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Skeleton Pruning by Contour Partitioning with Discrete Curve Evolution 

 Xiang Bai, Longin Jan Latecki, Wen-Yu Liu,  

Abstract— In this paper, we introduce a new skeleton pruning method based on contour parti-

tioning. Any contour partition can be used, but the partitions obtained by Discrete Curve Evolu-

tion (DCE) yield excellent results. The theoretical properties and the experiments presented 

demonstrate that obtained skeletons are in accord with human visual perception and stable, even 

in the presence of significant noise and shape variations, and have the same topology as the 

original skeletons. In particular, we have proven that the proposed approach never produces spu-

rious branches, which are common when using the known skeleton pruning methods. Moreover, 

the proposed pruning method does not displace the skeleton points. Consequently, all skeleton 

points are centers of maximal disks. Again many existing methods displace skeleton points in 

order to produces pruned skeletons. 

Index Terms—Skeleton, Skeleton Pruning, Contour Partition, Discrete Curve Evolution 

xxxx-xxxx/0x/$xx.00 

© 2005IEEE 

———————————————— 

Bai Xiang and Liu Wenyu are with the Dept of Electronics & Information Engineering, Huazhong 

University of Sci. & Tech. Wuhan, Hubei. 430074 P.R.China, Email:baihouxiang@hotmail.com, 

liuwy@hust.edu.cn. 

Longin Jan Latecki is with CIS Dept., Temple University, Philadelphia, PA 19094, USA, E-

mail:latecki@temple.edu. 

 



                                                                 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLINGENCE 

 

2 

1 INTRODUCTION 

The skeleton is important for object representation and recognition in different areas, such as im-

age retrieval and computer graphics, character recognition, image processing, and the analysis of 

biomedical images [1]. Skeleton-based representations are the abstraction of objects, which con-

tain both shape features and topological structures of original objects. Because of the skeleton’s 

importance, many skeletonization algorithms have been developed to represent and measure dif-

ferent shapes. Many researchers have made great efforts to recognize the generic shape by 

matching skeleton structures represented by graphs or trees [2], [3], [4], [29], [30], [31], [36]. 

Unfortunately, these approaches have only demonstrated an applicability to objects with simple 

and distinctive shapes, and therefore, cannot be applied to more complex shapes like shapes in 

the MPEG-7 data set [37]. The most significant factor constraining the matching of skeletons is 

the skeleton’s sensitivity to an object’s boundary deformation: little noise or a variation of the 

boundary often generates redundant skeleton branches that may seriously disturb the topology of 

the skeleton’s graph. For example, the skeleton in Fig. 1(a) has many redundant skeleton 

branches generated by boundary noise.  

 

                                  (a)                                                            (b)                                                            (c) 

Figure 1. The skeleton in (a) has many redundant branches. To remove them, usually skeleton pruning is applied. (b) illustrates the 
problems of actual pruning approaches (it is generated by a method in [7]). In particular, observe that pruning may change the to-
pology of the original skeleton. (c) illustrates the pruning result of the proposed method that is guaranteed to preserve topology. 
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To overcome a skeleton’s instability of boundary deformation, a variety of techniques have been 

suggested for matching and recognizing shapes. Zhu and Yuille [29] generate more than one pos-

sible skeleton graph to overcome unreliability. A similar shape descriptor based on the self-

similarity of a smooth outline is presented in [30]. Aslan and Tari [31] posit an unconventional 

approach to shape recognition using unconnected skeletons in the course level. While their ap-

proach leads to stable skeletons in the presence of boundary deformations, only rough shape 

classification can be performed since the obtained skeletons do not represent any shape details.  

The most common approaches to overcome skeleton instability are based on skeleton pruning, 

(i.e., eliminating redundant skeleton branches). Pruning can either be performed implicitly as a 

post processing step or implicitly integrated in the skeleton computation. However, none of the 

existing skeleton pruning methods yields satisfactory results without user interaction. Before de-

scribing the existing skeleton pruning approaches, we characterize the desirable properties of 

skeletons. The skeleton of a single connected shape that is useful for skeleton-based recognition 

should have the following properties: (1) it should preserve the topological information of the 

original object; (2) the position of the skeleton should be accurate; (3) it should be stable under 

small deformations; (4) it should contain the centers of maximal disks, which can be used for 

reconstruction of original object; (5) it should be invariant under Euclidean transformations ,such 

as rotations and translations, and (6) it should represent significant visual parts of objects. 

The main goal of this paper is to present a method that extracts the exact skeleton with a new 

skeleton-pruning method, and which will achieve all the above properties. No existing method 

can provide a skeleton with all these properties. Our proposed method is easy to implement, and 

can be computed efficiently. 

The following is a brief overview of skeletonization and skeleton-pruning approaches. The 
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skeletonization algorithms can broadly be classified into four types: 

     The first type is thinning algorithms, such as those with shape thinning and the wave 

front/grassfire transform [8], [9], [10], [34]. These algorithms iteratively remove border points, 

or move to the inner parts of an object in determining an object’s skeleton. These methods usu-

ally preserve the topology of the original object with many redundant branches, but they are 

quite sensitive to noise and often fail to localize the accurate skeletal position. In addition, it is 

important to determine a good stop criterion of this iterative process.  

     The second type is the category of discrete domain algorithms based on the Voronoi diagram 

[5], [12], [27],[28]. These methods search the locus of centers of the maximal disks contained in 

the polygons with vertices sampled from the boundary. The exact skeleton can be extracted as 

the sampling rate increases, but the time of computation is usually prohibitive. The obtained 

skeleton is extremely sensitive to local variance and boundary noise, so that complicated skele-

ton bunches need to be pruned [5], [28].  

     The third type of algorithms is to detect ridges in a distance map of the boundary points [7], 

[10], [11], [13], [19], [33], [35]. Approaches based on distance maps usually ensure accurate lo-

calization but neither guarantees connectivity nor completeness [7], [13]. Under the complete-

ness the skeleton branches representing all significant visual parts are present (6).  

     The fourth type of algorithms is based on mathematical morphology [22], [24], [25], [26]. 

Usually, these methods can localize the accurate skeleton [24], but may not guarantee the con-

nectivity of the skeleton [22].   

    All of the obtained skeletons are subjected to the skeleton’s sensitivity and many of them also 

include pruning methods along with the skeletonization. As an essential part of skeletonization 

algorithms, skeleton pruning algorithms usually appear in a variety of application-dependent 
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formulations [20]. There are two main pruning methods: (1) based on significance measures as-

signed to skeleton points [5], [6], [7], [20], [28], and (2) based on boundary smoothing before 

extracting the skeletons [20], [38], [39]. In particular, curvature flow smoothing still has some 

significant problems that makes the position of skeletons shift and have difficulty in distinguish-

ing noise from low frequency shape information on boundaries [20]. A different kind of smooth-

ing is proposed in [14]. Great progress has been made in the type (1) of pruning approaches that 

define a significance measure for skeleton points and remove points whose significance is low. 

Shaked and Bruckstein [20] give a complete analysis and compare such pruning methods. Propa-

gation velocity, maximal thickness, radius function, axis arc length, and the length of the bound-

ary unfolded belong to the common significance measures of skeleton points. Ogniewicz et al [5] 

present a few significance measures for pruning complex Voronoi skeletons without disconnect-

ing the skeletons. Siddiqi et al combine a flux measurement with the thinning process to extract a 

robust and accurate connected skeleton [25].  

All presented methods have several drawbacks. First, many of them are not guaranteed to pre-

serve the topology of a complexly connected shape (e.g., a shape with holes). This is illustrated 

in Fig. 2, where the skeleton in (d) violates the topology of the input skeleton in (c). This skele-

ton was obtained by the method in [7]. However, many methods described above would lead to 

topology violation, particularly all methods presented in [20] (including the method of Og-

niewicz at al. [5]). These methods are guaranteed to preserve topology for simply connected ob-

jects (objects with a single contour), but not for objects with more than one contour like the can 

in Fig. 2. The topology preserving skeleton obtained by the proposed pruning method is illus-

trated in Fig. 2(e). We will prove in the appendix that our method is guaranteed to preserve to-

pology. Even if the input shape is simply connected, some of methods described above are not 
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guaranteed to preserve the original topology (e.g., see in Fig. 1(b), generated by the pruning 

method in [7]). 

 

 (a)   (b)         (c)   (d)           (e) 

Figure 2 (a) The input object. (b) Binary object mask. (c) The initial skeleton. (d) A pruned skeleton ob-
tained by the method in [7]. (e) A pruned skeleton obtained by the proposed method. While the skeleton in 
(d) violates the topology, the proposed method is guaranteed to preserve the topology. 
 

The second drawback of the methods described above is that main skeleton branches are short-

ened and short skeleton branches are not removed completely. This may lose important shape 

information and seriously compromise the structure of the skeletons. These effects are illustrated 

in Figs. 1(b) and 3(a), e.g., the horse legs in Fig. 1(b) are shortened too much, although, at the 

same time, some spurious skeleton branches remained. Thus, shortening of branches may cause 

branches of significant visual parts to be indistinguishable form branches resulting from noise. 

 

(a)                                             (b) 
Figure 3. Comparison on between the result in [7] (a) and our result in (b). 
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The third drawback is that usually only the local significance of the skeleton points is considered, 

and the global information of the shape is discarded. However, the same part may represent an 

important shape feature for one shape while it may represent noise for a different shape. This is 

illustrated in Fig. 4. Clearly, the spike in (b) is less relevant for the overall shape than in (a), and 

consequently, it is more likely to be a result of noise. The proposed pruning method is able to 

recognize this fact, which leads to the removal of the skeleton branch induced by the spike in (d). 

In contrast, the relevance of skeleton points in the existing pruning methods is computed based 

only on local contour information, which means that they cannot differentiate the two spike in-

duced skeleton branches in (a) and (b). Consequently, their pruning result is very similar to the 

skeletons shown in (a) and (b).The fourth drawback is that pruning results may be different for 

different scales as pointed out in [40].  

 

       

(a)                               (b)                                            (c)                                   (d) 

Figure 4. (a) and (b) show pruned skeletons obtained by the method in [7]. The proposed pruning method 
can distinguish that shape contribution of the spike in (b) is smaller than in (a), and therefore, it is possible 
to prune the branch resulting form the spike in (d). 

An interesting idea, called a fixed topology skeleton, is presented by Golland et al [11]: the proc-

ess of pruning is skipped, and the skeletonization uses a snake-like algorithm for estimating the 

positions of the skeleton with respect to the fixed skeleton endpoints. Since the fixed endpoints 

are not changed in the iteration process, a skeleton with the global topology can be extracted. 

However, the topology of the global shapes must be known before skeletonization for the fixed 
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topology skeleton, and the position of the obtained skeleton is not accurate. 

To summarize, although the existing skeleton pruning methods have many drawbacks, they are 

definitely needed to remove inaccurate or redundant skeleton branches. The skeleton generating 

approaches suffer from the fact that a small protrusion on the boundary may result in a large 

skeleton branch, which is an intrinsic problem of the definition of the skeleton, since the map-

ping of boundary points to the skeleton points is not continuous. An obvious solution to this 

problem is to first remove the protrusions on the boundary and then compute the skeleton. As 

stated above, various smoothing approaches are either applied to the contour or to the distance 

map before the skeleton is computed. The problem is that isotropic (e.g., Gaussian) as well as 

anisotropic smoothing only reduces but does not remove the protrusions [4]. A common charac-

teristic of the above approaches is that they displace the boundary points, and consequently dis-

place the location of skeleton points.  

 2 Main Ideas of the Proposed Approach  

We propose an approach that completely removes protrusions without displacing the boundary 

points, and therefore, without displacing the remaining skeleton points. Thus, inaccurate or re-

dundant branches are completely removed while the main branches are not shortened. As illus-

trated above, the proposed method also does not have the other three drawbacks listed above. 

The main observation of our approach is that it is possible to perform a topology preserving 

skeleton pruning based on a contour partition into curve segments. Returning to Blum’s defini-

tion of the skeleton, every skeleton point is linked to boundary points that are tangential to its 

maximal circle. These are called generating points. The main idea is to remove all skeleton 

points whose generating points all lie on the same contour segment. This works for any contour 

partition in segments, but some partitions yield better results than other. Fig. 5 illustrated three 
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different pruned skeletons in (b, c, d) obtained for the same input skeleton in (a). The pruned 

skeletons are based on three different partitions of contour segments whose endpoints are marked 

with dots. For example, removing all skeleton points all of whose generating points lie on the 

contour segment CD in (c) leads to the removal of the entire lower part of the skeleton. Clearly, 

the contour partition in (d) leads to a significantly better pruning result than the partitions in (b) 

and (c). Thus, in our framework, the question of skeleton pruning is reduced to finding a good 

partition of the contour into segments. We obtain such partitions with the process of Discrete 

Curve Evolution (DCE) [15], [16], [17], which we briefly introduce as follows. 

 

 

Figure 5. Pruning the input skeleton (a) with respect to contour partition induced by five random points on 
the boundary in (b) and (c). The five points in (d) are selected with DCE. 
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First, observe that every object boundary in a digital image can be represented without the loss 

of information as a finite polygon, due to finite image resolution. Let us assume that the vertices 

of this polygon result from sampling the boundary of the underlying continuous object with some 

sampling error. There then exists a subset of the sample points that lie on the boundary of the un-

derlying continuous object (modulo some measurement accuracy). The number of such points 

depends on the standard deviation of the sampling error. The larger the sampling error, the 

smaller the number of points will lie on the boundary of the continuous object, and subsequently, 

the less accurately we can recover from the original boundary [15]. The question arises as to how 

to identify the points that lie on (or very close to) the boundary of the original object or equiva-

lently how to identify the noisy points (that lie far away from the original boundary). The process 

of DCE is proven experimentally and theoretically to eliminate the noisy points [15], [16], [17]. 

This process eliminates such points by recursively removing polygon vertices with the smallest 

shape contribution (which are the most likely to result from noise). As a result of DCE, we obtain 

a subset of vertices that best represents the shape of a given contour. This subset can also be 

viewed as a partitioning of the original contour polygon into contour segments defined by con-

secutive vertices of the simplified polygon. A hierarchical skeleton structure obtained by the pro-

posed approach is illustrated in Fig. 6, where the (red) bounding polygons represent the contours 

simplified by DCE. Because DCE can reduce the boundary noise without displacing the remain-

ing boundary points, the accuracy of the skeleton position is guaranteed. The continuity, which 

implies stability in the presence of noise, of the proposed pruning methods follows from the con-

tinuity of the DCE. This means that if a given contour and its noisy versions are close (measured 

by Hausdorff distance), the obtained pruned skeletons will also be close. A formal proof of DCE 

continuity with respect to the Hausdorff distance of polygonal curves is given in [23]. Thus, our 
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approach provides a solution to the instability of the classical skeleton pruning algorithms. 

 

 

Figure 6. Hierarchical skeleton of leaf obtained by pruning the input skeleton (top left) with respect to con-
tour segments obtained by the Discrete Curve Evolution (DCE). The outer (red) polylines show the corre-
sponding DCE simplified contours. 

 

All pruning methods based on a significance measure for skeleton points use local criteria to 

compute this measure [21][29][5][6], (e.g., the measure in [5] is base on the shortest contour arc 

between the generating points). Also all contour smoothing methods are based on local contour 

information only. In contrast, DCE evaluates global contour information in order to generate the 

simplified contour. This property is illustrated in Fig.4. The same spike is on the boundary of 

Fig. 4(a) and Fig. 4(b), but it has different shape contribution for both objects. While it is more 

likely to be a shape feature in (a), it is more likely to be regarded as noise in the object (b). DCE 
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can effectively quantify this difference in shape contribution. Consequently, we obtain the skele-

tons as shown in Fig. 4(c) and Fig. 4(d). 

The proposed pruning method can be applied to any input skeleton. We only require that each 

skeleton point is the center of a maximal disk and that the boundary points tangent to the disk 

(generating points) are given. We also present a skeleton growing algorithm that includes an effi-

cient implementation of the proposed pruning method. The main idea is that the pruning is not 

done in post-processing (after the skeleton is computed) but is integrated into the skeleton grow-

ing process. To implement this idea, we extended the skeleton growing algorithm in [7] based on 

the Euclidean distance map. First, we selected a skeleton seed point as a global maximum of the 

Euclidean distance map. Then, the remainder of the skeleton points is decided by a growing 

scheme. In this scheme, the new skeleton points are added using a simple test that examines their 

eight connected points. During this process, the redundant skeleton branches are eliminated by 

the DCE.  

 

3 BACKGROUND DEFINITIONS 

Before we define a skeleton, we need to characterize planar sets for which we can determine the 

skeleton. Following [32] we assume that a planer set D is the closure of a connected bounded 

open subset of R2 whose boundary ∂D is composed of a finite number of mutually disjoint simple 

closed curves. Each simple closed curve in ∂D consists of a finite number of pieces of real ana-

lytic curves. We further assume in this paper that each simple closed curve is a polygonal curve, 

(i.e., the pieces they consist of are line segments). We make this assumption only to simplify 

some definitions, and we stress that all of our results also hold for simple closed curves that con-

sist of a finite number of real analytic curves. This assumption does not introduce any restriction 

on object contours in digital images, since each boundary curve in a digital image can be re-
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garded as polygonal curve with vertices being the boundary pixels. 

According to Blum’s definition of the medial axis [1], the skeleton S(D) of a set D is the locus of 

the centers of maximal disks. A maximal disk of D is a closed disk contained in D that is inte-

riorly tangent to the boundary ∂D and that is not contained in any other disk in D. Each maximal 

disc must be tangent to the boundary in at least two different points. We denote as Tan(s) the set 

of the boundary points tangent to the maximal closed disk B(s) centered at s∈S(D). The points in 

Tan(s) are called generating points of the skeleton point s. Due to our assumption that each 

boundary curve is a simple closed polygonal curve, Tan(s) is composed of a finite number of iso-

lated boundary points, since B(s) can intersect each boundary line segment in at most one point. 

(Without this assumption, Tan(s) would be composed of a finite number of isolated contour su-

barcs.) The degree deg(s) of s∈S(D) is defined as the cardinality of Tan(s), (i.e., as the number 

of boundary points tangent to the maximal circle centered at s). Let the boundary ∂D of D be 

composed of k simple closed curve polygonal curves C1, …, Ck. Then the degree with respect to 

Cj deg(s, Cj) is equal to the cardinality of Tan(s) ∩ Cj. 

For a given boundary point x∈∂D, we define S(x) as the center of the maximal disk that is tan-

gent to ∂D at x. The function S: ∂D → S(D) is a strong deformation retraction by Theorem 8.1 in 

[32]. Moreover, by Theorem 8.2 in [32], the skeleton S(D) is a geometric graph, which means 

that S(D) can be decomposed into a finite number of connected arcs, called skeleton branches, 

composed of points of degree two, and the branches meet at skeleton joints (or bifurcation 

points) that are points of degree three or higher. 

We also summarize some of the consequences of Theorem 5.1 in [32], called Domain Decompo-

sition Lemma, that will be particularly useful here. For an illustration, see Fig. 7. Given a skele-

ton point p∈S(D), the maximal closed disk B(p) decomposes D – B(p) into a finite number of 
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connected components D1(p), …, Dk(p); also ∂D – B(p) is decomposed into a finite number of 

open contour curves C1(p), …, Ck(p), and the skeleton S(D)-{p} is decomposed into finite num-

ber of skeleton curves S1(p), …, Sk(p), such that Ci(p) = Di(p) ∩ ∂D and Si(p) = Di(p) ∩ S(D). A 

very important consequence of this theorem is that for two different skeleton points p,q∈S(D), 

we must have one of the following three cases Ci(p) ∩ Cj(q) = ∅ or Ci(p) ⊂ Cj(q) or Cj(q) ⊂ 

Ci(p). For example, in Fig. 7, C1(p)=(x, y), which is an open contour segment, C1(q)=(u, v), and 

we have C1(q) ⊂ C1(p), while C2(p) ∩ C1(q) = ∅ and C3(p) ∩ C1(q) = ∅, since C2(p)=(y, z) and 

C3(p)=(z, x). 

 

x y

z

q

q

x

x y

y

z z

p

p p

u v

u v

p

 

Figure 7. This figure illustrates Theorem 5.1 in [32], called Domain Decomposition Lemma. 
 

4 SKELETON PRUNING WITH CONTOUR PARTITION 

In this section, we introduce the contour partition into contour segments and skeleton pruning 

based on it.  

Definition 1. Let the boundary ∂D of a set D be composed of k simple closed curves C1, …, Ck. 

Let x and y be two contour points lying on the same simple closed curve Ci. With [x, y] we de-

note the shortest closed contour segment (subarc) of Ci that connects x and y. For simplicity, we 
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assume that x and y are positioned on Ci so that [x, y] is uniquely determined. With (x, y) we de-

note the segment [x, y] without the endpoints x and y (i.e., the open subarc). (A distinction be-

tween open and closed contour segments is unimportant in the digital images, but we need to es-

tablish some formal properties on the continuous plane.) A sequence of points x0, …,xn-1 on a 

simple closed curve Ci forms a partition of Ci if two consecutive segments [xi, xi+1], [xi+1, xi+2] 

intersect in {xi+1} (the indices are modulo n), nonconsecutive segments have empty intersection, 

and Ci is the union of these segments. The partition Γ of the boundary ∂D is a sequence of se-

quences that are partitions of the simple closed curves C1, …, Ck. 

Definition 2. Let [x, y] be a contour segment that belongs to some contour partition Γ. In particu-

lar, [x, y] is a subsegment of one of the contour curves C of ∂D. For a skeleton point s whose all 

generating points Tan(s) lie in [x, y], let arc(s, [x, y]) be the smallest subarc of [x, y] that contains 

Tan(s). Observe that arc(s, [x, y]) is a contour segment of C, (i.e., arc(s, [x, y]) = [a, b] for some 

a), b∈C, since arc(s, [x, y]) is an arc connected subset of [x, y]. As a consequence of Theorem 5.1 

in [32], we also obtain that S(a)=S(b)=s (Fig. 8).  

Let ]},[))((:],[{]),([ 1 yxzSSyxzyxCS ⊂∈= −  be the set of all points z in [x, y] such all generat-

ing points of S(z) are contained in [x, y]. For example, in Fig. 8, CS([x, y]) = [a, b]. Similarly, we 

can define CS((x, y)) for an open segment (x, y). 

 

yb

x=a

s
e

 

Figure 8. The initial contour segment [x,y] is marked with thick continuous line. CS([x,y]) = [a,b] = 
arc(s,[x,y]), where S(a)=S(b)=s. The corresponding skeleton part S([a, b]) is marked thick dashed line. 
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Definition 3. Given a partition Γ of the boundary ∂D of a simply connected set D (i.e., ∂D con-

sist of one simple closed curve), the skeleton pruning is defined as the removal of all skeleton 

points s∈S(D) whose generating points lie in the same open segment of the partition. More pre-

cisely, the pruned skeleton is composed of all points s∈S(D) such that Tan(s) is not contained in 

the same open segment of the partition Γ. This is a very simple definition of skeleton pruning, 

and it works with any contour partition. The key issue is to get reasonable partitions. As we will 

show, DCE provides a very good partition for the pruning. We show in Theorem 1 (in the Ap-

pendix) that the topology of a pruned skeleton is preserved for a pruned skeleton generated by 

any partition of the contour. We illustrate the meaning of Theorem 1 in Fig. 8. The CS((x, y))=(a, 

b) is a subsegment of (x, y). Therefore, the thick dashed part of the skeleton S(CS((x, y))) gener-

ated by contour segment (x, y) can be removed and the pruned skeleton has the same topology. 

Observe that the only point in S(CS([x, y])) that connects S(CS([x, y])) to the rest of the skeleton 

is point s.  

The situation is a bit more complicated if D is not simply connected (i.e., ∂D consist of more 

than one simple closed curve). For example, CS([x, y]) = [a, c] ∪ [d, b] shown in Fig. 9 is not a 

subsegment of [x, y], due to the interior simple closed curve. Therefore, S(CS([x, y])) =[u, s] can-

not be removed without violating the topology. Observe that it suffices to additionally check for 

every partition segment [x, y] whether CS([x, y]) is arc connected. When CS((x, y)) is arc con-

nected, then we can remove part S(CS((x, y))) of the skeleton without violating the skeleton to-

pology as proved in Theorem 2 (in the Appendix).  

5 SKELETON PRUNING WITH DISCRETE CURVE EVOLUTION 

In this section, we introduce the contour segmentation process based on Discrete Curve Evolu-

tion (DCE). The hierarchical decomposition of the boundary of the set D obtained by DCE is the 
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key component in the proposed skeleton pruning method.  

 

y=b

x=a
c

d

su

 

Figure 9 The initial contour segment [x, y] is marked with a continuous thick line. Observe that CS([x,y]) = 
[a, c] ∪ [d, b] is not a subsegment of [x, y], since it is not arc connected. Therefore, CS([x, y]) is not equal 
to arc(s, [x, y]), where S(a)=S(b)=s. Since CS([x, y]) is not a subsegment of [x, y], S(CS([x, y])) cannot be 
removed by Theorem 2. The skeleton part S(CS([x, y])) represented by the segment [u, s] is marked thick 
dashed line. Observe that removing [u, s] disconnects the skeleton.  
 

5.1 Discrete Curve Evolution 

The Discrete Curve Evolution (DCE) method was introduced in [16],[17],[18]. Contours of ob-

jects in digital images are distorted by digitization noise and segmentation errors; it is desirable 

to eliminate the distortions while at the same time preserving the perceptual appearances suffi-

cient for object recognition. DCE accomplishes this goal by simplifying the shape. For example, 

a few stages of DCE are illustrated in Fig. 6 for the outer (red) polylines. The shape of the leaf 

becomes more and more simplified by DCE, while preserving the main visual parts.  

Since any digital curve can be regarded as a polygon without the loss of information (but, with 

the possibility of a large number of vertices), it is sufficient to study evolutions of polygonal 

shapes. The basic idea of the proposed evolution of polygons is simple: 

• In every evolutional step, a pair of consecutive line segments s1, s2 is replaced by a single line 

segment joining the endpoints of 21 ss U . 

The key property of this evolution is the order of the substitution. The substitution is achieved 

according to a relevance measure K given by: 
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where line segments s1, s2 are the polygon sides incident to a vertex v, ß(s1, s2) is the turn angle at 

the common vertex of segments s1, s2, l is the length function normalized with respect to the total 

length of a polygonal curve C. The main property of this relevance measurement is [16][18]: 

• The higher value of K(s1, s2), the larger is the contribution of the arc 21 ss U  to the shape. 

Given the input boundary polygon P with n vertices, DCE produces a sequence of simpler 

polygons 31 ,...,, PPPP nn −= such that Pn-(k+1) is obtained by removing a single vertex v from Pn-k 

whose shape contribution measured by K is the smallest.  

Definition 4. An important property of DCE is that it introduces a hierarchical partition of the 

input polygon P. Let {v1, …, vn} be vertices of P and let {u1, …, um} ⊂ {v1, …, vn} be the con-

vex vertices of Pn-k for m ≤ n-k. On the level n-k of the partition hierarchy Hn-k(P), P is decom-

posed into m subarcs of P: Hn-k(P) = {[u1, u2], [u2, u3], …, [um, u1]}. We call these arcs DCE 

(contour) partition (on DCE level n-k). The reason that our partition is based only on convex 

vertices of P will be explained in the next section, in which skeleton pruning is defined.  

If vertex ui is deleted in the next evolution step, (i.e., ui ∈ Pn-k – Pn-(k+1)), or becomes concave 

(due to the deletion of one of its neighbors), then the arc [ui-1, ui+1] replaces arcs [ui-1, ui], [ui, 

ui+1] in the partition level Hn-(k+1)(P).  

Observe that DCE and the hierarchical partition can be also defined for a finite set of polygo-

nal curves. The only difference is that in each DCE step a single vertex is removed from one of 

the polygons whose actual relevance measure is the smallest. This observation is particularly im-

portant for our approach, since the proposed pruning can be applied to a planar set D such that its 

boundary ∂D is composed of a finite number of simple closed polygons. Thus, the connected set 
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D may have holes. In other words, D does not need to be simply connected.  

Though the DCE procedure can effectively remove the noise and visually unimportant por-

tions of the image, a proper stop parameter is still necessary. In other words, we seek such a k so 

that the simplified polygon Pn-k represents the input contours on the adequate level of detail. In 

order to quantify the level of detail we define the average distance )( kn
av PD −  between original 

points of P and their corresponding line segments in Pn-k: 

Given a threshold T, we can stop DCE if )( kn
av PD − > T for some k. Given a sequence 

of T values, we can obtain a hierarchical sequence of DCE simplified boundary polygons, which 

leads to a hierarchical sequence of corresponding skeletons. In general, an adequate stop condi-

tion depends on the particular application. A stop condition that is adequate for shape similarity 

is given for DCE in [18]. It is based on the difference of the DCE simplified contour to the origi-

nal input contour. When the pruned skeletons are input into a shape similarity measure, this stop 

condition is recommended. 

DCE can be viewed as a greedy approach to simplify the contour so that the length difference 

between the original and the simplified contour is minimal. It is easy to implement a simplifica-

tion method (using dynamic programming) which is optimal with respect to the length differ-

ence. DCE yields very similar results.  

 

5.2 Skeleton pruning with Discrete Curve Evolution  

Given a skeleton S(D) of a planar shape D and given a DCE simplified polygon Pk, we perform 

skeleton pruning by removing all points s∈S(D) such that the generating points Tan(s) of s are 

contained in the same open DCE segment. Each pruned point s results from a local contour part 

with respect to the DCE partition, and therefore, s can be considered as an unimportant skeleton 
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point and can be removed. The simplification of the boundary contour with DCE corresponds to 

pruning complete branches of the skeleton. In particular, a removal of a single convex vertex v 

from Pn-k to obtain P n-(k+1) by DCE implies a complete removal of the skeleton branch that ends 

at v. We give an example illustrating this fact in Fig. 10(a). This figure shows a polygon with 

seven vertices obtained from a DCE leaf contour and the skeleton is obtained by pruning based 

on this polygon. There are only five skeleton branches ending in the five convex vertices of the 

simplified polygon. The pruned skeleton was computed with respect to the DCE segments (A,C), 

(C,D), (D,E), (E,F), (F, A). The pruning was applied to the leaf skeleton shown in the first image 

in Fig. 6. (The skeleton in Fig. 10(a) is the same as in the last image in Fig. 6.) We can illustrate 

the main idea of our approach by explaining why the green skeleton branch in Fig. 10(a) that 

ends at point C remained. It remained because each of its points has maximal disks tangent to 

points on two different DCE segments, which are contour arcs (A,C) and (C,D).  

 

                                                                            (a)                                                    (b)                                      (c) 

Figure 10. (a) A simplified polygon with 7 vertices (in red) and the skeleton obtained based on this poly-
gon. The green skeleton branch (ending at C) remained, since each of its points has generating points on 
two different arcs BC and CD of the original contour. A skeleton branch shown in green in (b) does not 
belong to the skeleton determined by the DCE polygon, since it ends at a concave vertex P. As shown in 
(c), it would have been removed anyway but at later stage of DCE simplification. 

We perform contour decomposition into DCE segments based only on convex vertices of the 

DCE simplification. This means that not only when a given vertex is removed by DCE but also 
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when a convex vertex becomes concave in the process of DCE, the skeleton branch ending in 

this vertex is removed. This approach allows us to remove minor (small) branches in the earlier 

stages of the DCE evolution. Fig. 10(b) illustrates why we only use convex vertices to define 

DCE segments. The green branch in Fig. 10(b) that ends at vertex P would be part of the skele-

ton if we also used concave vertices of the simplified polygon (shown in red) to define DCE 

segments. This branch would have been removed anyway, since vertex P was removed from the 

further simplified polygon shown in Fig. 10(c). Thus, the fact that DCE segments are defined 

using only convex vertices of the simplified polygon allows for faster pruning of irrelevant 

branches.  

A very important property of DCE induced contour partition, and every partition that is re-

stricted to vertices of the boundary polygon, is that fact that there is a skeleton branch ending at 

every partition point. As stated above if a partition point that is also a polygon vertex ui is deleted 

in a DCE evolution step, (i.e., ui ∈ Pn-k – Pn-(k+1)), or becomes concave (due to the deletion of one 

of its neighbors), then the arc [ui-1,ui+1] replaces arcs [ui-1,ui], [ui,ui+1] in the contour partition. 

Therefore, the whole skeleton branch that ends at vertex ui is eliminated with skeleton pruning. 

This fact is proven in Theorem 3 in the Appendix. 

Although convex vertices from DCE can prune skeletons to get clear structures, they may also 

generate unimportant skeleton branches. We illustrated this problem with Fig. 11. The vertices A, 

B, C and D have the same DCE relevance measure K, since K is restricted to directed neighbors 

of a given vertex. However, the four green skeleton branches ending at them are of differing im-

portance. The branch ending at D has especially and significantly lower importance, and should 

be removed. Due to the concave vertices inside the shapes with vertices C and D, the importance 

of the skeleton branches ending at the convex vertices C and D is significantly reduced. Such 
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cases occur in limb shaped parts of visual forms as defined in [41]. 

 

 

Figure 11. The same convex vertices may generate different skeleton branches with different importance. 
 

To overcome the problem we introduce an additional relevance measure. For each convex poly-

gon vertex v, we compute the distance Dl(v) between v and the nearest concave vertex u such that 

the line segment vu is inside the shape if such a vertex u exists. We then remove vertices with 

low value of the new relevance measure Dl(v). 

Fig. 12 illustrates the effect of removing the convex vertices v with low relevance Dl(v). There 

are five short skeleton branches (in green) that end at A, B, C, D, E in Fig. 12 (a) that have been 

removed in Fig.12 (b). This leads to a contour partition with only 7 convex vertices numbered 1-

7 in Fig.12 (b). 

    To summarize, the vertices Vf that are used for contour partitioning induced by DCE are 

computed as: )( lconcavesf VVVV ∪−= , where Vs denotes all the vertices of the simplified polygon 

P obtained by DCE, Vconcave denotes all of the concave vertices of Vs, and Vl denotes vertices of 

Vs with low value of the measure Dl. 
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(a)                                                           (b) 

Figure 12.  Removal of unimportant convex vertices for generating an optimal visual skeleton. 

5.3 Time complexity  

The contour partition by DCE has a complexity of O(NlogN) [18], where N is the number of 

the vertices on the original polygon. We can traverse the contour in linear time, O(N), and assign 

to each contour vertex the label of its partition segment. During skeleton computation, the labels 

can be passed to each skeleton point as features of generating points. Therefore, the complexity 

of the proposed pruning is O(NlogN) if DCE is computed, and linear if DCE has been pre-

computed. 

6 GROWING A PRUNED SKELETON FROM A DISTANCE TRANSFORM 

The main goal of this section is to show that it is not necessary to have a separate post-

processing step in skeleton pruning, as we can grow a pruned skeleton directly form the distance 

transform. In this section, we work in the discrete domain of 2D digital images, in which the ob-

ject contour is still represented with polygons. To achieve our goal we extend the fast skeleton 

growing algorithm presented by Choi et al. [7]. We briefly review the skeleton growing algo-

rithm in [7]. First, the Euclidean Distance Transform DT of the binary image of a given shape D 
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is computed. Then the point with the maximal value of DT(D) is selected as a seed skeleton 

point. Finally, the skeleton is grown recursively by adding points that satisfy a certain criterion, 

which intuitively means that the added points lie on ridges of the DT(D). The grow process is 

based on examining every eight-connected point of the current skeleton points. The skeleton con-

tinues growing in this way until it reaches an endpoint of a skeleton branch. Next, other skeleton 

branches starting at other skeleton points are considered.  

The proposed extension of the algorithm in [7] is very simple, and it can also be applied to other 

skeleton growing algorithms. For a point to be added, it must additionally have its generating 

point on at least two different contour segments of a given contour partition. 

7 EXPERIMENTAL RESULTS AND COMPARISON  

In this section, we show the performance of the proposed method in three parts: (1) stability in 

relation to noises and variance; (2) an analysis of our skeletons and comparison to other skele-

tons; (3) a discussion of the potential for skeleton matching.     

7.1 Stability of pruning with DCE 

Some results on shapes from MPEG-7 Core Experiment CE-Shape-1 database [37] are shown 

in Fig. 13. For each shape class, we show pruned skeletons for several objects from the same 

class. Although the objects differ significantly from each other, the obtained pruned skeletons 

have the same structures. The final DCE simplified polygons are also shown overlaid on the 

shapes with red segments. The skeleton pruning is performed with respect to contour partition 

induced by the vertices of these polygons. In the first row in Fig. 13, the skeletons of the thin and 

long tails of rats remained complete. This cannot be achieved by other pruning methods since 

these may shorten or disconnect the skeleton. Although the camels differ significantly in their 

shapes, all obtained skeletons have a clear global structure. The extraordinary stability of the 
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skeletons obtained by the proposed pruning method in the presence of significant shape varia-

tions and distortions is illustrated for ‘star’ and ‘plus’ shaped objects. These results are possible 

due to the contour partition stability of DCE. The last row of Fig.13 shows the DCE’s stability to 

the same shapes in different scales.  
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Figure 13. Our results on Mpeg 7 shape database illustrate the extraordinary stability of pruned skeletons 
in the presence of significant shape variations and deformations.  

7.2 Analysis and comparison 

In this part, we describe our test results with the proposed approach on several binary shape im-

ages with the size 500×500. All the images that were tested have significant boundary distor-

tions.  

A hierarchy of pruned skeletons is shown for the walking human in Fig. 14. The pruning is pre-

formed with respect to DCE simplified contours with N = 200, 100, 50, 30, and 12 vertices. We 

have also shown a hierarchy of pruned skeletons in Fig. 6 above. We can see that the results of 

our algorithm are in accord with human visual perception. Besides hierarchical and visual prop-

erty, our skeleton has a unique property: As proven in Theorem 3 (in the Appendix), in the cause 

of the DCE evolution process, the pruned branches are eliminated completely, (i.e., the obtained 

skeletons are without the presence of remaining half-shortened small, short branches). For exam-

ple, in Fig.14, each skeleton branch is removed, and no remaining fractions are left.  
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Figure 14 Hierarchical skeleton of a walking human. The input image is similar to a walking human in [11]. 

 

The skeleton in Fig.15 (a) illustrates a common problem with the existing skeleton pruning 

approaches [5], which is the problem of inaccurate, half-shortened braches that are not related to 

any obvious boundary features. It is also shown in Fig. 1(b) and Fig. 3(a), above. Figs. 15 (b), 

1(c), and 3(b) show that the proposed approach is able to completely eliminate all the unimpor-

tant branches and still preserve all main structure. Our method does not suffer from shortening 

main skeleton branches and it preserves the topology of the skeleton. Moreover, the obtained 

skeletons seem to be in accord with human perception. Figs. 1 and 3 show a comparison of our 

method and the method in [7]. The result obtained using the method in [7] also exhibits problems 

with the skeleton topology in Fig. 1(b). Fig.15 shows a comparison of our method with the 

method by Ogniewicz and Kübler [5]. It also illustrates that our pruning method can be used in 

pruning branches of the Voronoi skeleton. As the Voronoi skeleton points are symmetrical to the 

boundary sample points, the generating boundary points of each skeleton point are known.  

Fig. 15(c) shows an application of our method to generate a fixed topology skeleton intro-

duced in Golland and Grimson [11]. The proposed pruning is not limited to the DCE induced con-

tour partitioning. Once the positions of the skeleton’s endpoints are estimated along the boundary 

as in the method in [11], the endpoints induce a partition of the boundary curve, and the fixed 
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topology skeleton can be generated by pruning any skeleton with our method with respect to this 

partition. 

   

                                                 (a)                                                     (b)                                                     (c) 

Figure 15. Comparison between pruning result in [5] in (a) and our results in (b), and (c) is the result of 
fixed topology skeleton. 

The comparison between a result in [11] and our result is shown in Fig.16. Fig.16(a) shows a 

skeleton obtained by the method in [11], and Fig.16(b) shows our result induced by the contour 

partition (A,B), (B,C), (C,D), (D,E), (E,F) marked with the red points, which represent the esti-

mated skeleton endpoints. We can see that the position of our skeleton is more accurate than in 

(a), since all of our skeleton points are the centers of maximal disks, which are exactly symmet-

rical to the shape boundary, and which is not the case for the fix topology method in [11]. More-

over, compared with [11], only the endpoints need to be estimated; we do not need to estimate 

the junction points of the skeleton.  

Theorems 1 and 2 (in the Appendix) prove that our method is guaranteed to preserve topology. 

We illustrate this fact in Fig. 2(e) above. Fig.17 shows another example for a shape with three 

holes that has a total of four contour curves. The result of the method in [7] is shown in 

Fig .17(b). Fig.17(c) shows that the proposed approach can preserves the original topology. In 

Fig.17 (d), the contour partition is only composed of the four boundary curves, (i.e., there are no 

segments on any of these curves), so that the skeleton points must have their tangent points on 
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the different boundary curves in order to remain.  

 

 

(a)                                                     (b) 

Fig.16 Comparison between the fixed topology skeleton in [11] in (a) and our skeleton in (b)  

 

 

           (a)                                                (b)                                                 (c)                                             (d) 

Figure 17. (a) The input skeleton. (b) A pruned skeleton obtained by the method in [7] violates the topol-
ogy. (c,d) Pruned skeletons obtained by the proposed method, which is guaranteed to preserve the topol-
ogy. 

  

7.3 The potential in shape similarity 

Our skeletons have strong potential for shape similarity, since, in addition to the above stated 
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properties, they have two special properties: (1) Every skeleton branch is generated by contour 

parts divided by the vertices of the DCE simplified polygon. (2) The convex vertices of the DCE 

simplified polygon are the endpoints of the skeletons. Therefore, a contour-based shape similar-

ity measure introduced in [17] can be used to match the obtained skeletons. Given a contour par-

tition induced by DCE, the method in [17] establishes the optimal correspondence of the parti-

tion segments. Clearly, this also yields a correspondence of skeleton branches. This fact is illus-

trated in Fig. 18, where the corresponding skeleton branches are linked with lines. The corre-

spondence in Fig.18(d) is inspired by an example in Liu at al. example in [30], where complex 

graph matching algorithms are used to establish correspondences of skeleton braches. The qual-

ity of the skeletons obtained by the proposed pruning makes it possible to apply existing contour 

similarity measures to problems with the structural similarity of skeletons. 

 

         

                      (a)                                                                                  (b) 
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                              (c)                                                                   (d) 

Figure 18 The high quality of the pruned skeletons obtained by our method makes it possible to match the 
skeleton structure using existing shape similarity approaches. 

8. CONCLUSIONS AND FUTURE WORK 

In this paper, we establish a unique correspondence between skeleton branches and subarcs of 

object contours. Based on these connections, a skeleton is pruned by removing skeleton branches 

whose generating points are on the same contour subarc. This has an effect of removing redun-

dant skeleton branches and retaining all the necessary visual branches. We prove that this ap-

proach is guaranteed to preserve skeleton topology, does not shift the skeleton, and does not 

shrink the remaining branches. We use a discrete curve evolution to obtain a hierarchical parti-

tioning of an object contour into subarcs that yields a hierarchical skeleton structure. We provide 

experimental results that demonstrate the high stability of the obtained skeletons even for objects 

with extremely complex shapes. The stability of skeletons is the key property required to meas-

ure the shape similarity of objects using their skeletons. The proposed definition of the skeleton 

pruning easily extends to higher dimensions, (e.g., in 3D it only requires a surface partition into 

patches), but further research on surface partitions is needed. 



                                                                 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLINGENCE 

 

32 

ACKNOWLEDGEMENTS 

This work received support from the National Natural Science Foundation of China (grant No. 

60273099) and was in part supported by the NSF under Grant No. IIS-0534929. We wish to 

thank Liu Hairong and Yang Xingwei for their advice and useful discussions. 

REFERENCES 

[1]. H. Blum. Biological Shape and Visual Science (Part I). J. Theoretical Biology, 38:205-287, 1973. 
[2]. K. Siddiqi, A. Shkoufandeh, S. Dickinson and S. Zucker. Shock Graphs and Shape Matching. In 

ICCV ,1998: 222-229. 
[3]. C. Di Ruberto. Recognition of shapes by attributed skeletal graphs. Pattern Recognition, 37: 21 – 

31, 2004. 
[4]. T. E. R. Hancock. A skeletal measure of 2D shape similarity. Computer Vision and Image Under-

standing, 95: 1 – 29, 2004. 
[5]. R. L. Ogniewicz, O. Kübler, Hierarchic Voronoi skeletons, Pattern Recognition, 28 (3): 343 –359, 

1995. 
[6]. G. Malandain and S. Fernandez-Vidal. Euclidean skeletons. Image and Vision Computing, 16: 317 

– 327, 1998. 
[7]. W.-P. Choi, K.-M. Lam, and W.-C. Siu Extraction of the Euclidean skeleton based on a connec-

tivity criterion. Pattern Recognition,  36: 721 – 729, 2003. 
[8]. C. Pudney. Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital 

Images. Computer Vision and Image Understanding, 72(3):404-413, 1998. 
[9]. W. Xie, R.P. Thompson, and R. Perucchio. A topology-preserving parallel 3D thinning algorithm 

for extracting the curve skeleton. Pattern Recognition, 36: 1529 – 1544, 2003. 
[10]. F. Leymarie and M. Levine. Simulating the grassfire transaction form using an active Contour 

model. IEEE Trans. Pattern Analysis and Machine Intell., 14(1): 56 – 75, 1992. 
[11]. P. Golland and E. Grimson. Fixed topology skeletons. In CVPR, Vol. 1, 2000, pp. 10-17. 
[12]. N. Mayya and V.T. Rajan. Voronoi Diagrams of polygons: A framework for Shape Represen-

tation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1994, 
pp. 638 – 643. 

[13]. Y. Ge, J.M. Fitzpatrick. On the Generation of Skeletons from Discrete Euclidean Distance 
Maps. IEEE Trans. Pattern Analysis and Machine Intell., 18(11):1055-1066, 1996. 

[14]. Gold, C.M., D. Thibault and Z. Liu. Map Generalization by Skeleton Retraction. ICA Work-
shop on Map Generalization, Ottawa, August 1999.(pages?) 

[15]. L.J. Latecki and R. Lakämper. Convexity Rule for Shape Decomposition Based on Discrete 
Contour Evolution. Computer Vision and Image Understanding (CVIU), vol. 73, pp. 441-454, 
1999. 

[16]. L.J. Latecki, R. Lakamper. Polygon evolution by vertex deletion. Proc. of Int. Conf. on Scale-
Space'99, 1999, volume LNCS 1682. 

[17]. L.J. Latecki, R. Lakamper, Shape similarity measure based on correspondence of visual parts, 
IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI).,  22 (10): 1185–1190, 2000. 



BAI XIANG, L.J.LATECKI, LIU WENYU:  SKELETON PRUNING WITH DISCRETE CURVE EVOLUTION 

 

33

[18]. L.J. Latecki, R. Lakamper. Application of planar shape comparison to object retrieval in image 
databases. Pattern Recognition, 35(1): 15 – 29, 2002. 

[19]. G. Borgefors. Distance transformations in digital images. Computer Vision, Graphics and Im-
age Processing, 34(3): 344-371, 1986. 

[20]. D. Shaken and A. M. Bruckstein. Pruning Medial Axes. Computer Vision and Image Under-
standing,  69(2): 156-169, 1998. 

[21]. K. Siddiqi, A. Tannenbaum, S. W. Zucker.Hyperbolic"Smoothing"of Shapes. In ICCV, 
1998: 215-221. 

[22]. P. Dimitrov, J. N. Damon & K. Siddiqi. Flux Invariants for Shape. Int. Conf. Computer 
Vision and Pattern Recognition, 2003. 

[23]. L. J. Latecki, R.-R. Ghadially, R. Lakämper, and U. Eckhardt. Continuity of the discrete 
curve evolution. Journal of Electronic Imaging, 9 (3), pp. 317-326, July 2000. 

[24]. P. Dimitrov, C. Phillips, and K. Siddiqi. Robust and Efficient Skeletal Graphs. In 
CVPR,2000: 1417-1423. 

[25]. K. Siddiqi, S. Bouix, A. R. Tannenbaum, S. W. Zucker. Hamilton-Jacobi Skeletons. 
International Journal of Computer Vision, 48(3): 215-231, 2002. 

[26]. A. Vasilevskiy and K. Siddiqi: Flux Maximizing Geometric Flows. IEEE Trans. Pattern 
Analysis Machine Intell., 24(12): 1565-1578, 2002. 

[27]. F. Y. L. Chin, J. Snoeyink, and C. An Wang. Finding the Medial Axis of a Simple Poly-
gon in Linear Time. In ISAAC, 1995: 382-391. 

[28]. J. W. Brandt and V. R. Algazi. Continuous skeleton computation by Voronoi diagram. 
Comput. Vision,Graphics, Image Process, vol. 55 , pp. 329–338, 1992. 

[29]. S.C. Zhu and A. Yuille. FORMS: a Flexible Object Recognition and Modeling System. 
In ICCV, 1995. 

[30]. T. Liu, D. Geiger and R. V. Kohn. Representation and Self-Similarity of Shapes. In 
ICCV, Bombay, India, January 1998. 

[31]. C. Aslan, and S. Tari. An Axis Based Representation for Recognition. ICCV 2005.  
[32]. H. I. Choi, S. W. Choi, and H. P. Moon. Mathematical Theory of Medial Axis Transform. 

Pacific Journal of Mathematics, 181(1): 57-88, 1997. 
[33]. C. Arcelli and G. Sanniti di Baja. Euclidean skeleton via center of maximal disk extrac-

tion. Image and Vision Computing, Vol.11, pp. 163-173, 1993. 
[34]. C. Arcelli and G. Sanniti di Baja. A Width Independent Fast Thinning Algorithm. In 

IEEE Trans. PAMI, 7:463-474, 1985. 
[35]. R. Kimmel et al. Skeletonization via Distance Maps and Level Sets. CVIU: Comp. Vision 

and Image Understanding, 62(3):382-391, 1995. 
[36]. T. B. Sebastian, P. N. Klein, and B. B. Kimia. Recognition of shapes by editing their 

shock graphs. IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 5, pp. 550-571, 2004.  
[37]. L. J. Latecki, R. Lakamper, and U. Eckhardt. Shape Descriptors for Non-rigid Shapes 

with a Single Closed Contour. Proc. CVPR, 2000. 
[38]. F. Mokhtarian and A.K. Mackworth. A theory of multiscale, curvature-based shape rep-

resentation for planar curves. IEEE Trans. PAMI. 14: 789-805, 1992. 
[39]. S. M. Pizer, W.R. Oliver, and S.H. Bloomberg. Hierarchial shape description via the mul-

tiresolution symmetric axis transform. IEEE Trans. PAMI. 9: 505-511, 1987. 
[40]. G. Borgefors, G. Ramella, and G. Sanniti di Baja. Hierarchical decomposition of multis-

cale skeletons. IEEE Trans. PAMI. 13(11): 1296-1312, 2001. 
[41]. K. Siddiqi and B. B. Kimia. Parts of Visual Form: Computational Aspects. IEEE Trans. 

on Pattern Analysis and Machine Intelligence 17(3), 239-251, 1995. 



BAI XIANG, L.J.LATECKI, LIU WENYU:  SKELETON PRUNING WITH DISCRETE CURVE EVOLUTION 

 

34

APPENDIX 

Theorems 1 and 2 proven in this section follow from the theoretical properties of the skeleton 

that in [32]. In particular, we make a heavy use of the Domain Decomposition Lemma (Theorem 

5.1 in [32]).  

Theorem 1 Let [x, y] be a contour segment that belongs to some contour partition Γ of ∂D. If D 

is simply connected,( i.e., ∂D consists of only one simple closed curve), then S(D) – S(CS((x, y))) 

is a strong deformation retract of S(D) (i.e., S(CS((x, y))) can be removed from the skeleton S(D) 

without violating its topology). 

Proof: We assume that there exists a skeleton point all of whose generating points lie on (x, y). If 

this is not the case, then the theorem is true, since then CS((x, y))= ∅. 

Let C = ∂D be the only boundary curve of D. Clearly, we have [x, y] ⊂ C.  

It follows from Theorem 5.1 in [32] that there exists a point s∈S(D) such that Ci(s) ⊂ [x, y], 

where Ci is one of the contour components C1(s), …, Ck(s) of ∂D – B(s), and for any other point 

p∈S(D), whenever Cj(p) ⊂ [x, y] for some component Cj(p) of ∂D – B(p), we have Cj(p) ⊂ Ci(s).  

We will show that Ci(s) = CS((x, y)). Clearly CS((x, y)) ⊂ Ci(s).  

It remains to show that Ci(s) ⊂ CS((x, y)).  

Let x ∈ Ci(s). Then S(x) ∈ Si(s) and consequently S-1(S(x)) ⊂ Ci(s). Since Ci(s) ⊂ (x, y), we obtain 

that x ∈ CS((x, y)).  

Now we are ready to construct the strong deformation retraction f. The key observation is that f 

maps S(D) to S(D) – S(CS((x, y))) by simply mapping S(CS([x, y])) to the point s. 

By Theorem 8.1 in [32], S: ∂D → S(D) is a strong deformation retraction. This implies that 

S(CS([x, y])) = Si(s) ∪  {s} is a strong deformation retract of CS([x, y]), and consequently, {s} is 
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homotopy equivalent to Si(s) ∪  {s}. Therefore, it is possible to define a strong deformation re-

traction f that maps S(CS([x, y])) to {s}, and is identity on S(D) – S(CS([x, y])). This proves the 

theorem. 

Theorem 2 Let [x, y] be a contour segment that belongs to some contour partition Γ of ∂D. If 

CS((x, y)) is a subsegment of (x, y) (i.e., CS((x, y)) is arc connected), then S(D) – S(CS((x, y))) is 

a strong deformation retract of S(D).  

Proof: We assume that there exists a skeleton point whose all generating points lie on (x, y). If 

this is not the case, then the theorem is true, since then CS((x, y))= ∅. 

Let C ⊂ ∂D be a boundary curve such that [x, y] ⊂ C.  

Our first step is to show that there exists some point s∈S(D) and two contour points a, b ∈ C 

such that CS([x, y]) = [a, b] ⊂ [x, y], where [a, b] is the shortest subsegment of  [x, y] that con-

tains points a and b, see Fig. 8.  

In order to prove this fact, we will show that CS([x, y]) is equal to the union of all arcs arc(S(z), 

[x, y]) induced by skeleton points S(z) whose all gene rating points are contained in the contour 

segment [x, y], (i.e., ]},[))((:]),[),(({]),([ 1 yxzSSyxzSarcyxCS ⊂= −U ). 

We have z∈CS([x, y]) iff S-1(S(z)) ⊂ [x, y], and since CS([x, y]) is arc connected, S-1(S(z)) ⊂ [x, y] 

iff arc(S(z), [x, y]) ⊂ CS([x, y]).  

It follows from Theorem 5.1 in [32], that for any two points u, v∈CS([x, y]), we have  

arc(S(u), [x, y]) ⊂ arc(S(v), [x, y]) or arc(S(v), [x, y]) ⊂ arc(S(u), [x, y]).  

Therefore, CS([x, y]) is the union of an increasing sequence of closed contour segments, and con-

sequently, CS([x, y]) is a closed contour segment, (i.e., CS([x, y]) = [a, b] ⊂ [x, y] for some a, b ∈ 

C). Since the points a and b are the limits of endpoints of segments arc(S(z), [x, y]) such that S-

1(S(z)) ⊂ [x, y] and such that the two endpoints of each arc map to the same skeleton point, we 
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obtain that such that S(a)=S(b)=s for some point s∈S(D), see Fig.8. 

Now we are ready to construct the strong deformation retraction f. The construction is very simi-

lar to the one in the proof of Theorem 1. First observe that f maps S(D) to S(D) – S(CS((x, y))) by 

simply mapping S(CS([x, y])) to the point s. 

By Theorem 8.1 in [32], S: ∂D → S(D) is a strong deformation retraction. This implies that 

S(CS([x, y])) = S([a, b]) = S(arc(s, [x, y])) is a strong deformation retract of [a, b]. Since [a, b] 

has two endpoints in C that are both mapped by S to the same skeleton point s, S([a, b]) = 

S(CS([x, y])) has exactly one endpoint s in S(D), and {s} is homotopy equivalent to S([a, b]). 

Therefore, it is possible to define a strong deformation retraction f that maps S([a, b]) to {s}, and 

is identity on S(D) – S(CS((x, y))). This proves the theorem. 

Theorem 3 Let v be a vertex in Pn-k but not in Pn-(k+1) (removed by DCE) or v be convex in Pn-k 

and concave in Pn-(k+1). If there is a skeleton branch that ends at v in the skeleton pruned with 

partition induced by Pn-k, then exactly this branch is removed to obtain the skeleton pruned with 

partition induced by Pn-(k+1). 

Proof: We only prove this theorem in the case of the removal of vertex v. The proof in the case 

of the status change form convex to concave is analogous.  

Fig.19 shows part of polygon with several vertices of which v0, v1, v2 are convex and v3 is con-

cave. (Thick segments represent skeleton branches inside the polygon.) Each convex vertex can 

be seen as a disk with a radius of zero, which is an endpoint of a skeleton branch engendered by 

its two adjacent line segments.  
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Figure 19. When vertex v=v2 is removed from the contour partition, the branch ov2 ending at it, is com-
pletely removed by the proposed skeleton pruning. 
 

 
Observe that a maximal disk cannot have more than one tangent point on each line segment of 

the contour polygon. For example, in Fig.19, the maximal disc of the junction point o has three 

tangent points t1, t2 and t3 on three different boundary segments v0v1, v1v2, and v2v3, respectively.  

It follows from Theorem 5.1 in [32] that the skeleton branch ov2 must be equal to one of the Si(o) 

for i=1,2,3, say it is S1(o). Then the boundary segment (t1, t2) is equal to C1(o). Consequently, all 

the skeleton points on S1(o) have their generating points on C1(o). Therefore, when v=v2 is de-

leted by DCE, the whole branch ov2=S1(o) is removed from the skeleton. However, the junction 

point o remains, for two reasons. First, because we prune with respect to open contour segment 

(t1, t2), and second it has another tangent point t3 that does not belong to [t1, t2]. This proves the 

theorem. 

 


