3 whose (eight) vertices are
points ofS whose corresponding voxels share a common
vertex. By our above assumption, each vertex of such a
cube is either inside (i.e., a foreground point) or outside
(i.e., a background point)A. So, there are at most256
distinct configurations for a cube with respect to the
binary “status” of its vertices. However, it has been
shown [18] that up to rotational symmetry, reflectional
symmetry, and complementarity (switching foreground
and backgroud points), these256 configurations are
equivalent to the14 canonical configurations in Fig. 5.
In well-composed sets only cases 1 to 7 can occur.

In order to analyse the local topology changes due
to digitization, we need to define certain paths and
surface patches spanned between sampling points and
the regions inside which these can be localized:

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (9 to 11) (12 to 14)

Fig. 5. There are256 distinct configurations for neighboring
sampling points that are either inside or outside a digitized set.
However, up to rotational symmetry, reflectional symmetry, and
complementarity (switching foreground and backgroud points), these
256 configurations are equivalent to the above14 canonical config-
urations. Configurations9 to 11 (resp.12 to 14) can be summarized
in special cases with “don’t care” sampling pointsp4 and p5 (resp.
p7 andp8).
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Definition 5: Let x, y be two points inR3. Further let
s > d(x, y). Then, the intersectionPs(x, y) of all closed
s-balls containingx andy, Ps(x, y) =

⋂{Bs(v) | x, y ∈
Bs(v)}, is calleds-path region betweenx and y. Now,
let x, y, z be three points inR3, and assume thats >
1
2 max{d(x, y), d(x, z), d(y, z)}. Then, the intersection
Ps(x, y, z) of all closeds-balls containingx, y and z,
Ps(x, y, z) =

⋂{Bs(v) | x, y, z ∈ Bs(v)}, is calleds-
surface region betweenx, y and z. Further, a nonempty
convex setB such that at no pointx ∈ ∂B exists an
inside osculatingr-ball, is called anr-simple-cut set. 3

As we will show below (Lemma 8) under certain condi-
tions Ps(x, y) is anr-simple-cut set

Theorem 6:Let A be anr-regular set andx, y be two
different points inA with d(x, y) < 2r. Further, letL be
the straight line segment fromx to y. Then, the function
f mapping each point ofL to the nearest point inA is
well-defined, continuous and bijective, and the range of
f is a simple path fromx to y.

Proof: Each pointL∩A is its own nearest point in
A. Due tor-regularity there exists for each point inL\A

exactly one nearest point in∂A since each of these points
has a distance smaller thanr to the boundary. Thusf
must be a continuous function since iff would not be
continuous at some point, this point would have more
than one nearest point in∂A. Note that any point ofL
lies on the normal vector of∂A in its nearest boundary
point. Now suppose one pointp of ∂A would be the
nearest point to at least two different pointsl1 and l2 of
L. Then l1 and l2 both lie on the normal of∂A in p.
This implies that any point inL including x andy lies
on this normal. Since the normal vectors of lengthr of
an r-regular set do not intersect, the distance betweenx

andy has to be at least2r which contradictsd(x, y) <

2r. Thusf is bijective. Since every bijective continuous
function of a compact metric space is continuous in both
directions,f must be a homeomorphism and range is a
simple path fromx to y.

Definition 7: Let A be anr-regular set andx, y be
two different points inA with d(x, y) < 2r. Further, let
L be the straight line segment fromx to y. Then, the
range of the functionf mapping each point ofL to the
nearest point inA is called thedirect pathfrom x to y

regardingA. 3

Lemma 8:Let A be anr-regular set andx, y be two
points both insideA or both outsideA with d(x, y) <

2r. Then, Ps(x, y) is a simple-cut set for anys with
1
2 ·d(x, y) ≤ s < r, the direct path fromx to y regarding
A lies insideA∩Ps(x, y) and the direct path fromx to
y regarding(A ⊖ Bε)c lies insideAc ∩ Ps(x, y), for a
sufficiently smallε > 0.

Proof: First, let x, y ∈ A. Since d(x, y) < 2r,

Ps(x, y) is a simple cut set for anys with 1
2 · d(x, y) ≤

s < r. Now, suppose there exists a pointp on the
direct path lying outside ofPs(x, y). Then the outside
osculating openr-ball of A in p must cover eitherx or
y which implies that they cannot lie on∂A or inside
A. Thus, the direct path has to be insidePs(x, y). If
x, y ∈ Ac the analog is true by looking at the(r − ε)-
regular set(A ⊕ Bε)c for a sufficiently smallε > 0, since
there alway exists anε such thatx andy remain outside
A ⊕ Bε ands < (r − ε).

Lemma 9:Let A be anr-regular set and letB be an
s-simple-cut set withs < r. Further, letB0 ∩ A0 6= ∅
andB ∩ Ac 6= ∅. Then the intersection∂A ∩ ∂B of the
boundaries is a Jordan curve.

Proof: Let c1 and c2 be two arbitrary points in
B∩A and letP be the direct path fromc1 to c2. ThenP

lies inside ofB due to lemma 8 andB ⊂ Ps(c1, c2). This
implies thatB ∩ A must be one connected component.
Now, consider the two pointsc1 andc2 lying in B∩Ac.
Then the direct path does not necessarily lie inAc since
this set is open, but inAc. Thus for any open superset of
the intersection of allr-balls containingc1 andc2 there
exists a path fromc1 to c2 inside this superset having
a minimal distance to the direct path inAc. Due to the
higher curvature, not onlyB ∩ Ac but also(B ∩ Ac)0

is such a superset. Thus bothB ∩ A and B ∩ Ac have
to be one component and thus the intersection of the
boundaries,I = ∂A∩∂B, must also be one component.
It remains to be shown thatI is a Jordan curve. SinceI
separates∂B in one part inside ofA and one part outside
of A, it is a Jordan curve iff there exists no point where
B and A meet tangentially. Such a point would imply
that either the inside or the outside osculating ball ofA

at this point coversB. Both cases are impossible since
thenB0 ∩ A0 = ∅ or B ∩ Ac = ∅. Thus,∂A ∩ ∂B is a
Jordan curve.

Definition 10: Let A be anr-regular set and letx, y, z

be three arbitrary points inside ofA0 ⊕ Br. Then, the
inner surface patchIs(x, y, z) of x, y, z regardingA is
the set defined by mapping each point of the triangle
T spanned by pointsx, y, z to itself if it lies inside of
A and mapping it to the nearest boundary point in∂A

otherwise. Now, letx, y, z be three arbitrary points inside
of Ac ⊕ Br. Then theouter surface patchOs(x, y, z)
of x, y, z regardingA is the set defined by mapping
each point of the triangleT between the points to itself
inside of (A ⊕ Bε)c and mapping them to the nearest
boundary point∂(A ⊕ Bε)c otherwise, withε being half
the minimal distance from the sampling points inAc to
∂A. 3

Lemma 11:Let A be an r-regular set andx, y, z
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be three points insideA with max{d(x, y), d(x, z),
d(y, z)} < 2r. Then Ps(x, y, z) is a simple cut set for
anys with 1

2 ·d(x, y) ≤ s < r and the inner surface patch
is homeomorphic to a disc, lies insideA∩Ps(x, y) and is
bounded by three paths, one going fromx to y inside of
Ps(x, y, z) ∩ Ps(x, y), another going fromy to z inside
of Ps(x, y, z) ∩ Ps(y, z) and the third going fromz to
x inside ofPs(x, y, z)∩Ps(z, x). The analog is true for
x, y, z lying outside ofA and the outer surface patch.

Proof: The mapping used in definition 10 is a
direct generalization of the mapping in definition 7 and
it is a homeomorphism for the same reasons ifx, y, z

lie insideA andmax{d(x, y), d(x, z), d(y, z)} < 2r. Its
boundaries are equal to the direct paths between each
two of the three points. Ifx, y, z lie outside ofA the
proof is analog.
The problem of topology preserving digitization is that
several of the 14 cases are ambiguous, which means
that there are more than one possibilities to reconstruct
the object locally. This is not true for sufficiently dense
sampledr-regular objects, as shown by the following
theorems:

(a) (b) (c)

Fig. 6. Cases 9 to 14 in a dense digitization would imply the
existence of a foreground path intersecting the background.

Theorem 12:Configurations 12 to 14 in Fig. 5 cannot
occur in the digital reconstruction of anr-regular object
with a cubicr′-grid with 2r′ < r.

Proof: We only have to show that the configuration
shown in Fig. 5(12 to 14) does not occur. In the following
let the red sampling points in Fig. 5(12 to 14) be in
the foreground and the white sampling points in the
background. Further, let the sampling pointsp1, p2, . . . p8

be numbered as shown in Fig. 5(12 to 14). Suppose to
the contrary, such a configuration occurs in the digital
reconstruction of anr-regular objectA. Further, suppose
the point c in the center of the configuration is in
the foreground. Since the distance fromc to p2 is r′,
there exists a foreground path between these points
lying completely insidePs(c, p2). On the other side, the
three background pointsp1, p4, p6 have each a distance
being smaller than2r. Thus, due to Lemma 11, there
exists a surface patch between them lying completely
outsideA. This patch lies insidePs(p1, p4, p6) with its
surface boundary lying inside the union ofPs(p1, p4),
Ps(p1, p6) andPs(p4, p6). Fig. 6(b) shows thatPs(c, p2)
goes through thes-surface region without intersecting

the boundings-path regions. Since bothc and p2 lie
outsidePs(p1, p4, p6), the path fromc to p2 must go
through the surface patch and thus there has to exist a
point lying both inA and Ac. It follows that c cannot
be in the foreground. Analogously,c cannot be in the
background sincePs(c, p1) intersectsPs(p2, p3, p5) in
the same way as can be seen in Fig. 6(c). Thus cases
12 to 14 cannot occur in the digital reconstruction of an
r-regular object if2r′ < r.

Theorem 13:Configurations 9 to 11 in Fig. 5 cannot
occur in the digital reconstruction of anr-regular object
with a cubicr′-grid with 2r′ < r.

Proof: We only have to show that the configuration
shown in Fig. 5(9 to 11) is impossible since this is a
generalization of the three mentioned cases. The proof
is analog to the previous one. The surface patch between
the pointsp1, p6, p8 and p3 which can be defined by
combining the two triangular surface patches between
p1, p6 and p8, respectivelyp1, p3 and p8 has to be hit
by the direct path fromp2 to p7 (which both lie outside
the regionPs(p1, p6, p8)∪Ps(p1, p3, p8)) as can be seen
in Fig. 6(a). Thus, the cases 9 to 11 cannot occur in the
digital reconstruction of anr-regular object if2r′ < r.

Theorem 14:In the digital reconstruction of anr-
regular objectA with a cubicr′-grid such that2r′ < r,
case 8 always occurs in pairs, one configuration having
6 background voxels and the other having 6 foreground
voxels (refer to Fig. 7(a)).

(a) (b) (c)

Fig. 7. Case 8 only occurs in complementary (a) and not in equal
pairs (b).

Proof: Since case 8 is the only remaining case with
a chessboard configuration, i.e. four sampling points on
one facet such that one pair of opposing sampling points
lies inside and the other outside ofA, case 8 has to
occur in pairs. There are two possibilities: Both configu-
rations have a different number of foreground voxels (see
Fig. 7(a)) or they have the same number (see Fig. 7(b)).
We only have to show that both configurations cannot
have the same number of foreground voxels. Without
loss of generality let them have each 6 background and
2 foreground voxels, see Fig. 7(b). The proof for the
other case (2 background and 6 foreground voxels) is the
same, we simply have to look at the digital reconstruction
of (A ⊕ Bε)c for a sufficiently smallε > 0 in order to
get the first case. The proof is analog to the previous
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ones. The surface patch between the pointsp1, p5, p9,
p12, p8 and p4 which can be defined by combining
triangular surface patches, each defined by Lemma 11,
has to be hit by the direct path fromp6 to p7 as can be
seen in Fig. 6(a). Thus, this combination of two case 8
configurations cannot occur in the digital reconstruction
of an r-regular object if2r′ < r.
Theorem 13 tells us that̂A cannot contain an instance of
the critical configuration (C2), as the presence of an in-
stance of (C2) would imply the occurrence of the canon-
ical configuration9 in Fig. 5 during the reconstruction
of A. In addition, Theorem 12 and Theorem 14 tell us
that Â has an instance of the critical configuration (C1)
iff the canonical configuration8 in Fig. 5 occurs during
the reconstruction ofA. Furthermore, each instance of
(C1) is defined by the voxels of the four points ofS in
the common face of two cubes having complementary
types of the canonical configuration8, as shown in
Fig. 7(a). As already shown in [7], configuration 8 can
even occur inr-regular images with an arbitrarily bigr
with respect to the sampling constantr′ (see Fig. 4). This
implies that the digital reconstruction of anr-regular
set cannot be guaranteed to be well-composed just by
restricting the sampling density – in contrast to the 2D
case. Since the surfaces of non-well-composed sets are
not 2D manifolds and since the surface of anr-regular
object is always a 2D manifold, one has to consider
other reconstruction methods than the straightforward
way of reconstructing the object by taking the union of
voxels corresponding to the sampling points (i.e. digital
reconstruction). There are a lot of other methods known
to reconstruct a 3D object given the set of sampling
points lying inside of the original object. Some of them
reconstruct the volume, like voxel based reconstruction
methods, some reconstruct the surface of the volume, e.g.
the marching cubes algorithm [14]. With the knowledge
of which configurations can not occur in the digitization
of an r-regular image by using anr′-grid with 2r′ < r,
we can derive a sampling theorem which can be applied
to a big variety of such reconstruction methods, which
we call topology preserving:

Definition 15: A reconstruction method is called
topology preservingif it behaves in the following way
(see Fig. 8):

• Any cube defined by the sampling points of con-
figuration 1 contains no boundary part or the re-
constructed object. The cube lies completely inside
or outside of the reconstructed object regarding the
sampling points lying inside or outside of it.

• Any cube defined by the sampling points of config-
uration 2 to 7 and any double cube defined by the
sampling points of the pair of two complementary

configurations of type 8 is divided by the boundary
of the reconstructed object into two parts, each
being homeomorphic to a ball (i.e. the boundary
part inside the cube is homeomorphic to a disc),
such that the part representing the foreground of
the reconstruction contains all the sampling points
of the configuration which are inside the original set
and none of the sampling points which are outside
the original set.

3

(1) (2) (3) (4)

(5) (6) (7) (8)

Fig. 8. The surface of the result of a topology preserving recon-
struction method is homeomorphic to a disc inside any of the cubes
of case 2 to 7 and the double-cube of case 8. The cube of case 1
does not intersect the surface.

Theorem 16:Let A be anr-regular object andS be a
cubicr′-grid with 2r′ < r. Then the result of a topology
preserving reconstruction method isr-homeomorphic to
A.

(a) (b) (c) (d)

Fig. 9. In order to construct a surface between three sampling points
being not all in the foreground (a), we combine the inner (b) and the
outer surface patch (c) such that the result (d) is cut by∂A into
exactly two parts.

Proof: Due to Theorems 13, 12 and 14, the only
cases which can occur in the digitization of anr regular
object with a cubicr′-grid with 2r′ < r are cases 1 to
8, with case 8 always occurring in complementary pairs.
Now consider a configuration of case 2 to 7 and letC

denote the cube defined by the eight sampling points. In
these cases the intersection of∂C and the boundary of
a topology preserving reconstruction is a Jordan curve.
Now each faceFi of the cube can be constructed by
two triangles. Since the cube with diameter2r′ < r

intersects∂A, every of its boundary points lies inside
of A0 ⊕ B0

r . Thus both the inner and the outer surface
patch are defined. We define a new surface patch for such
a triangle between three sampling points in the following
way: If all three sampling pointsp1, p2, p3 lie inside
of A, we take the inner surface patch. Analogously if
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all three sampling points lie outside ofA, we take the
outer surface patch. If only one sampling pointp1 lies
inside of A, we use the mapping of the inner surface
patch for each point lying inside the smaller triangle
△(p1,

p1+p2

2 , p1+p3

2 ) and the mapping of the outer surface
patch otherwise, see Fig. 9 for an illustration. In order
to get a connected surface, we further add the straight
line connections between the inner and the outer surface
patch for any point lying on the straight line fromp1+p2

2
to p1+p3

2 . If one sampling point lies outside and the other
two inside of A, we define the mapping analogously.
This leads to a surface patch between the three points
which is always homeomorphic to a disc. Furthermore,
since any of the added straight line connections follows
a normal of ∂A and thus cuts∂A exactly once, the
intersection of the surface patch with∂A is a simple
curve. By combining the surface patches of the cube
faces we get a surface homeomorphic to the cube surface
intersecting∂A in a Jordan curve. For case 8 we simply
look at the union of the cube pair. This box also cuts
the surface of the topology preserving reconstruction in
one Jordan curve, see Fig. 10(8)a+b. By using surface
patches in the same way as above we get a surface
homeomorphic to the box intersecting∂A in a Jordan
curve. If we have a cube of case 1, we also can take the
above surface patch construction, since it only consists
of triangles lying completely inside respectively outside
of A and thus the surface patches are well-defined. The
resulting combined surface does not intersect∂A at all.
Thus we have partitioned the whole space into regions
separated by the surface patches. The original object is
homeomorphic to the result of the topology preserving
reconstruction inside each of the regarded cubes/cube
pairs. The combination of the local homeomorphisms
(each being an(2r′ + ε)-homeomorphism) leads to a
global r-homeomorphism fromA to the reconstructed
set.
Now we are able to define reconstruction methods, which
guarantee to preserve the original topology of anr-
regular object if one uses a cubicr′-grid with 2r′ < r.

IV. W ELL-COMPOSEDDIGITIZATION BY MAJORITY

INTERPOLATION

As shown in [13], a lot of difficult problems in 3D
digital geometry are much easier if the images are well-
composed, e.g. there exists only one type of connected
component, a digital version of the Jordan-Brouwer-
theorem holds and the Euler characteristic can be com-
puted locally. Unfortunatlely most 3D binary images
are not well-composed. In contrast to the 2D case,
where the digital reconstruction of anr-regular shape

is always well-composed, no such criterion is known for
the 3D case. In [7] it is proven thatr-regularity does
not enough to imply well-composedness. To deal with
this problem there are two different approaches known:
First, as suggested by two of the authors together with
Gallier in a previous paper, nondeterministic changing
of the voxels at positions where well-composedness is
not fulfilled [19], and second, interpolating voxels on
a grid with higher resolution in a well-composed way.
There is a method known for the 2D case using this
approach [20], which can directly be generalized to three
dimensions in order to guarantee 3D well-composedness.

The advantage of the first approach is that it does
not need to increase the number of sampling points. The
disadvantage is that changes can propagate which makes
it impossible to guarantee the preservation of topology.
The second approach is purely local and deterministic,
and thus control of topology is possible, but it has the
disadvantage that it requires to increase the sampling
density. In case of the mentioned method [20] the reso-
lution has to be tripled in any dimension, i.e. there are
27 times as much sampling points used as in the original
grid. We show that this is also possible by only doubling
the resolution in any direction, i.e. using 8 times as much
voxels and give a guarantee for topology preservation for
digitizations ofr-regular objects.

Definition 17: Let A ⊂ R
3 be a binary object and

S a cubic sampling grid. Further letS′ denote the grid
of doubled resolution in any dimension containingS.
A new sampling point inS′ \ S lying directly between
two old ones is called aface pointsince it lies on the
common face of the two voxels of the sampling points. A
new sampling point lying directly between 4 face points
is callededge pointsince it lies on the common edge of
4 old sampling points and a new sampling point lying
directly between 6 edge points is calledcorner point
since it lies on the common corner of 8 old sampling
points. Now themajority interpolation (MI)of A on S

is the union of voxels of all sampling pointss ∈ S′

fulfilling one of the following properties:

• s is an old sampling point inside ofA, or
• s is a face point and both neighboring old sampling

points are inside ofA, or
• s is an edge point and at least 4 of the 8 neighboring

old sampling and face points are inside ofA, or
• s is a corner point and at least 12 of the 26

neighboring old sampling face and edge points are
inside ofA.

The MI surfaceis the boundary of the MI. Thecomple-
ment majority interpolation (CMI)of A is defined as the
complement of the MI ofAc and analogously theCMI
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surface. 3

Theorem 18:The majority interpolation of any set
A ⊂ R

3 is well-composed.
Proof: It only needs to be shown that the MI is

well-composed for every local configuration of 8 neigh-
boring old sampling points. The proof simply follows
with checking all cases, see Fig.10. Thus the resulting
digital binary image is well-composed.
Note that for all cases except of case 12b a simpler
definition of MI is possible: A new sampling point
simply is regarded as foreground if more than half of
the neighboring 2, 4, respectively 8 old sampling points,
i.e. at least 2,3 respectively 5 sampling points are in the
foreground. Only in case 12b this leads to a different
result which is not well-composed. But if one deals with
the digitization of anr-regular image with a cubicr′-grid
(2r′ < r), this simplification always leads to a well-
composed set, since then case 12b can not occur.

(1)a (1)b (2)a (2)b (3)a

(3)b (4)a (4)b (5) (6)

(7) (8)a (8)b (9)a (9)b

(10)a (10)b (11) (12)a (12)b

(13) (14) (8)a+b

Fig. 10. The 22 different cases of Majority Interpolation (14 cases
plus complementary cases). The complementary occurences (8)a and
(8)b of case 8 can be combined such that the surface inside the double
cube is homeomorphic to a disc (8)a+b.

Theorem 19:The MI algorithm is a topology preserv-
ing reconstruction method and thus the result of the MI
algorithm isr-homeomorphic to the original object ifA
is r-regular and the sampling grid is a cubicr′-grid with
2r′ < r.

Proof: We only have to check if in any of the 8
cases the result of the Majority interpolation algorithm
fulfills the requirements for a topology preserving re-
construction method. Since majority interpolation is not
dual (i.e. the reconstruction of the complement of a set
is different from the complement of the reconstruction of
a set), we also have to check the complementary cases
of the 8 configurations. Only configurations 1 to 4 differ

from their complements, so here we have to consider
subcases a and b. As Fig. 10 shows, the requirements
are fulfilled in every of the 8+4 cases.

Corollary 20: The CMI algorithm is a topology pre-
serving reconstruction method and thus the result of the
CMI algorithm isr-homeomorphic to the original object
if A is r-regular and the sampling grid is a cubicr′-grid
with 2r′ < r.

V. BALL UNION

The MI approach needs 8 times as much voxels as
sampling points in order to guarantee topology preser-
vation. We will now show that this is not necessary if
one uses balls instead of cubical voxels: An object with
correct topology can also be constructed by using the
union of balls with an appropriate radius at the positions
of the original sampling points. This idea is related to
splat rendering in computer graphics [21]. The radius
of the balls has to be chosen such that the result inside
any of the eight cube configurations fulfills the criterion
of a topology preserving reconstruction. Thus since in
case of configuration 1, when all eight sampling points
are inside the sampled object, the whole cube has to be
covered by the balls, their radius has to be at leastr′.
Otherwise the radius has to be smaller than the distance
of two neighboring sampling points since a ball centered
in one of the points must not cover the other. This upper
bound for the radius is2√

3
r′ ≈ 1.155r′. For any ball

radius in between these values, we will show that the
result is topologically the same. For our illustrations we
use the mean valuem = 1

2 + 1√
3
≈ 1.077

Definition 21: Let A ⊂ R
3 be a binary object andS

a cubic sampling grid. Theball union (BU) of A on S

is the union of all ballsBm(s) with s ∈ S ∩ A and
r′ < m < 2√

3
r′. 3

Theorem 22:The BU algorithm is a topology preserv-
ing reconstruction method and thus the result of the BU
algorithm isr-homeomorphic to the original object ifA
is r-regular and the sampling grid is a cubicr′-grid with
2r′ < r.

Proof: Changingm in between the given interval
does not change the topology of the BU result for any
of the configurations, since a topology change would
require that at least two of the eight, resp. twelve
sampling points have a distance d to each other with
d or 2d being inside this interval. Thus we only have to
check the eight configurations for one suchm. Fig. 11
shows the reconstruction for the different configurations
with m = 1

2 + 1√
3
. As can be seen the requirements of a

topology preserving reconstruction are fulfilled for any
configuration.
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(1)a (1)b (2)a (2)b

(3)a (3)b (4)a (4)b

(5) (6) (7) (8)

Fig. 11. Cases 1 to 8 with complementary subcases for ball union.

VI. M ARCHING CUBES: POLYGONAL SURFACE

REPRESENTATION

One of the most common reconstruction methods
is the marching cubes algorithm, introduced 1987 by
Lorensen and Cline [14]. This algorithm analyses local
configurations of eight neighboring sampling points in
order to reconstruct a polygonal surface. Although not
mentioned in the initial publication [14] the algorithm
does not always produce a topologically consistent sur-
face and might produce holes in the surface. In order to
deal with these problems one has to introduce alternative
configurations and decide in a non-local way, which
of the ambiguous configurations fit together [15], [16].
Thus a lot of research has been done on how to deal
with these ambiguous cases and to guarantee that the
resulting surface is topologically consistent [15], [16],
[22]–[26]. But topological consistency only means that
the result is always a manifold surface – none of the
proposed modifications of the marching cubes algorithm
guarantees that the reconstructed surface has exactly the
same topology as the original object before digitization.

The ambiguous cases of the marching cubes algorithm
are exactly the cases which can not occur in a 3D
well-composed image. Thus using the above presented
majority interpolation algorithm to generate a well-
composed image and then applying marching cubes on
this new set of points would lead to a polygonal surface
representation with no ambiguous cases. But this would
require to double the resolution in any dimension which
leads to approximately four times as much triangular
surface patches than in the original resolution. Fortu-
nately this is not necessary: Since cases 9 to 14 can not
occur in the sufficiently dense digitization of anr-regular
image and since the only remaining ambiguous case 8
always occurs in a defined way, a slight modification
of the original marching cubes algorithm is all we need
to guarantee a reconstructed surface without any holes.
Only the triangulation of the eighth case has to be

changed: As already stated by Dürst [15], it is sufficient
to add the two triangles making up the quadrilateral
(the four intersection points along the edges of the
ambiguous face, see Fig. 12(8) and (8)MC). Nielson
and Hamann [16] mentioned that this method may lead
to edges being part of more than two triangles and
thus non-manifold surfaces, but this does not happen
for the only possible occurrence of case 8. Since we
need only one quadrilateral in such a configuration we
simply have to differentiate between the complementary
parts of configuration 8 and add the quadrilateral (i.e.
two triangles) only to the list of triangles of one of
the two parts. In the following this slight modification
of the original marching cubes algorithm will be called
modified marching cubes (MMC).

Theorem 23:The result of the MMC algorithm isr-
homeomorphic to the surface of the original object ifA

is r-regular and the sampling grid is a cubicr′-grid with
2r′ < r.

Proof: As can be seen in Fig. 12, the MMC surface
divides in any of the eight cases the cube/double-cube
region into two parts, one containing all foreground and
one containing all background sampling points (except
of the first case). If one fills the foreground part, one
gets a volume reconstruction method which is topology
preserving. Since the marching cubes result is just the
surface of such a reconstruction, theorem 16 implies that
the MMC result has to ber-homeomorphic to the surface
of the original object.

(1)a (2) (3) (4) (5)

(6) (7) (8) (8)MC

Fig. 12. Cases 1 to 8 for the MMC algorithm and case 8 for the
original Marching Cubes algorithm.

VII. T RILINEAR INTERPOLATION

If one wants to reconstruct a continuous object from a
discrete set of sampling points, one often uses interpola-
tion. The simplest interpolation method in 3D is the tri-
linear interpolation which can be seen as the combination
of three linear interpolations, one for each dimension.
In our case only the binary information if a sampling
point is inside or outside of the sampled object is given.
Thus we take the values1 for the foreground and−1
for the background sampling points and interpolate the
grayscale values in between. Then thresholding with0
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will lead to a continuous representation of the sampled
object. The interpolation result consists of smooth and
nice looking patches. As we will show, the result of the
trilinear interpolation of the sampled version of anr-
regular object has the same topology as the original if
the sampling grid is anr′-grid with 2r′ < r.

Definition 24: Let A ⊂ R
3 be a binary object andS a

cubic sampling grid. Then thetrilinear interpolation (TI)
of A on S is the zero level set of a functionu : R

3 → R

with u being 1 at any sampling point inside ofA, u

being−1 at any sampling point outside ofA andu being
trilinearly interpolated between the eight sampling points
of the surrounding cubeCk (see Fig. 13 for the different
possible cases). 3

Theorem 25:The TI algorithm is a topology preserv-
ing reconstruction method and thus the result of the TI
algorithm isr-homeomorphic to the original object ifA
is r-regular and the sampling grid is a cubicr′-grid with
2r′ < r.

Proof: Since the trilinear interpolation inside of
a cube configuration solely depends on the values at
the cube corners, we only have to check the eight
possible configurations. As can be seen in Fig. 13 the
requirements of a topology preserving reconstruction are
fulfilled for any configuration.

(1) (2) (3) (4)

(5) (6) (7) (8)

Fig. 13. Cases 1 to 8 for trilinear interpolation.

VIII. S MOOTH SURFACE REPRESENTATION

While the surfaces of the above reconstruction meth-
ods are only continuous but not necessarily differentiable
at any point, they can not be used if one needs to
compute local surface properties like tangents, curvature,
etc. Therefore we need to reconstruct a smooth surface.
Depending on the application the surface should beC1,
C2, C3, . . . , or evenC∞. In this section we will show
how to construct such surfaces based on the trilinear
interpolation. Again the resulting reconstructed objects
will have the same topology as the original objects of is
is r-regular with sufficiently bigr.

The idea is to smoothly blend between the trilinear
patches (see Fig. 15) by using a partition of unity of
weight functions. A set{ϕk}k∈N of at most countably

manyC∞ functions fromR
3 to R is called apartition of

unity on R
3 if it satisfies two conditions. First, for each

k ∈ N, ϕk is a nonnegative and compactly supported
function, i.e., ϕk(p) ≥ 0 for every p ∈ R

3, and
{supp(ϕk)}k∈N is a locally finite cover ofR3, where
supp(ϕk) is the closure of the set{p ∈ R

3 | ϕk(p) 6= 0}.
Second,

∑

k∈N
ϕk(p) = 1, for every p ∈ R

3. A parti-
tion of unity is typically used to blend locally defined
functions into one global function. More specifically,
suppose that we have a partition of unity{ϕk}k∈N on
R

3 and we want to smoothly blend overlapping patches
of functionsfk : supp(ϕk) → R into each other. This
leads to a globally defined functionf : R

3 → R in
terms of the set{fk}k∈N of local patches and{ϕk}k∈N

as f(p) =
∑

k∈N
ϕk(p)fk(p), for all p ∈ R

3. Since the
trilinear interpolation leads to smooth (i.e.C∞) zero level
sets, the smoothness of the resulting surface does solely
depend on{ϕk}k∈N.

The above partition of unity approach has long been a
key ingredient of finite element meshless methods [27],
and it has more recently been used for reconstructing
surfaces from point sets [28] and for approximating iso-
surfaces from multiple grids [29].

Without loss of generality letS = Z
3 be the cubic

sampling grid (i.e.r′ =
√

3
2 ) and A be an r-regular

set with 2r′ > r. Our goal is to define a function
f : R

3 → R, which locally approximates the trilinear
interpolationTI and which is as smooth as necessary. In
order to blend the trilinear patches into each other their
domains have to overlap, thus instead of using the non-
overlapping cubesCk as in the definition of the trilinear
interpolation, we choose bigger cubesC1

k = {p ∈
R

3 | |p1−sk,1| ≤ 1
2 +d, |p2−sk,2| ≤ 1

2 +d, |p3−sk,3| ≤
1
2 +d} with sk being the sampling points and0 < d < 1

2
being the amount of overlap.

Our construction is similar to the ones in [28] and [29],
as they also subdivide the Euclidean space into cubes,
and assign a weight function and a shape function with
each cube. However, the constructions in [28] and [29]
differ from ours in two important ways. First, the support
of a weight function in [28] and [29] is a ball centered
at the center of the cube assigned with the function,
and each shape function is either a general quadric, a
bivariate quadratic polynomial in local coordinates or a
piecewise quadric surface [28], or a radial basis function
(RBF) interpolant [29]. Second, the zero level setf−1(0)
of f built by either construction is not guaranteed to be
homeomorphic to the surface one wants to reconstruct
from a point set [28] nor to the iso-surface one wants to
approximate from multiple grids [29].

There are different types of intersections of the cubes
Ck (see Fig. 14):
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• Center regions are the cubic regions of points which
lie in only one cube. They have three sides of length
1−2d. The center region inside a cubeCk is noted
asC2

k .
• Face regions are the cuboidal regions of points

which lie in exactly two cubes. They have two sides
of length1 − 2d and one side of length2d.

• Edge regions are the cuboidal regions of points
which lie in exactly four cubes. They have one side
of length1 − 2d and two sides of length2d.

• Vertex regions are the cubic regions of points which
lie in exactly eight cubes. They have three sides of
length2d.

(a) (b) (c) (d)

Fig. 14. The intersections of neighboring cubes define Vertex (a),
Edge (b), Face (c) and Center regions (d).

The partition of unity blending functionsϕk are defined
as the product of three one-dimensional partition of unity
functionsϕk(p) = η(p1−sk,1)·η(p2−sk,2)·η(p3−sk,3),
wheresk is the sampling point in the center ofCk and
η : R → R is given by

η(t) =























1 if |t| ≤ 1
2 − d

0 if |t| ≥ 1
2 + d

h

�
1−

|t|−( 1
2
−d)

2d

�
h

�
1−

|t|−( 1
2
−d)

2d

�
+h

�
|t|−( 1

2
−d)

2d

� else,

where h : (0, 1) → R
+ is a bounded strictly mono-

tonic increasing function starting in the origin, i.e.
limx→0 h(x) = 0. Possible choices forh are:

• h(x) = x for linear blending: This leads to aC1-
continuous surface,

• h(x) = 2x3−3x2+1 for cubic blending: This leads
to a C3-continuous surface,

• h(x) = e
1

x−1 e−1/x + e
1

x−1 for C∞-blending. This
leads to aC∞ and thus smooth surface.

Due to the definition ofϕk, it is 1 inside of the Center
regionC2

k and it is0 outside ofC1
k . Inside a face region

it is constant in any direction parallel to the regarded
face and similarly inside any edge region it is constant
in edge direction.

Lemma 26:Let d = 0.2. Then the zero level set of the
smoothed functionf is homeomorphic to the zero level
set of the trilinear interpolation inside any cubeCk.
The proof can be found in the appendix.

Corollary 27: The smooth blending is a topology
preserving reconstruction method and the result of the

TI algorithm isr-homeomorphic to the original object if
A is r-regular and the sampling grid is a cubicr′-grid
with 2r′ < r.

Fig. 15. Left: Examples of trilinear interpolation without blending.
Right: The same examples with withC∞-blending.

(a) (b) (c)

(d) (e) (f)

Fig. 16. Digitization of anr-regular object (a) with a cubic1
2
r-

grid. (b) digital reconstruction (Note that the surface is not a manifold
inside the circle) (c) ball union,(d) trilinear interpolation, (e) majority
interpolation and (f) modified marching cubes.

IX. V OLUME AND SURFACE ESTIMATION

In the previous sections we showed different methods
to reconstruct a sampled object with only a small geo-
metric and no topological error. In this section we will
discuss how appropriate these reconstruction methods are
to measure the volume and the surface of the original
object.

The estimation of object properties like volume and
surface area given only a digitization is an important
problem in image analysis. In this section we will show
that both can be computed with high accuracy if the
original object isr-regular. At first we show that the
above reconstruction methods can directly be used for
volume estimation and we give absolute bounds for the
difference between the reconstructed and the original
volume:

Let A′ be the digital reconstruction of anr-regular
object A with a cubicr′-grid S with 2r′ < r. Without
loss of generality letS = Z

3 (A and S can always
be transformed such that this is true). Now let{ci} =
Z

3 − (1
2 , 1

2 , 1
2) be the set ofcorner pointsof voxels

centered insi ∈ S. Then eachr′-ball Br′(ci) has
exactly eight sampling pointssi on its surface. The
voxels of these eight sampling points containci as
corner point. Now letC ⊂ {ci} be the set of corner
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points whose eight sampling points are not all inside or
all outside the objectA. Then the unionU of all r′-
balls with centers inC supercovers the boundary∂A,
since ther-homeomorphism constructed in the proof of
Theorem 16 is equal to the the identity outside ofU .
MoreoverU covers not only the surface of the digital
reconstruction, but also the surface of any topology
preserving reconstruction method for the same reasons.
Thus the original set and all the different reconstruction
methods differ only inside ofU and sinceV(U) ≤ nπr′2

with n being the number of points inC, the difference
between the original volume and the volume of one of
the reconstructions, i.e. the volume reconstruction error
is at mostnπr′2. With limr′→0 V(U) = 0 follows that
this volume estimation method is multigrid convergent
for any r-regular image.

Multigrid convergence of a functionfr′ on a digital
representation of an object with sampling grid sizer′

means thatlimr′→0 fr′ is equal to the value for the
continuous object.

Surface estimation is not as simple as volume esti-
mation. Kenmochi and Klette showed that local surface
estimation methods are not multigrid convergent [30].
This is quite reasonable, since any local surface area
estimation method (local means that the size of the area
around a local cube which is used for approximating the
surface locally is fixed relatively to the sampling grid
size) based on binary images allows only a finite number
of different surface patches, while even the number of
different orientations of planar surfaces is infinite.

This means we need a non-local method in the sense
that the size of the area around a local cube which is used
for approximating the surface locally has to increase with
increasing sampling density.

In the literature, two main approaches for global
surface area estimation exist. While Klette et al. [31]
use a digital plane segmentation process without giving
a proof of multigrid convergence, Sloboda et al. [32]
define a multigrid convergent method based on the
relative convex hull of the discrete object, but no efficient
algorithm exists to compute the relative convex hull.

The first and as far as we know up to now the
only approach giving a multigrid convergent algorithm
was introduced by Coeurjolly et al. [33]. They estimate
the surface normals and use this to compute a surface
area approximation. They prove that their algorithm is
multigrid convergent if the size of the local area which is
used to estimate a surface normal vector decreases with
O(

√
θ), where θ is a measure for the grid size. Thus

their approach is local in the sense that the used area
converges to zero relatively to the object size, but it is
global in the sense that it converges to infinity relatively

to the grid size, sincelimθ→0
O(

√
θ)

θ = ∞. We will call
such methodssemi-local. Note that in their experiments
Coeurjolly et al. used a fixed minimal size for the used
local area, such that their implementation is not multigrid
convergent.

We think that using a semi-local approach for surface
area estimation is the right choice. In this paper we will
show that semi-local surface area estimation can be done
in a much more simple way than proposed by Coeurjolly
et al. by simply counting certain sampling points. While
in [33] the estimation of surface normals was used to
approximate the surface area, we will measure the vol-
ume of a thick representation of the surface. The idea is
that with the thickness of this volume going to zero, the
surface can be approximated by dividing the volume by
the thickness. The volume can be estimated by counting
voxels. Since the volume estimation has to converge
faster than the size reduction of the surface, we have to
increase the sampling density faster than decreasing the
thickness of the surface representation. That is why our
approach is semi-local. The basic property which makes
our approach possible, the connection between surface
area and volume, is given by the following lemma:

Lemma 28:Let A be anr-regular object. Then the
surface areaA(∂A) is equal tolims→0

1
2s V(∂A ⊕ Bs),

where∂A⊕Bs can be seen as a thick representation of
the surface∂A with thickness2s.

Proof: Let {Tk} be a polygonal surface approxi-
mation of ∂A such that each polygonTk is a triangle
such that the distance between any two of the three
triangle points tk,1, tk,2, tk,3 ∈ ∂A is bounded bys

(This can be done by using the MMC algorithm).
Now let nk,1, nk,2, nk,3 be the normal vectors of∂A in
tk,1, tk,2, tk,3, and letVk andWk be the triangles which
one gets by projectingTk along the normals onto the
two planes being parallel to the plane containingTk with
distances. Further letPk be the convex hull of the six
corner points ofVk andWk. ThenPk is a prismoid and
its volume isV(Pk) = s

3(A(Vk) + 4A(Tk) + A(Wk)).
The union of the prismoids approximatesV(∂A ⊕ Bs),
thus:
∑

k∈N

V(Pk) =
∑

k∈N

(s

3
(A(Vk) + 4A(Tk) + A(Wk))

)

=
s

3
(
∑

k∈N

A(Vk) + 4
∑

k∈N

A(Tk) +
∑

k∈N

A(Wk))

For s → 0 the vectors of any triangleTk become parallel
and thusA(Vk) → A(Tk) and A(Wk) → A(Tk). This
leads to

lim
s→0

1

2s
V(∂A ⊕ Bs) = lim

s→0

∑

k∈N

V(Pk)

2s
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= lim
s→0

1

6

(

∑

k∈N

A(Vk) + 4
∑

k∈N

A(Tk) +
∑

k∈N

A(Wk)

)

= lim
s→0

1

6

(

6
∑

k∈N

A(Tk)

)

= lim
s→0

∑

k∈N

A(Tk) = A(∂A).

n = 0 n = 1 n = 2 n = 3

Fig. 17. C ⊕ Bs appoximates∂A with increasingn.

Now we can use the measurement of volumes for surface
area estimation. In order to get a multigrid convergent
method for surface estimation, we must measure the
volume of a thick representation of the surface and
we must guarantee that (1) the thickness parameters

converges to zero and (2) the estimation accuracy of
its volume also converges to zero. This is possible by
choosing lim

r′→0
s = 0 and lim

r′→0

r′

s = 0, i.e. r converges

faster to zero thans. The last remaining problem is
to estimate the volume of a thick representation of the
surface by using only the information which sampling
points are inside the object and which sampling points
are outside. This is done as follows: We know that the
unionU of all r′-balls with centers inC covers∂A. Thus
the s + r′-dilation of C covers∂A ⊕ Bs, i.e. the thick
representation of∂A of thickness2s. Otherwise since
∂A ⊕ Br′ ⊃ C for any r-regular setA with r′ < r, we
know that∂A⊕B(r′+(s−r′)) covers the(s− r′)-dilation
of C. Thus the volume of∂A⊕Bs can be approximated
by counting the sampling points insideC ⊕Bs (see Fig.
17). WithN := ♯

{

si

∣

∣ |si − cj | ≤ s, cj ∈ C
}

follows for
the volume of the thick representation:

V(∂A ⊕ Bs) = lim
r′→0

2√
3
r′3 · N.

Thus
A(∂A) = lim

s→0

1

2s
V(∂A ⊕ Bs)

= lim
s→0, r′

s
→0

1

2s

2√
3
r′3 · N = lim

s→0, r′

s
→0

r′3√
3s

· N

Thus the output of the following algorithm converges to
the true surface area:

(1) Let A be anr-regular set ; n = 0
(2) do
(3) r′ =

(

1
2

)n
; s =

(

3
4

)n
.

(4) Compute the intersection of the sampling points

si of the r′-grid 2√
3
r′ · Z

3 with A.
(5) Compute the setC of center pointscj of the
cubic neighborhood configurationsCj which consist of
both foreground and background sampling points.
(6) Count the numberN of sampling pointssi with
distance smaller thans to somecj ∈ C.
(7) An = r′3

√
3s

· N ; n = n + 1

(8) loop until convergence ofAn.
(9) returnAn.

The presented method is local relatively to the regular-
ity constraintr, i.e. relatively to the object size, but it is
global relatively to the size of the sampling grid. That’s
why we call our approachsemi-local. We think that the
idea of a semi-local method is the best choice for dealing
with the problem of surface area estimation, since local
methods are not multigrid convergent and it seems to be
difficult to prove the convergence of global methods. Our
solution to the problem of multigrid convergent surface
area estimation is extremely simple. In order to find the
sampling points with distance smaller thans (step (6)
of the algorithm), one can use a linear-time algorithm
for Euclidean distance transform [34]. Then the above
algorithm only needs linear time for a given sampling
resolution relatively to the number of sampling points.

Although the class ofr-regular objects is very general,
a lot of objects of interest are notr-regular for anyr.
Nevertheless our algorithm is multigrid convergent if the
surface of an object is almost everywhere differentiable,
since then the percentage of the surface which behaves
r-regular (i.e. there exists an outside ans an inside
osculatingr-ball) goes to100% for r → 0. Note that
this is true for nearly any object of interest.

Theorem 29:Let A be a continuous object with
bounded curvature with except a setE that is a finite
union of curves of finite length (sharp edges). Then the
above surface area estimation algorithm converges to
A(∂A), i.e., the mulitgrid convergence is true forA.

Proof: Let Bt = ∂A\(E⊕Bt) be the surface ofA
without at-neighborhood ofE. ThenBt is a finite union
of compact surface patchesA1∪· · ·∪An. The patches are
disjoint, and their curvature is bounded by some constant
u. Taking r = min(t, u), Bt is an r-regular surface,
i.e., for every surface interior pointx ∈ Bt, there exist
two differentr-balls that intersectBt in exactlyx. This
implies the convergence of the above algorithm toA(Bt).
If t goes to zero, the error due to the wrong surface area
measurement inside∂A ∩ (E ⊕ Bt) converges to zero
and the surface area ofBt goes to the surface area ofA.
Thus the algorithm converges toA(∂A).
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X. CONCLUSIONS

We have analysed the problems of topology preser-
vation during digitization ofr-regular objects in 3D.
We showed that with a sufficient sampling density sev-
eral foreground-background-configurations of neighbor-
ing sampling points are not possible. We used this to
derive the first sampling theorem for topology preserving
digitization in 3D. Since this theorem is not restricted
to a certain method for digital reconstruction, we in-
troduced several different methods which do all fulfill
the requirements of the sampling theorem. That makes
our theorem directly applicable to a large variety of
approaches.

The first presented method is suitable for voxel-based
approaches. Since the straightforward voxel reconstruc-
tion can not be guaranteed to be topologically correct,
we introduced Majority Interpolation, a method to in-
terpolate new voxels at doubled resolution such that the
topology is always well-defined and in case ofr-regular
objects even identical to the original topology. Since the
resulting digital object is always well-composed, several
3D digital geometry problems are much simpler.

We also modified the Marching Cubes algorithm such
that the generated surface has exactly the same topology
as the original surface. This is the first modification
of the Marching Cubes algorithm which guarantees a
surface with exactly the same topology as the original
object instead of only a topologically sound surface.

In addition to that we showed that the trilinear interpo-
lation also fulfills the requirements of the theorem and
that it is even possible to blend between the trilinear
patches in order to get a surface which is everywhere
smooth without changing the topology.

Finally we showed that one can simply use balls with
an appropriate radius instead of cubical voxels and it is
also guaranteed that the topology is exactly the same as
for the original object.

Further on we showed that every of these methods can
be used for multigrid convergent volume estimation of
r-regular objects. We discussed why it is not possible to
use our reconstruction methods for surface area estima-
tion. We introduced a semi-local surface area estimation
algorithm which we proved to be multigrid-convergent.
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APPENDIX: PROOF OFLEMMA 26

Proof: To proof the lemma, we will construct a
homeomorphism of the spaceR3, which maps the zero
level sets onto each other, for any Center, Face, Edge
and Vertex region separately.

Inside a Center regionC2
k , the blending functionϕk

is 1 and all otherϕi are zero. Thusf is equal to the
trilinear interpolation and the homeomorphism is given
by the identity.

Inside a Vertex region the homeomorphism can also
be chosen as the identity if it is guaranteed that the zero
level set does never touch a Vertex region. Suppose the
sampling point inside a Vertex region has value1. Then
the smallest possible value of the trilinear interpolant
inside the Vertex region is achieved at the point(d, d, d)
if all surrounding sampling points have the value−1.
This value is2 · (1− d)3 − 1 = 0.024 > 0. Analogously
for a background sampling point (value−1) the trilinear
interpolation inside the Vertex region is always smaller
or equal to−0.024. Sincef is at any point a convex
combination of trilinear interpolants which have all the

same sign inside a Vertex region, the zero level set off

can not go through any such region.
Inside a Edge regionϕ is constant in edge direction. In

this direction any trilinear interpolation is linear. Sinceall
trilinear interpolants inside the Edge region along such a
direction have the same signs at their endpoints (where
the Edge region meets the Vertex regions), any convex
combination of them is also a linear function along such
a direction with the same signs at the endpoints. Thus by
defining a homeomorphic mapping along any such line
we get a homeomorphism mapping the zero level set of
f onto the zero level set of the trilinear interpolant.

Inside a Face regionf is a blending between two tri-
linear interpolation patches. For any plane being parallel
to the face the weights for these two patches are constant
and thusf is equal to a bilinear interpolation between
the weighted sums of values at four corner points. In
any case except of configuration 8, the zero level set
is a hyperbolic arc as shown by Lopes and Brodlie
[18] and thus has always the same shape, such that a
homeomorphism can easily be constructed. It remains to
prove the case of an ambiguous face of configuration
8. In this case the zero level set on the plane which
is incident with the face consists of two crossed straight
lines and for all other planes it consists of two hyperbolic
arcs separating two diagonal corner points, such that
the plane being incident with the face separates the
other planes into two groups which separate different
pairs of diagonal corner points. Such a saddle surface
has exactly the same topology as the surfaces of the
trilinear interpolations which allows us to construct a
homeomorphism.


