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Abstract

In a previous paper [1] we showed that a 3D object
can be digitized without changing the topology if the ob-
ject is r-regular and if the reconstruction method fulfills
certain requirements. In this paper we give two impor-
tant examples for such reconstruction methods. First,
we introduce Majority Interpolation, an algorithm to
interpolate sampling points at doubled resolution such
that topological ambiguities are resolved. Second, we
show how the well-known Marching Cubes algorithm
has to be modified such that it is topology preserv-
ing. This is the first approach of digitizing 3D objects
which guarantees topology preservation for voxel-based
or polygonal surface-based reconstructions.

1 Introduction

A lot of 3D image analysis algorithms use topologi-
cal information like neighborhood, connectivity, inclu-
sion etc. Implicitly they rely on the assumption that
the topological information in the digital image is the
same as in the original object before digitization. But
this can not be guaranteed in general. While in 2D
the problem of topology preserving digitization was
solved more than twenty years ago in 1982 [2, 3], a
solution for the 3D case was only found recently by
the authors [1]. In this paper we give two important
examples of such methods. The first, Majority inter-
polation, is a voxel-based representation on a grid with
doubled resolution. It always leads to a well-composed
set in the sense of Latecki [4], which implies that a lot
of problems in 3D digital geometry become relatively
simple. The second method is a modification of the
well-known Marching Cubes algorithm [5]. The orig-
inal Marching Cubes algorithm does not always con-
struct a topologically sound surface due to several am-
biguous cases [6, 7]. We will show that most of the
ambiguous cases can not occur in the digitization of an
r-regular object and that the only remaining ambigu-

ous case always occurs in an unambiguous way, which
can be dealt with by a slight modification of the orig-
inal Marching Cubes algorithm. Thus the generated
surface is not only topologically sound, but it also has
exactly the same topology as the original object before
digitization.
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Figure 1. For each boundary point of a 2D/3D
r-regular set there exists an outside and an
inside osculating open disc/ball of radius r.

2 Preliminaries

All of the known topology preserving sampling the-
orems in 2D require the object to be r-regular [2, 3, 8].
Thus in [1] we used the 3D generalization of r-regular
sets for deriving the 3D sampling theorem. A set
A ⊂ R

3 is called r-regular if, for each point x ∈ ∂A,
there exist two osculating open balls of radius r to ∂A

at x such that one lies entirely in A and the other lies
entirely in Ac. The object is digitized using a cubic
r′-grid, where r′ is the maximal distance from a point
in R

3 to the nearest sampling point, i.e. a rotated and
translated version of 2·r′

√
3

Z
3. The voxels are the dis-

joint cubes of sidelength 2·r′

√
3

centered in the sampling

points and the digital reconstruction of an object is the
union of voxels whose sampling points lie inside the
object. One of the authors introduced the so-called
3D well-composed sets [4], which are exactly the sets
of sampling points whose digital reconstruction is a 2D
manifold. Well-composed sets can be locally character-
ized by the fact that neither the set itself nor its com-
plement contain one of the critical configurations (C1)
and (C2) shown in Fig. 2. Now lets have a look at the
14 possible canonical configurations of eight neighbor-
ing foreground and background sampling points (see



Fig. 3), which remain after considering rotational sym-
metry, reflectional symmetry, and complementarity as
shown by [9]. Note, that in well-composed sets only
cases 1 to 7 can occur. In [8] it is shown that the
digitization of an r-regular object can contain a con-
figuration of case 8 - independently of the grid resolu-
tion (see Fig. 6(b) for an example). This means that
the digital reconstruction can not be guaranteed to be
well-composed – even with arbitrarily dense sampling
grids. Thus, we need alternative reconstruction meth-
ods. In [1] we introduced a ball-union approach and
the trilinear interpolation for that reason. But a lot of
3D image analysis algorithms need other digital rep-
resentations, e.g. voxel-based or polygonal surface re-
constructions. In this paper we will show that one can
generate a well-composed representation by interpolat-
ing artificial sampling points at doubled resolution and
that one can use a slight modification of the Marching
Cubes algorithm. Due to [1] the reconstruction meth-
ods must have the following properties: (1) Any cube
of configuration 1 lies completely inside or outside of
the reconstructed object regarding the sampling points
lying inside or outside of it. (2) Any cube/cube-pair of
configuration 2 to 8 is divided by the boundary of the
reconstructed object into two parts, each being home-
omorphic to a ball, such that the foreground part con-
tains exactly the foreground sampling points. Then
the reconstruction method is called topology preserving
and from [1] we know, that given an r-regular object
A and a cubic r′-grid with 2r′ < r, the reconstruction
result is r-homeomorphic to A.

(a) (b)

Figure 2. (a) Critical configuration (C1). (b)
Critical configuration (C2). For the sake
of clarity, we show only the voxels of fore-
ground or background points.

3 Majority Interpolation

As shown in [4], a lot of difficult problems in 3D
digital geometry are much easier if the images are well-
composed, e.g. there exists only one type of connected
component, a digital version of the Jordan-Brouwer-
theorem holds and the Euler characteristic an be com-
puted locally. There are two different approaches
known to make an image well-composed: First non-
deterministic changing of the voxels at positions where
well-composedness is not fulfilled [10]. This approach
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Figure 3. There are 14 distinct canonical con-
figurations for neighboring sampling points
that are either inside or outside a digitized
set.

can not be used to guarantee topology preservation
since it changes the image in an unpredictable way.
Second, interpolating voxels on a grid with higher res-
olution in a well-composed way. There is a method
known for the 2D case using this approach [11], which
can directly be generalized to three dimensions in or-
der to guarantee 3D well-composedness. This method
uses a tripled resolution i.e. 27 times as much sampling
points as in the original grid. We show that this is also
possible by only doubling the resolution in any direc-
tion, i.e. using only 8 times as much voxels and give a
guaranty for topology preservation for digitizations of
r-regular objects.

Definition 1 Let A ⊂ R
3 be a 3D object and S a cubic

sampling grid. Further let S′ denote the grid of dou-
bled resolution in any dimension containing S. A new
sampling point in S′ \ S lying directly between two old
ones is called a face point, a new sampling point lying
directly between 4 face points is called edge point, and a
new sampling point lying directly between 6 edge points
is called corner point. Now the majority interpolation
(MI) of A on S is the union of voxels of all sampling
points s ∈ S′ fulfilling one of the following properties:
(1) s is an old sampling point inside of A, or (2) s is
a face point and both neighboring old sampling points
are inside of A, or (3) s is an edge point and at least
4 of the 8 neighboring old sampling and face points are
inside of A, or (4) s is a corner point and at least 12 of
the 26 neighboring old sampling, face and edge points
are inside of A. 3

Theorem 2 The MI algorithm is a topology preserving
reconstruction method and thus the result of the MI
algorithm is r-homeomorphic to the original object if
A is r-regular and the sampling grid is a cubic r′-grid
with 2r′ < r.

Proof: The well-composedness can simply be verified
by checking every local configuration of 8 neighboring
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Figure 4. Cases 1 to 8 and their complements
for Majority Interpolation.

old sampling points, see Fig.4. Analogously for
topology preservation we have to check if in any of
the 8 cases the result of the majority interpolation
algorithm fulfills the requirements for a topology
preserving reconstruction method. Since majority
interpolation is not dual (i.e. the reconstruction of the
complement of a set is different from the complement
of the reconstruction of a set), we also have to check
the complementary cases of the 8 configurations. Only
configurations 1 to 4 differ from their complements, so
here we have to consider subcases a and b. As Fig.
4 shows, the requirements are fulfilled in every of the
8+4 cases. 2

By checking the rest of the 14 cases and their com-
plements one can see that the result of the MI algo-
rithm is always well-composed, even if the original ob-
ject is not r-regular.

4 Modified Marching Cubes

One of the most common reconstruction methods
is the marching cubes algorithm, introduced 1987 by
Lorensen and Cline [5]. This algorithm analyses local
configurations of eight neighboring sampling points in
order to reconstruct a polygonal surface. Although not
mentioned in the initial publication [5] the algorithm
does not always produce a topologically consistent sur-
face and might produce holes in the surface. In order
to deal with these problems one has to introduce alter-
native configurations and decide, which of the ambigu-
ous configurations fit together [6,7]. Thus research has
been done on how to deal with these ambiguous cases
and to guarantee that the resulting surface is topologi-
cally consistent, e.g. [6,7]. But topological consistency
only means that the result is always a manifold surface
– none of the proposed modifications of the marching
cubes algorithm guarantees that the reconstructed sur-
face has exactly the same topology as the original ob-
ject before digitization.
The ambiguous cases of the marching cubes algorithm

are exactly the cases which can not occur in a 3D
well-composed image. Thus using the above presented
majority interpolation algorithm to generate a well-
composed image and then applying marching cubes on
this new set of points would lead to a polygonal sur-
face representation with no ambiguous cases. But this
would require doubling the resolution in any dimension
which leads to approximately four times as much tri-
angular surface patches than in the original resolution.
Fortunately this is not necessary: Since cases 9 to 14
can not occur in the sufficiently dense digitization of an
r-regular image and since the only remaining ambigu-
ous case 8 always occurs in a defined way, a slight mod-
ification of the original marching cubes algorithm is all
we need to guarantee a reconstructed surface without
any holes. Only the triangulation of the eighth case has
to be changed: As already stated by Dürst [6], it is suffi-
cient to add the two triangles making up the quadrilat-
eral (the four intersection points along the edges of the
ambiguous face, see Fig.marchingcubes(8) and old(8)).
Nielson and Hamann [7] mentioned that this method
may lead to edges being part of more than two triangles
and thus non-manifold surfaces, but this does not hap-
pen for the only possible occurrence of case 8. Since we
need only one quadrilateral in such a configuration we
simply have to differentiate between the complemen-
tary parts of configuration 8 and add the quadrilateral
(i.e. two triangles) only to the list of triangles of one of
the two parts. In the following this slight modification
of the original marching cubes algorithm will be called
modified marching cubes (MMC).

Theorem 3 The result of the MMC algorithm is r-
homeomorphic to the surface of the original object if
A is r-regular and the sampling grid is a cubic r′-grid
with 2r′ < r.

Proof: As can be seen in Fig. 5, the MMC surface
divides in any of the eight cases the cube/doublecube
region into two parts, one containing all foreground and
one containing all background sampling points (except
of the first case where there is only one such part). If
one fills the foreground part, one gets a volume recon-
struction method which is topology preserving. Since
the MMC result is just the surface of such a reconstruc-
tion, it has to be r-homeomorphic to the surface of the
original object. 2

5 Conclusions

We have analysed the problems of topology preser-
vation during digitization of r-regular objects in 3D.
We showed for two reconstruction methods that they
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Figure 5. Cases 1 to 8 for the MMC algorithm
and case 8 for the original Marching Cubes
algorithm.

always lead to exactly the same topology as in the orig-
inal object before digitization if this object is r-regular
and the sampling grid is a cubic r′-grid with 2r′ < r.
The first presented method is suitable for voxel-based
approaches. Since the straightforward voxel recon-
struction can not be guaranteed to be topologically cor-
rect, we introduced Majority Interpolation, a method
to interpolate new voxels at doubled resolution such
that the topology is always well-defined and in case of
r-regular objects even identical to the original topol-
ogy. Since the resulting digital object is always well-
composed, several 3D digital geometry problems are
much simpler. We also modified the Marching Cubes
algorithm such that the generated surface has exactly
the same topology as the original surface. This is
the first modification of the Marching Cubes algorithm
which guarantees a surface with exactly the same topol-
ogy as the original object instead of only a topologically
sound surface. .

(a) (b)

(c) (d)

Figure 6. Digitization of an r-regular object (a)
with a cubic 1

2
r-grid. (b) digital reconstruc-

tion (Note that the surface is not a manifold
inside the circle) (c) Majority Interpolation,(d)
modified Marching Cubes.
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