
DETECTION OF CHANGES IN SURVEILLANCE VIDEOS

Longin Jan Latecki, Xiangdong Wen, and Nilesh Ghubade

CIS Dept. Dept. of Mathematics CIS Dept.
Temple University Temple University Temple University

Philadelphia, PA 19122 Philadelphia, PA 19122 Philadelphia, PA 19122
latecki@temple.edu wen@math.temple.edu nileshg@temple.edu

ABSTRACT

In this paper we provide theoretical and experimental results
that dimension of video trajectories is a useful tool to ac-
cess mid-level content of videos, like, appearance or disap-
pearance of an object, and changes in velocity and in direc-
tion of moving objects. Moreover, the amount of changes is
proportional to the size of objects involved and their speed.
All this is achieved by a robust technique of dimensionality
computation of video trajectories based on eigenvalues.

1. INTRODUCTION

A first step in our video analysis is to map a video sequence
to a polygonal trajectory. We obtain a polygonal video tra-
jectory in an Euclidean space by mapping each frame to a
feature vector and joining the vectors representing consecu-
tive frames by line segments.

The second step is geometric analysis of obtained tra-
jectories. The goal of this analysis is to link the properties
of video trajectories to the content of videos.

Our approach can be classified as geometric analysis of
video trajectories in the feature space. This direction was
started by DeMenthon at al. [1], who used it for key frame
extraction. It was further advanced for key frame extraction
in [2, 4, 5]. Geometric analysis of video trajectory was first
applied to detect unusual events in videos in Latecki and
de Wildt [6]. All mentioned techniques are based on an in-
terpolation of the original video trajectory with a polygonal
curve with significantly fewer vertices, and differ by inter-
polation techniques used. In this paper we propose a new
technique of geometric analysis of video trajectories that is
based on dimension analysis.

In order to be able to capture object motions, we use
image histograms extended by centroids of histogram bins
as feature vectors that represent images. This representation
was proposed in [1].
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For a given digital image, we compute a histogram with�
bins for each color component, e.g., in YUV or RGB color

space. The feature vector ��� for a frame number � consists
of the following values for each color bin � in each color
component: ���	�
��
�� (the � and � coordinates of the centroid
of the pixels belonging to bin � ), and � � � (the pixel count in
bin � ):
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The pixel count � � � is relative to the total number of pixels
in the image, i.e., it is a value between 0 and 1. Also the
� and � coordinates of the centroid are scaled to range be-
tween 0 and 1 by dividing them through the x and y image
size, correspondingly. For example, in [6] we used 8 bins;
this led to feature vectors with 72 coordinates plus � as 73rd
coordinate.

The video trajectory can be interpreted as sequence of
vectors '��(�)���+*,���.- � that join two consecutive feature
vectors. We define the dimension of video trajectory to be
the dimension of the smallest linear subspace containing the
trajectory. It can be computed as the rank of the video tra-
jectory matrix, whose rows are the video trajectory vectors.

However, the computation of the rank is highly sensitive
to numeric errors. Thus, a robust way of rank computation
is needed. Such a method is provided in Section 2. The
main idea is that the rank can be defined as the number of
nonzero singular values. Because of the numerical errors,
we can not get the exact zero singular values, but we can
view singular values with small Euclidean norm as zeros.
This idea was introduces in Seitz and Dyer [8]. In the paper
by Rao et al. [9], the same method is used to compute the
matching error of two action trajectories.

The question arises, however, how do we link the di-
mension of video trajectories to the events in videos. This is
based on our theoretical results in [7], and the results stated
in the appendix of this paper. We prove in Theorem 2 that
the video trajectory is planar when a single object (a set of
pixels) is instantly visible for any kind of motion of this ob-
ject. This means that the rank of the video trajectory matrix
is less than or equal to two. This is a surprising result, since



video trajectory can easily reside in a several hundred di-
mensional space (which is the number of used features). We
also prove that the dimension of video trajectory increases at
least by one and at most by three if a new object appears and
is moving, Theorem 3. Consequently, if the rank of part of
the video trajectory is greater than two, then we can tell that
a new object appeared (disappeared) in the corresponding
part of the video. A disappearance of an object is equivalent
to an appearance of a new object with a background texture.

The fact that we are able to detect changes in object di-
rection and speed is based on the following results proved in
[7]. Consider a video in which an object is moving on a con-
stant background. If this object is visible in all frames and it
is moving with a constant speed on a linear trajectory, then
the feature vectors define a straight line in the feature space.
Consequently, a constant motion of a single object along a
linear trajectory in the video results in a linear video trajec-
tory in the feature space, i.e., the dimension of the video
trajectory is one. Observe that over a short period of time,
the motion trajectory in the image plane of many real ob-
jects (like humans and vehicles) can be well approximated
as linear trajectory. Further we showed in [7] that if a mov-
ing object changes direction or speed, the dimension of the
video trajectory will increase. It can only increase by one,
since, as mentioned above, when we have one object mov-
ing the dimension is not greater than two. Consequently, if
a single object is moving, its change of direction or speed
should be easily detectable, since the dimension of the video
trajectory doubles.

Further, we proved [7] that if � objects are moving with
constant speeds on a linear trajectory, then the video tra-
jectory is a single straight line in the feature space. Thus,
even with � object moving, we are able to detect changes in
direction or speed of each of them as discussed above. How-
ever, this also shows a limitation of our system, we will not
be able to tell which object changed its direction or speed.
We are only able to tell that one of the objects did. On the
other hand, the fact that we do not try to track or distinguish
the objects, may be the main reason for the robust perfor-
mance of our system.

We assume for all our theorems that the video back-
ground is uniform: all background pixels belong to the same
color bin for each color component (i.e., background pixels
contribute to at most one color bin for each color compo-
nent). This is not a restriction for practical applications,
since there exist several techniques for background learn-
ing and background stubstraction (e.g., see Chapters 14.3.11
and 16.2.5 in Forsyth and Ponce [3]). Further, our system-
atic tests with real surveillance videos show that background
subtraction is not necessary for our system to perform ro-
bustly. In section 4 we present sever experimental results
with real surveillance videos that demonstrate a robust per-
formance of our system.
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OF THE RANK OF A MATRIX

In the paper by Seitz and Dyer [8] the distance measure
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is used, where � 
�� is the size of the matrix ��� , � � 
 � �� 
������ 
�� are the sorted singular values of the matrix based
on their Euclidean norm, to compute the match error of a set
of images � given their measurement matrix � . The match
error is defined by:� ������� � � % �"!$#&%('*)�) � )�) +-,/.10�2435� � �6� �87 � %:9<;>= 


where )&) � )�) +-,/. is the root-mean-squared norm of the matrix�
defined by
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In the paper by Rao et al. [9], the same method is used
to compute the matching error of two action trajectories.
Because their match matrix � is E by � , and it has only E
singular values, they use the distance measure as:� �������F) � � )

Based on these ideas, we define the error of rank
�

of a
matrix � as:G 212 " � � % �<!$#&%H'*)�) � )&) +-,/. 
-2I35� � �6� 7 � %J9 � = �

The larger G 2I2 " � � % , the larger is the difference of matrix� from a matrix of dimension
�

or smaller. The following
theorem generalizes the result stated in Seitz and Dyer [8]
for

� � ; to any
�

.

Theorem 1
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where � 
-� is the size of the matrix � , � � 
 � � � 
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are the sorted singular values of the matrix based on their
Euclidean norm.



Proof: Singular values decomposition gives� ������� 


where � and � are orthogonal matrices and the singular val-
ues sorted in descending order according to their Euclidean
norm, appear along the diagonal of � .
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we obtain � ����� � � 7 ��� � � � Since
� � *���� � �

is minimal by Theorem 6.7 in [10], ��� � � is the optimal
rank-k approximation of � , and ��� � � is the error matrix.
Because )&) � )�) � )&) � )�) � � , the result follows.

3. DETECTION OF CHANGES

As mentioned in the introduction, our theoretical results
show that the rank of a video trajectory in a feature space
changes whenever a new object appears or an existing ob-
ject disappears from a camera view field. In particular, if
the rank is less than or equal to 2, then there are no changes
in visible objects in the video, but if the rank is greater than
2, then there are changes in visible objects. This suggests
to use G 2I2 � ��� � 
�&� ! � �

� 
 since it tells us how much the
trajectory matrix differs form the matrix of rank less than or
equal to 2. In order to identify parts of videos with signifi-
cant changes, we compute for the trajectory matrices in the
window � ��� of 11 consecutive frames. This way we com-
pute a 1D function that assigns G 212 � to the mid frame of
each window. Significant maxima of this function identify
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Fig. 1. (a) Motion trajectories in the image plane for the
moving blocks movie. (b) A 1D function computed based
on G 2I2 � .

unusual events in videos in which either a new object ap-
pears or an existing object disappears from a camera view
field. In all our experiments, some of which are presented
in the next section, we detected all significant changes.

4. EXPERIMENTAL RESULTS

We performed a series of systematic experiments with vary-
ing kinds of real and synthetic surveillance video clips to
verify the performance of our technique.

We begin with a simple ground-truth movie. Figure 1(a)
shows the path traversed by a small block and an additional
larger block appearing in between of its travel. The movie
consists of 160 frames. The additional block appears at
frame 70 and moves in the east direction until it disappears
at frame 121. In Figure 1(b), we can see two clear peaks:
the first peak is at the frame number 70 when the additional
block appears and the second peak is at the frame number
121 when the additional block disappears. Notice that we
cannot clearly detect the turns of the small block.

Now we concentrate on several real videos. Video secu-
rity7.mpg1 lasts for 15 seconds and has 387 frames, ca. 25
fps. It is a low resolution video (166x112). First a hand-held
camera points at a closed door in an empty room. At about
frame 170, a man opens the door and enters the room. He
moves around and disappears from the camera view field to
the right at about frame 250. The rank G 212 � computed for
some time intervals is graphed in Figure 2. The first peak
is at the frame number 169 when the man enters the view
of camera and the second peak is at the frame number 253
when he leaves the view of camera (see Figure 3).

The results for another video clip, Mov3.mpg,2 demon-
strate that our approach is context-dependent. While in the
previous video, we needed to detect a moving person, the
goal here is to distinguish between arm movements and small
movements of the upper body. Movie Mov3.mpg lasts for
15 seconds and has 386 320x240 frames, ca. 25 fps. A

1It can be viewed on www.cis.temple.edu/ ˜ latecki/Movies.
2It can be viewed on www.cis.temple.edu/ ˜ latecki/Movies
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Fig. 2. A 1D function computed based on dimension G 212 �
of the video trajectory for security7.avi movie.

Fig. 3. The frames 169 and 253 indicated by two main local
maxima of G 212 � for security7.avi.

hand-held camera shows the upper part of a sitting man.
The first peak in Figure 4 is when the man waves his right
hand (frame 50), Figure 5, the second peak is when he again
waves his right hand (frame 156), and the third peak is when
he waves his left hand (frame 253).

The results for hall monitor.avi3 video clip demonstrate
that our algorithm can deal with simultaneous motion of
several objects. The goal here is to not only detect but
also to distinguish between the motion of two different per-
sons. The six highest peaks in Figure 6 indicate the six main
events. The frames corresponding to the peaks are shown in
Figure 7. These events are (listed by frame number):

35: A first man enters from a door and is seen in the cam-

3It can be viewed on www.cis.temple.edu/ ˜ latecki/Movies.
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Fig. 4. (a) A 1D function computed based on dimensionG 212 � of the video trajectory for Mov3.avi movie.

Fig. 5. The frames 50, 156, and 253 indicated by three main
local maxima of G 2I2 � for Mov3.avi.
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Fig. 6. (a) A 1D function G 2I2 � computed based on dimen-
sionality of the video trajectory for Hall Monitor.avi movie.

era view.

54: He is moving away from the camera and two new ob-
jects became visible: small table and man’s pants.

92: He stops and bends to keep a bag, a second man enters
the view.

136: The whole body of the second man is visible.

215: The first man begins to exit through the second door
on the left, the second man has moved closer to the
camera.

241: The first man disappears behind the door.

When computing video trajectory dimensionality to de-
tect unusual events on movie CameraAtLightSignal.avi 4

we obtained graph of the dimensionality change function
shown at Figure 8(a). The two main peaks of this function
are at frames 23 and 85. They correspond to the two un-
usual events in this video–complete appearance in the cam-
era view field of the first (black) and of the second (white)
car. Other local maxima around the two main peaks corre-
sponds to the variable visibility of different parts of the two
cars. Observe that between the frames 30 and 60 the consid-
ered function has no significant variations since there are no
unusual events on the scene (the first car moves from right
to left while the second car does not appear yet).

4http://www.cis.temple.edu/ ˜ latecki/Movies



(frame 35) (frame 54) (frame 92) (frame 136) (frame 215) (frame 241)

Fig. 7. The frames indicated by six highest local maxima in Figure 6 for movie Hall Monitor.avi.
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Fig. 8. (a) A 1D function computed based on G 2I2 � of the video trajectory for CameraAtLightSignal.avi movie. The frames
indicated by two main local maxima of this function are shown in (b) frame 23, and (c) frame 85.

5. CONCLUSIONS

Our theoretical results lead to useful conclusions to detect
changes in video by analysis of video trajectories in the fea-
ture space:

� A change in the number of visible objects implies a
change in the dimension of the video trajectory by 1,
2, or 3.

� Linear motion in the image plane leads to a linear tra-
jectory.

� A change in motion direction or speed of an object
increases the dimension of video trajectory by 1.

We can detect this changes by computing rank of the trajec-
tory vectors. Since the classical way of rank computation
is very noise sensitive, we needed to employ a more stable
method.

We defined the error G 2I2 " of rank
�

of a matrix � in
formula (1). When G 2I2 " is small, it means that the rank of
matrix � is less or equal to

�
, and if G 212 " is big, we can tell

that the rank is bigger than
�

. In this paper we compute G 2I2 �
for matrices representing parts of video trajectories. The
value of G 2I2 � tells us the amount of changes of in the rank of
matrices that are directly related to the changes in the video.
In the experiments, we use

� � �
, because we know that the

rank is less or equal to
�

for any kind of motion of a singe
object which is instantly visible. If a new object appears or

a visible object disappears, the rank will be larger than two.
Therefore, we can use the changes of G 2I2 � to detect unusual
events in videos.

To represent video trajectories we use a simple feature
space composed of color histograms extended by centrods
of the color bins.

The fact that centroids of real objects are not preserved
under projection does not affect our approach at all, since
we neither try to recover object trajectories in the original
3D space nor trajectories of their projections. Our video tra-
jectories are in the feature space. By analyzing these trajec-
tories, we can detect changes in object motion that include
speed and direction changes as well as appearance and dis-
appearance of objects. Our approach is also applicable to
feature spaces other than color spaces, which include mo-
tion vectors.

Appendix

Theorem 2 If an object (a set of pixels) is moving on a uni-
form background, then the trajectory vectors are contained
in a plane.

Proof: We show that each entry of the feature vector could
be expressed as a linear function either of � or of � , co-
ordinates of the center of the object (or the position of the
object). Because the whole object is visible in all frames,
� � � for each bin � is then a constant G

� .



If the background pixels do not belong to the color bin � ,
then � �	 
�� �� only depend on the position of the object. Hence
� �	 � � 7 � � and � ��&� � 7 �

� , where ��� � 

�
� % is the vector

that translates the center of the object � � 
 � % to the center of
all object pixels in the bin � . Hence � �	 
�� �� are expressed as
linear functions of � and � , correspondingly.

It remains to consider the bin � that contains all back-
ground pixels. We will show that � �	 is a linear function of
� , and � �� is a linear function of � .

Let � 3 
�� % be the fixed coordinates of the midpoint of
each image frame. The main observation is that the coor-
dinates of the centroid of the background can be expressed
as

��� �	 � �����:3 * ��� � %
��� * � % 
�� �� � �����+� * ��� � %

��� * � % % 
 (2)

which are both linear functions of � and � correspondingly.
The coordinates for the feature vector could be expressed

as 3 � � � 7 � � 
	� � � � 7 �
� 


G
� , where 3 � 
�� � 
	� � are some con-

stants. The corresponding coordinates of the trajectory vec-
tor are equal to 3 � ��
 � 
�� � �

 � 
 � .

Since each column of all trajectory vectors is expressed
as a scalar function of either 
 � or 
 � , the video trajectory
has the rank two.

As a simple consequence of theorem 2, we obtain the
following corollary:

Corollary 1 Consider a video in which � objects are mov-
ing on a uniform background. Assume that all objects are
visible in all frames. Then the dimension of the trajectory is
at most

� � .

Proof: For each feature vector, each coordinate is a linear
function of either � � or � � , � � � � ��� ��� (the position of the
i’th object in the frames).

Theorem 3 If a new object suddenly appears in the movie,
the dimension of the trajectory increases at least by 1. If
the whole object stays in the movie, then the dimension in-
creases at most by 3.

Proof: First we prove that the dimension increases at least
by 1. Assume the background pixels belong to bin � . Then
� � � changes from one constant to another constant, and con-
sequently, 
 � � ���� � in the difference vector frame

�
minus

frame
� * � , whereas all differences before frame

� * � are
equal to zero. Therefore, the dimension increases at least by
1.

Now we prove it increases at most by 3: Assume orig-
inally there are � objects. Then the dimension is

� � . As-
sume that a new object appears at frame

�
. If we drop the

difference vector between
�

and
� * � , the rest of the trajec-

tory vectors could be seen as the trajectory vectors for N+1

objects moving in the movie. They are then in a subspace
with dimension

� ��� 7 � % . Since the difference vector be-
tween

�
and

� * � will increase the dimension by 1. We
obtain that the dimension increases at most by 3.
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