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Abstract—We introduce a class of planar arcs and curves, called tame arcs, which is general enough to
describe (parts of) the boundaries of planar real objects. A tame arc can have smooth parts as well as
sharp (non-differentiable) corners; thus a polygonal arc is tame. On the other hand, this class of arcs
is restrictive enough to rule out pathological arcs which have infinitely many inflections or which
turn infinitely often: A tame arc can have only finitely many inflections, and its total absolute turn must be
finite.

In order to relate boundary properties of discrete objects obtained by segmenting digital images to the
corresponding properties of their continuous originals, the theory of tame arcs is based on concepts that can
be directly transferred from the continuous to the discrete domain. A tame arc is composed of a finite
number of supported arcs. We define supported digital arcs and motivate their definition by the fact that
they can be obtained by digitizing continuous supported arcs. Every digital arc is tame, since it contains
a finite number of points, and therefore it can be decomposed into a finite number of supported digital arcs.
( 1998 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved

Plane curves Supporting lines Supported arcs Tame arcs Digital arcs

1. INTRODUCTION

Any model for a class of real objects should, on the
one hand, be able to reflect relevant shape properties
of the objects as exactly as possible; on the other hand,
it should be mathematically tractable. For example, it
does not make much sense to model the class of
boundaries of two-dimensional (2D) projections of
real objects as all possible curves in the plane. This
class is too general; it includes curves with very un-
natural properties—e.g. plane-filling curves.

It should also be possible to relate shape properties
of the 2D projections of real objects to properties of
the discrete objects obtained by segmenting their
digital images. In pattern recognition, the properties
of discrete objects that are measured using digital
algorithms are assumed to represent properties of the
original objects.

For these reasons, in this paper, we will not use the
classical tools of differential geometry to describe
boundary curves of planar sets. Differential geometry
is based on the concept of a derivative, which requires
the calculation of limits of infinite sequences. This
calculation cannot be transferred into a discrete space.
Nevertheless, it is clear that many concepts of differ-
ential geometry, such as curvature, characterize im-
portant shape properties of boundary curves of planar
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sets. In this paper we will define these shape concepts
using geometrical concepts that can be also applied to
discrete spaces.

The class of continuous planar arcs and curves is
very large; it includes many ‘‘pathological’’ examples
such as the ‘‘space-filling’’ curves of Peano and the
nowhere differentiable ‘‘snowflake’’ curve of Sier-
pinski. Requiring the arcs and curves to be differ-
entiable is too restrictive, since this excludes polygons,
which are not differentiable at their vertices. A
somewhat better idea is to require differentiability at
all but a finite number of points, but this is not
restrictive enough, because it allows arcs that can
oscillate infinitely many times [e.g. the graph of the
function x sin(1/x), shown in Fig. 1(a)] or turn infi-
nitely often [e.g. the inward-turning spiral illustrated
in Fig. 1(b)].

This paper defines classes of continuous planar arcs
and curves that include polygonal arcs and polygons,
but exclude the pathological cases. Our definitions are
based on the concept of a supporting line of a set S—a
line l through a point of S such that S lies in one of the
closed half-planes bounded by l. We call a set S sup-
ported if there is at least one supporting line through
every point of S. It can be shown (Section 2) that
a closed, bounded, connected S is supported iff S is (an
arc of) the boundary of a convex set. The concept of
a supporting hyperplane (in particular, a supporting
line) is a fundamental tool in the theory of convex
functions, which is a part of convex analysis. As



Fig. 1. (a) The graph of the function x sin(1/x). (b) An inward-turning spiral that turns infinitely often.

pointed out 25 years ago by Rockafellar(1) (p. XVI),
‘‘Supporting hyperplanes to convex sets can be em-
ployed in situations where tangent hyperplanes, in the
sense of the classical theory of smooth surfaces, do not
exist’’.

In Section 3, we define supporting sectors and rays,
which correspond to directional tangent lines. In
Section 4, we relate the properties of supported arcs
to the standard properties of arcs in differential geo-
metry. This relationship is based on the well-estab-
lished connections between differential geometry and
convex analysis. We show that a supported arc A has
left and right derivatives at every point, and that A is
differentiable at a point if it has a unique supporting
line at that point. On the other hand, a supported arc
A can have (even infinitely many) ‘‘cusps’’: non-end-
points at which A has more than one supporting line.
(Here and in what follows, ‘‘arc’’ is short for ‘‘arc or
simple closed curve’’.)

We call an arc A uniquely supported if it has a
unique supporting line at every non-endpoint. Thus, a
uniquely supported arc is everywhere differentiable
and has no cusps. We will show that the curvature of
a uniquely supported arc has the same sign at every
point.

We call a (simple) arc tame if it can be subdivided
into a finite number of supported subarcs (Section 5).
Evidently, polygonal arcs are tame, but it can be
verified that the pathological arcs of Fig. 1 are not
tame. The subdivision points of a tame arc are called
its joints. The points of a tame arc can be classified
into regular and inflection points, according to
whether they are interior to some supported subarc.
Consequently, inflection points are mandatory joints,
so that a tame arc can have only finitely many inflec-
tions, though it can have infinitely many cusps. As we
shall see, both regular and inflection points can be
cusps.

In Section 6 we show, using an associated poly-
gonal arc, how the total curvature, which we will call
the (total) turn, of a tame arc can be defined in terms
of supporting lines. We prove that the total turn of
a supported arc is at most 360°; this is well known for

differentiable arcs. We also give alternative character-
izations of cusps and inflections using an associated
polygonal arc (Section 7).

In Section 8, we define supported digital arcs and
motivate their definition by the fact that they can be
obtained by digitizing continuous supported arcs. The
extension of our theory of tame arcs to digital arcs is
also based on the concepts of supporting lines and
half-planes:

A digital set S-Z2 is digitally supported if every
point p3S is a (4-) boundary point of a digital half-
plane containing S (i.e. there exists a continuous half-
plane containing S such that p has a 4-neighbor
outside this half-plane).

We show that a digital set is supported iff it is
contained in the boundary of the digitization of a con-
vex set. This gives us a new definition of a convex-
digital set as a digital set whose boundary is digitally
supported. We also show that a digital set is sup-
ported iff it is contained in the digitization of a con-
tinuous supported arc.

2. SUPPORTING LINES; SUPPORTED SETS

We begin with a definition of fundamental tools
used in convex analysis (e.g. see the book by Rockafel-
lar,(1) Section 11, pp. 99—100):

Definition. Let S be a subset of the plane, and p
a point of S. A straight line l

S
(p) through p is called

a supporting line of S at p if S is contained in one of the
closed half-planes into which l

S
(p) divides the plane.

This closed half-plane is called a supporting half-plane.

We will deal here with supported sets, which are (not
necessarily proper) arcs, as we will shortly see:

Definition. A subset S of the plane is supported if, for
every p3S, there exists at least one supporting line of
S at p.

Note that if S has a supporting line at p, then p must
be a boundary point of S (i.e. any neighborhood of
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Fig. 2. p
S
(p) is the supporting sector of S at point p.

p contains points of the complement of S). Note also
that supporting lines need not be unique. For
example, if S is a single point, every line through
that point is a supporting line of S; if S is a segment
of a straight line l, the same is true for its endpoints,
but at its interior points, l is the only supporting line
of S.

Before stating some basic facts, we summarize some
basic definitions: An arc is a subset of the plane which
is a homeomorphic image of an interval of non-zero
length: A: [a, b]PR2, where a(b. The points A(a)
and A (b) are called the endpoints of arc A. If the
endpoints of an arc are the same [i.e. A(a)"A (b)], the
arc becomes a simple closed curve (or a Jordan curve),
and can be regarded as having no endpoints. A simple
closed curve can also be defined as a homeomorphic
image C : S1PR2 of a circle of non-zero radius r.
A simple closed curve and a single point are some-
times called non-proper arcs. If arc A is a subset of arc
B or curve C, it is called a subarc of B or C. We
recall(2,3) that the closed convex hull conv(S) of a set
S is the intersection of all the closed half-planes that
contain S.

We now state a few basic properties of supported
sets. Since they can be derived from elementary con-
cepts of convex analysis, their proofs will be omitted
here; they are given in full in a report by the authors.(4)

Proposition 1. A set S is supported iff it is contained
in the boundary of its closed convex hull.

Proposition 2. A closed, bounded, connected set S is
supported iff S is a subarc (not necessarily proper) of
the boundary of a convex set (the convex hull of S).

Let C be a simple closed curve. By the Jordan curve
theorem, the complement of C has two non-empty
connected components, one of which is bounded and
surrounded by C. Let C* be the closure of the
bounded component. By the Jordan curve theorem,
C is the boundary of C* , and the interior of C* is
non-empty.

Proposition 3. A simple closed curve C is supported iff
C* is convex.

This result is a special case of a theorem which was
proved by a number of prominent mathematicians,

including Caratheodory,(5) Brunn,(6) and Min-
kowski,(7) and which can also be found in a more
general form in the book by Valentine(2) (Theorem
4.1, p. 47).

The characterization of supported arcs can also be
derived from a concept introduced by Latecki, Rosen-
feld, and Silverman:(8)

Definition. A subset S of the plane is said to have
property CP

3
if for every three collinear points of S,

the line segment joining at least two of them is con-
tained in S.

Property CP
3
appears to be the first simple intrinsic

characterization of parts of the boundaries of convex
sets. Considerably more complicated characteriza-
tions were given over 30 years ago by Menger(9) and
Valentine.(10)

It can be shown(8) that an arc A is supported iff it
has property CP

3
(Theorem 14), and that this in turn

is equivalent to AXA(a) A(b) being the boundary of
a convex set (Theorem 12), where A(a) A(b) is the line
segment whose endpoints are A(a) and A(b). If
A9A(a) A(b), AXA (a) A(b) is a simple closed curve;
thus, either a supported arc is a line segment, or
joining its endpoints yields a supported simple closed
curve. We thus have

Proposition 4. An arc A is supported iff AXA(a) A(b)
is the boundary of a convex set.

3. SUPPORTING SECTORS

Definition. Let p be a point of a set S such that at least
one supporting line of S at p exists. The supporting
sector p

S
(p) is defined as the intersection of all the

closed supporting half-planes of S at p.

Clearly, p
S
(p) is a closed and convex subset of the

plane. We assume from now on that S is not a subset
of a line (the contrary case was discussed in Section 2).
If there is a unique supporting line l of S at p, then
p
S
(p) is the closed half-plane determined by l that

contains S [see Fig. 2(a)]. If there is more than one
supporting line of S at p, then p

S
(p) is a closed angular

sector with angle a
S
(p) less than 180° [see Fig. 2(b)].

Note that a line through p is a supporting line of S at
p iff it is contained in the closure of the complement of
p
S
(p).
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If S has a unique supporting line at p, we define the
turn angle of S at p as 0°. If S has more than one
supporting line at p, we define the turn angle of S at
p as 180°!a

S
(p).

We now assume that the set S is an arc. The sup-
porting sector p

S
(p) of an arc S is bounded by two

rays emanating from p that make an angle
a
S
(p)4180°. We will call these rays the left and right

supporting rays of A at p depending on the direction
in which we traverse A. The left supporting ray of S at
p will be denoted by lr

S
(p) and the right supporting ray

of S at p will be denoted by rr
S
(p) (see Fig. 2). These

concepts are precisely defined in the Appendix.

4. RELATION TO DIFFERENTIAL GEOMETRY

Any arc is continuous, but we have not assumed
that supported arcs are differentiable. In this section
we show that a supported arc must have left and right
derivatives at every point (Theorem 1).

Let A : [a, b]PR2 be an arc and let x, y3(a, b).
Consider the vector (A(x)!A(y))/ Dx!y D. As y ap-
proaches x from the left (right), this vector may ap-
proach a finite, non-zero limit; if so, the limit is called
the left (right) derivative of A at x and is denoted by
A@

~
(x) [A@̀ (x)]. The right derivative of A at a, and the

left derivative of A at b, are defined similarly.
The left (right) derivative exists at x3(a, b) and is

a finite and non-zero vector A@
~

(x) [A@̀ (x)] iff the
limit of the lines through A (x) and A(t) as t ap-
proaches x from below, i.e. t(x (above, i.e. x(t).

If the directional derivatives A@
~

(x) and A@̀ (x) exist
and are equal, then we say that the derivative of A at
x exists and has value A@ (x),A@

~
(x)"A@̀ (x).

The following theorem describes a fundamental re-
lation between supportedness of arcs and the exist-
ence of directional derivatives. It was noted as early as
1893 by Stoltz.(11) It follows, e.g. from Theorem 23.1,
p. 213, in the book by Rockafellar.(1)*

¹heorem 1. Let A : [a, b]PR2 be a supported arc.
Then the directional derivatives A@

~
(x) and A@̀ (x)

exist and are finite and non-zero at every point
x3(a, b), and the same for A@

~
(a) and A@̀ (b).

If the supporting line at a point x of A is unique, the
left and right supporting rays at x are collinear, which
implies that the left and right derivatives at x are
equal. We thus have

¹heorem 2. Let A : [a, b]PR2 be a supported arc,
and let x3(a, b).Then the derivative A@ (x) exists [i.e.
A@ (x)"A@

~
(x)"A@̀ (x)] iff the supporting line at x is

unique.

*This theorem is stated for convex functions; but a sup-
ported arc can be locally treated as a graph of a convex
function from a closed interal into R.

Fig. 3. A supported arc can have infinitely many cusps.

A proof of Theorem 2 can also be found in
Rockafellar’s book(1) (Theorem 25.1, p. 242).

Definition. We define a non-endpoint p of a supported
arc A to be a cusp if there is more than one supporting
line of A at p.

By Theorem 2, the arc A is not differentiable at
a cusp. Note that a supported arc can have infinitely
many cusps, as illustrated in Fig. 3. It is not hard to
see that at the accumulation point of the cusps in
Fig. 3, the arc is differentiable.

Note that differentiability does not imply sup-
portedness (i.e. the converse of Theorem 2 is not true);
at a point of inflection of an arc (see Section 5), its
derivative may exist, but it has no supporting line.

Definition. An arc A is uniquely supported if at every
non-endpoint p3A there exists a unique supporting
line l

A
(p).

Clearly, if an arc is uniquely supported, it is sup-
ported. However, the converse is not true; e.g. a con-
vex simple polygonal arc is supported but does not
have unique supporting lines at its vertices.

In this and the next two paragraphs we deal with
arcs A : [a, b]PR2 that belong to class C2, i.e. the first
and second derivatives of A exist and are non-zero
vectors for every point t in the open interval (a, b)—in
other words, a C2 arc is an immersion [reference (12),
p. 1—1]. For a simple closed curve A : [a, b]PR2 to
belong to class C2, we additionally require that
A(a)"A(b), A@ (a)"A@ (b), and AA (a)"AA (b).
Clearly, a supported C2 arc (or curve) is uniquely
supported.

We recall that the curvature of an arc can be de-
fined as rate of change of slope (as a function of arc
length). The magnitude of the curvature depends on
how the arc is parameterized (which need not be by
arc length), but its sign does not depend on the para-
meterization. We can now restate Theorem 8, pp. 1—26,
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Fig. 4. A differentiable arc may not be supported.

from Spivak(12) (Spivak, p. 1—16, calls supported
simple closed C2 curves convex):

¹heorem 3. A simple closed C2 curve C : [a, b]PR2

is supported iff, for every p3[a, b], the curvature i (p)
satisfies i(p)50 (or i(p)40, depending on the direc-
tion in which C is traversed) for every p3[a, b].

The following theorem is a simple consequence of
Theorem 3.

¹heorem 4. If a C2 arc A is supported, then for every
non-endpoint p3A, the curvature i(p) satisfies
i(p)50 (or i(p)40, depending on the direction in
which A is traversed).

Proof. We can extend arc A to a supported simple
closed C2 curve C, and then apply Theorem 3 to C.
We need only construct a supported C2 arc B, lying in
the half-plane determined by the line segment A(a)
A(b) that does not contain arc A, such that the end-
points and first and second derivatives at the end-
points of B coincide with those of A. K

The converse of Theorem 4 is not true. Consider
a spiral S such that for all non-endpoints p3S the
curvature i (p) exists and has the same sign; see Fig. 4.
Evidently, for any point p3S such that the total turn
of the part of the spiral from p to one of the endpoints
is greater than 360°, there is no supporting line of S at
p. (In Section 6 we will define the total turn of a sup-
ported arc and show that it is at most 360°.)

5. TAME ARCS

The class of supported arcs is quite restricted; they
cannot turn by more than 360°, and they can only
turn in one direction, so they cannot have inflections.
In this section we study a class of arcs which we call
‘‘tame’’; a tame arc consists of a finite number of
subarcs each of which is supported.

Definition. An arc ¹ : [a, b]PR2 will be called tame if
there exist points x

1
,2, x

n
3[a, b] with x

1
"a and

x
n
"b such that ¹ ([x

i
, x

i`1
]) is supported for

i"0,2 , n!1. The points x
2
,2 ,x

n~1
will be called

the joints of ¹.

Note that there are many choices for the joints;
as we shall see below, only inflections are mandatory
joints, but it may also be necessary to introduce addi-
tional ‘‘optional’’ joints to ensure that the subarcs are
supported (e.g. see Fig. 4).

Trivially, a supported arc is tame. In general, a tame
arc ¹ can be described as ‘‘piecewise’’-supported.
Note that even at its joints, a tame arc has one-sided
derivatives. If they are unequal, so that the union of
the left and right supporting rays is not a straight line,
we shall call the joint a cusp.

The class of tame arcs seems to be general enough
to describe (arcs of) the boundaries of planar objects.
On the other hand, this class is restrictive enough to
rule out the pathological examples of arcs and curves
discussed in the introduction. For example, the spiral
shown in Fig. 1, which turns inward infinitely often, is
an arc, but is not tame, since no matter how we divide
it into a finite number of subarcs, the first or last arc
still turns infinitely often, and so does not have a sup-
porting line at every point. Note also that a tame arc
can only have finitely many inflections, since its curva-
ture cannot change sign except possibly at the x ’

i
s.

Thus, e.g. the graph of x sin (1/x) is not tame, since it
oscillates infinitely often as x approaches 0. Sier-
pinski’s ‘‘snowflake’’ curve and Peano’s ‘‘space-filling’’
curves are not tame for the same reason.

A polygonal arc (or polygon) is piecewise straight,
so that in particular it is tame. The term ‘‘tame’’ is
used in knot theory to describe knots that are equiva-
lent to polygonal knots;(13) in our case too, tameness
is a generalization of polygonality.

Definition. A point x of a tame arc ¹ will be called
a regular point if there exists a supported subarc ¹ @ of
¹ such that x is interior to ¹ @, i.e. x3¹ @ and x is not
an endpoint of ¹ @. A non-endpoint that is not a regu-
lar point will be called an inflection point.

Evidently, an inflection point of a tame arc ¹ must
be a joint of ¹. The other joints of ¹, if any, are
‘‘optional’’ joints.

Classically, an inflection point of a differentiable arc
A [e.g. Fig. 5(a)] is a non-endpoint at which the
curvature of A changes sign. By Theorem 4, such
a point cannot be an interior point of a supported
subarc of A; hence, if A is differentiable and tame, each
of its subarcs between consecutive joints is uniquely
supported, and its curvature has a constant sign on
each of these subarcs. However, a tame arc need not
be differentiable; it can have both regular and inflec-
tion points that are cusps. For example, the cusps in
Figs 5(b)— (d) are inflection points. In Section 7 we will
use total turn concepts to classify inflection cusps.

As we have already seen, a tame arc that con-
tains only regular non-endpoints is not necessarily
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Fig. 5. Inflection points.

Fig. 6. Inflection segments.

supported, e.g. the spiral in Fig. 4. A polygonal arc
also has no inflection points, but as shown in Fig. 6(a),
it need not be supported. More generally, an arc that
has a straight subarc [Fig. 6(b)] may have no inflec-
tion points, but may not be supported. In both of the
cases in Fig. 6, at least one of the points in the subarc
uv must be a joint.

Definition. A maximal straight subarc S of a tame arc
¹ will be called an inflection segment if there does not
exist a supported subarc ¹ @ of ¹ such that S is interior
to ¹ @, i.e. S-¹ @ and S does not contain an endpoint
of ¹ @. Evidently, at least one point of an inflection
segment must be a joint.

6. THE TOTAL TURN OF A TAME ARC

In differential geometry, the total curvature of an
arc is defined by integrating the curvature. Similarly,
the ‘‘total turn’’ of a polygonal arc is defined by
summing the turns of its vertices. In Section 3, we
defined the turn angle at a point of a supported arc.
In this section we will define the (total) turn of a tame
arc. Our definition will be based on associating
a polygonal arc with the tame arc. The associated
polygonal arc is not unique, but as we shall see, the
turn of every polygonal arc associated with a given
tame arc is the same. Therefore, we can define the
total turn of a tame arc as the total turn of any
associated polygonal arc.

6.1. Simple polygonal arcs

Let Mx
i
: 04i4n!1N be distinct points in the

plane. The ordered sequence of vectors
(x

i
x
i`1

)
i/0,2 , n~1

defines a polygonal arc poly-
arc(x

0
, x

n
) joining x

0
to x

n
. If x

i
x
i`1

W
x
j
x
j`1

"Mx
i
, x

i`1
NWMx

j
, x

j`1
N for 04i9j4n, we

Fig. 7. The turn angle q(b) at a vertex b with respect to two
vectors ab and bc: (a) q(b) '0, (b) q (b)(0, and (c) q (b)"0.

call polyarc (x
0
, x

n
) a simple polygonal arc. If x

0
"x

n
,

it is called a (simple) polygon.
Let ab and bc be non-collinear vectors; then the

turn angle q(b) is defined as sign * a, where a is the
angle between ab and bc and sign"#1 or !1
depending on whether the triangle abc is oriented
clockwise or counterclockwise [see Figs 7(a) and (b)].
If ab and bc are collinear, then q(b)"0 if ab and bc
point in the same direction [see Fig. 7(c)]. (The case
where ab and bc are collinear but point in opposite
directions will be discussed later.)

Definition. If x
0
Ox

n
, we define the turn of a simple

polygonal arc polyarc(x
0
, x

n
) as

q(polyarc (x
0
, x

n
))"

n~1
+
i/1

q (x
i
),

where q(x
i
) is the turn angle at vertex x

i
with respect to

vectors x
i~1

x
i

and x
i
x
i`1

for i"1,2 , n!1. If
x
0
"x

n
, i.e. the arc polyarc(x

0
, x

n
) is a polygon, then

we define its turn as

q(polyarc (x
0
, x

n
))"

n~1
+
i/0

q(x
i
),

where the turn angle at vertex x
0

is defined with
respect to vectors x

n~1
x
0

and x
0
x
1
.

For example, the turn of polyarc(x
0
, x

5
) in Fig. 8(a)

is given by q(polyarc (x
0
, x

5
))"q(x

1
)#2#q (x

4
),
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Fig. 8. The turn of the polygonal arc in (a) is q(x
1
)#2 #q(x

4
). The turn of the closed polygonal arc

in (b) is q(x
0
)#2 #q(x

5
).

Fig. 9. (b) Shows an associated polygonal arc of the supported arc in (a).

and the turn of polyarc (x
0
, x

6
) with x

0
"x

6
in Fig. 8(b)

is given by q (polyarc(x
0
, x

5
))"q (x

0
)#2#q(x

5
).

If polyarc(x
0
, x

n
)"(x

i
x
i`1

)
i/0,2 , n~1

is a simple
polygon, the bounded region surrounded by poly-
arc(x

0
, x

n
) is called its interior. If the interior of the

polygon is to the right of each vector x
i
x
i`1

, then the
turn angle q(x

i
) at each vertex x

i
is equal to 180° minus

the interior angle of the simple polygon at x
i
. A posi-

tive value of the turn at a vertex x
i
indicates that x

i
is

a convex vertex of the polygon [e.g. q (x
2
)'0 in Fig.

8(b)], and a negative value of the turn at a vertex x
i

indicates that x
i
is a concave vertex of the polygon

[e.g. q (x
3
)(0 in Fig. 8(b)].

It is well known that if polyarc(x
0
, x

n
) is a simple

polygon, then D q (polyarc(x
0
, x

n
)) D"360° [see, e.g. ref-

erence (14), Lemma 4.16, p. 182]. Note that the sign of
the turn depends on the direction in which we traverse
the polygonal arc, i.e. q(polyarc(x

0
, x

n
))"!q (poly-

arc (x
n
, x

0
)), where polyarc (x

n
, x

0
)"(x

k̀ 1
x
k
)
i/n~1,2,0

.
We thus have

Proposition 5. The turn of a simple polygon C is
q(C)"$360°.

6.2. Supported arcs

We will now show how to associate a polygonal arc
P(A) with any supported arc A. We will then define

the turn of A as the turn of P(A), and show that this
turn is the same for any P(A) associated with A.

Definition. Let A : [a, b]PR2 be a supported arc. We
will show below that there exists a set of points
Ma

i
3A : 04i4kN such that A (a)"a

0
, A(b)"a

k
,

and

Y Mp
A

(a
i
) : 04i4k N

is a bounded region whose boundary is a simple
polygon [see Fig. 9(a)]. Let Mx

i
: 04i4nN be the set

of vertices of this polygon ordered such that a
0
"x

0
and a

k
"x

n
, and such that the interior of the polygon

is either to the right of each vector x
i
x
i`1

or to the left
of each vector x

i
x
i`1

[see Fig. 9(b)]. We associate the
simple polygonal arc P(A)"(x

i
x
i`1

)
i/0,2, n~1

with
the supported arc A, and define the turn of A as

q (A)"q(P (A)).

We now show that for any supported arc A, there
always exists such a set of points Ma

i
3A : 04i4kN.

In fact, in addition to the endpoints A (a)"a
0

and
A(b)"a

k
, it is sufficient to take a point of A with

maximal positive x-coordinate, one with maximal
negative x-coordinate, one with maximal positive y-
coordinate, and one with maximal negative y-coordi-
nate; thus four points (besides the endpoints) always
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Fig. 10. (b) Shows a different associated polygonal arc of the supported arc in (a).

Fig. 11. The absolute turn of the supported arc A with endpoints a
0

and a
3

is equal to a
A
(a

0
)#a

A
(a

3
).

suffice. We emphasize that the a@s are not unique; e.g.
a different set of a@s for the supported arc in Fig. 9 is
shown in Fig. 10.

Note that if a point v of the supported arc A co-
incides with a vertex of an associated P(A), which is
the case for a

2
"x

3
in Fig. 9, then D q(v) D"

180°!a
A
(v), where a

A
(v) is the angle of the supporting

sector p
A
(v) of A at v3A, i.e. D q (v) D [with respect to

P(A)] is the turn angle of A at v.
We now show that the turn of arc A defined in this

way does not depend on the choice of the points
Ma

i
3A : 04i4kN. We show this for the absolute

value of the turn of arc A in order to abstract from the
particular orientation of arc A. Observe first that
YMp

A
(a

i
) : 04i4kN is convex (it is a finite intersec-

tion of supporting half-planes of A). Consequently, the
polygonal arc P(A) is part of the boundary of a con-
vex set.

Suppose first that a
0
"a

k
(i.e. A is a simple closed

curve). Then P(A) is a simple polygon, and q (P(A))"
$360° by Proposition 5. Since q (P(A))"$360° for
every simple polygon, this result does not depend on
the choice of the a@s. Thus, we have

Proposition 6. The absolute turn of a supported
simple closed curve A is D q(A) D"D360° D.

We now assume that a
0
Oa

k
. Consider the poly-

gonal arc P@ (A)"P(A) C x
n
x
0
, where ‘‘C’’ represents

concatenation, so that P@ (A) is P(A) followed by x
n
x
0
.

Evidently, P@ (A) is a simple polygon; thus D q(P@ (A)) D
"360° (Proposition 5). The absolute turn of P(A) is
equal to the turn of P@ (A) minus the turn angles at
vertices a

0
"x

0
and a

k
"x

n
[see Fig. 11(a)]. These

turn angles are D q (a
0
) D"180°!a

A
(a

0
) and

D q (a
k
) D"180°!a

A
(a

k
) [see Fig. 11(b)]. Therefore,

D q (A) D"D q(P (A)) D"DD q (P@ (A)) D!(q (a
0
)#q (a

k
)) D

"D 360°!(180°!a
A

(a
0
)#180°!a

A
(a

k
)) D

"a
A
(a

0
)#a

A
(a

k
).

Consequently, the absolute value of the turn of a sup-
ported arc A does not depend on the choice of
a
0
,2, a

k
. We also have [see Fig. 11(b)]

Proposition 7. The absolute turn of a supported arc
A with endpoints A(a)9A(b) is given by

D q (A) D"a
A
(A (a))#a

A
(A (b)).

Since a supported arc A is contained in one of
the closed half-planes determined by its endpoints
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Fig. 12. Steps in the proof of Proposition 10.

A(a)9A(b), the angle of the supporting sector a
A
(p) is

less than or equal to 180°, where p"A(a)
or p"A (b). Consequently, we obtain:

Proposition 8. ¹he absolute turn of a supported arc
A is Dq(A) D4360°.

Now we prove two technical propositions which we
will need in Section 7.

Proposition 9. ¸et A : [a, b]PR2 be a supported arc.
Then A is contained in the convex hull of an asso-
ciated polygonal arc P(A).

Proof. We showed above that there exists a set of
points Ma

i
3A: 04i4kN such that A(a)"a

0
, A(b)"

a
k
, and

C(A)"YMp
A
(a

i
) : 04i4kN

is a bounded region whose boundary is a simple
polygon which contains P (A). The statement of the
proposition follows from the facts that C(A) is the
convex hull of P(A) and A is contained in C(A). K

Proposition 10. Let A : [a, b]PR2 be a supported arc.
For every e'0, there exists a subarc A@ of A such that
A(a)3A@ and D q (A@) D(e.

Proof. Let a
o
,2 , a

k
be as in the proof of Proposition

9. Since the supporting sectors at the a’s intersect in
a bounded region, in particular lr

A
(a

0
) intersects

rr
A
(a

1
) [see Fig. 12(a)]. Let B be the subarc of A be-

tween a
0

and a
1
. The angle a between lr

A
(a

0
) and

rr
A
(a

1
) shown in Fig. 12(a) is equal to D q (B) D, and

D q (B) D(180°.
It is not hard to see that there exists a point p

1
3B

distinct from a
0

and a
1

such that the line l parallel to
line segment a

0
a
1

is a supporting line of B at p
1

[see
Fig. 12(b)]. (Proof. Consider the function d which
associates with each point of B its perpendicular dis-

tance to line segment a
0
a
1
. Since d is a continuous

function, and B is a compact set, there is a point of
B at which d attains its maximum value. Evidently the
line through any such point p

1
parallel to a

0
a
1

must
be a supporting line of B.)

The angle b between lr
A
(a

0
) and l is equal to a

B
(a

0
),

the angle of the supporting sector p
B
(a

0
). Let B

1
be

the subarc of A with endpoints a
0

and p
1
. Then b is

the turn of B
1
.

Let a
1
"b

1
, b

2
, 2 be a sequence of points of

B that converge to a
0

(in the standard Euclidean
distance on the plane). Let p

i
be determined for each

b
i
, i'1, in the same way that p

1
was determined for

b
1
"a

1
, and let B

i
be the subarc of B with endpoints

a
0

and p
i
. Then q (B

i
)"aB

i
(a

0
).

Since the left derivative of A at a
0

exists (Theorem
1), rays a

0
b
i

approach lr
A

(a
0
) if b

i
approaches a

0
.

Consequently, the angle aB
i
(a

0
) goes to 0 if b

i
ap-

proaches a
0
. Therefore, for every e'0, there exists an

i such that D q (B
i
) D(e. K

6.3. ¹ame arcs

Let ¹ : [a, b]PR2 be a tame arc (or in particular
a tame simple closed curve). Then ¹ can be divided
into a finite number of supported arcs, i.e., there exist
points t

0
(2(t

m
3[a, b] with t

1
"a and t

m
"b

such that ¹
i
"¹ ([t

i
, t

i`1
]) is supported for

i"0,2 ,m!1. Let L denote concatenation of poly-
gonal arcs. With every ¹

i
we can associate a simple

polygonal arc P(¹
i
) such that Lm~1

i/0
P(¹

i
) is also

a polygonal arc (not necessarily simple). This means
that all the P(¹

i
) have a consistent order, i.e., we

can traverse them from ¹ (a) to ¹(b) following the
directions of their vectors.This associates a polygonal
arc

P (¹)"
m~1L
i/0

P (¹
i
)

with ¹. An example is given in Fig. 13; here ¹ is
divided into two supported arcs ¹"¹

1
X¹

2
at the
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Fig. 13. A polygonal arc associated with a tame arc.

Fig. 14. For illustration purposes, the associated polygonal arcs are slightly translated.

joint a
3
. P (¹

1
) has vertices x

0
,2 ,x

5
, and P (¹

2
) has

vertices x
5
, x

6
, x

7
. The two polygonal arcs P (¹

1
) and

P(¹
2
) have a consistent order in the sense that we can

traverse them from x
0
to x

7
by following their vectors.

The resulting polygonal arc associated with ¹ is
P(¹)"P(¹

1
) C P(¹

2
).

Definition. We define the absolute turn of the tame
arc ¹ as

q (¹ )"D q (P (¹ )) D ,

where P(¹) is a polygonal arc associated with ¹.

This definition is easy to apply if the right support-
ing ray of ¹

i~1
and the left supporting ray of ¹

i
do

not coincide at their common endpoint x. When the
rays are collinear, however, as shown in Figs 14(a) and
(b), then vectors v and w of P (¹ ) that are contained in
these rays and that have x as their common vertex are
collinear and point in opposite directions. In this case,
neither of the rules shown in Fig. 7 applies to x as
a vertex of P(¹ ). It is clear that the absolute value of
the turn q (x) with respect to P(¹ ) is 180°, but it is not
immediately clear how to determine the sign of q(x).

We shall now define the sign of q(x) with respect to
P(¹ ). Let v be the last vector of P (¹

i~1
) and w the

first vector of P (¹
i
). Clearly, x3vWw and q (x) [in

P (¹ )] is the angle between v and w.
At least one of the arcs ¹

i~1
and ¹

i
is not a line

segment, since otherwise ¹ would not be a simple arc
(we would have v"¹

i~1
, w"¹

i
, and v and w would

coincide near x).
If one of ¹

i~1
and ¹

i
is a line segment, say ¹

i~1
,

then q (x) is defined to have the opposite sign to the
sign of q(¹

i
) [see Fig. 15(a)].

Suppose now that both ¹
i~1

and ¹
i
are not line

segments. Let l be the straight line containing v and w.
Since l contains the right supporting ray of ¹

i~1
and

the left supporting ray of ¹
i
, both ¹

i~1
and ¹

i
are

contained in closed half-planes determined by l. If
¹

i~1
and ¹

i
are contained in two different closed

half-planes of l, then ¹
i~1

and ¹
i
must have the same

sign of turn [see Fig. 15(b)]. In this case, q(x) is defined
to have the opposite sign to the sign of q(¹

i
).

It remains only to consider the case in which
¹

i~1
and ¹

i
are contained in the same closed half-

plane of l. In this case q(¹
i~1

) and q(¹
i
) have opposite

signs. If the convex hull of ¹
i~1

contains a subarc of
¹

i
beginning at x, then q (x) is defined to have the same
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Fig. 15. Defining the sign of q (x) in the collinear case.

Fig. 16. A regular point (b) and three inflection points (a), (c), and (d).

sign as the sign of q (¹
i~1

) ; otherwise, q(x) is defined to
have the same sign as q (¹

i
) [see Fig. 15(c)].

Proposition 11. The turn q (¹ ) of a tame arc ¹ is
uniquely defined, i.e. q (¹ ) does not depend on the
subdivision of ¹ into supported subarcs ¹

i
.

Proof. Since each inflection point of a tame arc ¹ is
necessarily a joint of ¹, it is sufficient to show that the
turn of a tame arc ¹ that does not contain inflections
is uniquely defined. We prove this by induction on the
minimal number of optional joints of ¹. If the minim-
al number is zero, then ¹ is supported, and the
uniqueness of q (¹ ) follows from the fact that the turn
of a supported arc is uniquely defined.We now assume
that the turn is uniquely defined for any tame arc
whose minimal number of optional joints is at most
n!1.

Let ¹ : [a, b]PR2 be a tame arc with the minimal
number of optional joints n. Let t

1
,2 , t

n
be all the

joints of ¹. Let s
1
, . . . , s

m
be any different set of joints

of ¹. There exists an i such that the subarc
¹

i
"¹ [t

i
, t

i`1
) contains some of the joints s

1
,2 , s

m
,

say s
k
,2 , s

l
. Since ¹

i
is supported, the turn of

¹
i
determined with respect to joints s

k
,2 , s

l
is equal

to q(¹
i
). By the induction assumption, the turn of

¹ [a, t
i
) determined with respect to s

1
,2 , s

k~1
is

equal to the turn of ¹ [a, t
i
) determined with respect

to t
1
,2 , t

i~1
, and the same applies to the turn of

¹ [t
i`1

, b). Consequently, the turn q(¹ ) is uniquely
defined. K

7. CLASSIFICATION OF POINTS OF A TAME ARC

In this section we use total turn concepts to classify
inflection points and cusps of a tame arc ¹. When we
classify a given point x3¹, we can always assume

that x is a joint of ¹ and is a vertex of an associated
polygonal arc P (¹ ). We will characterize x using the
turn angle q (x) in P (¹ ) and the signs of the turns of
the supported subarcs ¹

i~1
and ¹

i
(determined with

respect to P(¹ )) such that x is the endpoint of
¹

i~1
and the beginning point of ¹

i
.

We recall that x is a cusp if the union of the left
supporting ray of ¹

i~1
at x, lr

¹
i~1

(x), and the right
supporting ray of ¹

i
at x, rr

¹
i
(x), is not a straight line,

i.e. either lr
¹

i~1
(x) and rr

¹
i
(x) are not collinear or

lr
¹

i~1
(x)"rr

¹
i
(x). We will show that x3¹ is a cusp of

a tame arc ¹ iff q (x)90. Then we will show that x3¹

is a regular point of a tame arc ¹ iff q (¹
i~1

), q (¹
i
), and

q(x) [in P(¹ )] have the same sign. For example, this is
the case for x in Fig. 16(b), while x in Figs. 16(a), (c), or
(d) is an inflection point.

¹heorem 5. x3¹ is a cusp of a tame arc ¹ iff q(x)90.

Proof. Let P (¹ ) be a polygonal arc associated with ¹.
Let v be the vector of P (¹ ) whose endpoint is x, and
let w be the vector of P(¹ ) whose beginning point is x.
Then clearly x3vWw and q(x) (in P (¹)) is the angle
between v and w. The theorem follows from the fact
that v is contained in the left supporting ray at x and
w is contained in the right supporting ray at x. K

¹heorem 6. x3¹ is a regular point of a tame arc ¹ iff
there exist supported subarcs ¹

i~1
and ¹

i
of ¹ such

that x is the endpoint of ¹
i~1

and the beginning point
of ¹

i
, and q (¹

i~1
), q(¹

i
), and q(x) [in P(¹ )] have the

same sign* [see Fig. 16(b)].

*Here we consider the sign of a turn of 0° as both positive
and negative.
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Fig. 17. The black points represent a digital half-plane in (a) and a digital line in (b).

Proof. N : There exists a supported subarc A-¹

such that x is interior to A. Let ¹
i~1

and ¹
i
be two

subarcs of A such that x is the endpoint of ¹
i~1

and
the beginning point of ¹

i
and A"¹

i~1
X¹

i
. Since

¹
i~1

and ¹
i
are supported (non-degenerate) subarcs

of A, q(¹
i~1

), q (¹
i
), and q(x) have the same sign as

q(A).
= : If D q(x) D"180°, it follows from the definition

of q(x) in Section 6.3 that q (¹
i~1

), q(¹
i
), and q (x)

cannot have the same sign. Therefore, we can assume
that D q (x) D(180°.

By Proposition 10, there exists a subarc ¹ @
i~1

of
¹

i~1
containing x whose absolute turn is arbitrarily

small, and the same holds for ¹
i
. Therefore, we can

assume that D q (¹
i~1

)#q (¹
i
)#q(x) D(180° .

We show that the arc R"¹
i~1

C¹
i
is supported,

i.e. that there is a supporting line of R at any point y of
R. Without loss of generality, we can assume that
y3¹

i~1
.

Let P(¹
i~1

) and P(¹
i
) be polygonal arcs associated

with ¹
i~1

and ¹
i

such that y3P (¹
i~1

). Then
P(R)"P(¹

i~1
)C P (¹

i
) is associated with R. We

know that D q (P (R)) D(180° and that P (R) turns in
one direction.Therefore, P(R) is a convex (i.e. sup-
ported) polygonal arc.

Let conv denote the convex hull operator. From
Proposition 9 it follows that ¹

i~1
-conv(P(¹

i~1
))

and ¹
i
-conv(P(¹

i
)). Since conv(P(¹

i~1
))-conv(P(R))

and conv(P (¹
i
))-conv(P(R)), we obtain R"(¹

i~1
C

¹
i
)-conv(P(R)). Since y3P (R), there is a supporting

line of conv(P(R)) at y, and therefore there is a sup-
porting line of R at y. K

8. DIGITAL SUPPORTEDNESS

In this section we consider supported digital arcs.
Every digital arc is tame, since it contains a finite
number of points, and therefore can be decomposed
into a finite number of supported digital arcs (e.g.
straight line segments). The total turn of a digital arc
can therefore be defined in the analogous way to our
continuous definition for tame arcs. This definition
differs from the standard methods of estimating the
curvature of a digital arc based on local neighbor-
hoods. The classification of points of an arc in The-
orems 5 and 6 can also be applied to shape analysis of
digital arcs.

Let Z2 be the set of points with integer coordinates
in the plane R2. Any finite subset S-Z2 will be called

a digital set. The 4-boundary bd
4
A of a digital set A

is the set of points of A which have at least one
4-neighbor not in A, i.e. bd

4
A"Ma3A:

N
4
(a)WA#"0N, where A# denotes the complement

of A in Z2, and where, for any point (x, y)3Z2,
N

4
((x, y))"M(x, y), (x#1, y), (x!1, y), (x, y#1),

(x, y!1)N.
The subset digitization of a planar set X is defined as

the set of points with integer coordinates that are
contained in X:

SD(X)"Ms3Z2 : s3XN .

The object boundary quantization of the boundary of
a planar set is defined by

D
OBQ

(bdX)"bd
4
SD(X ),

where bdX is the standard topological boundary of X.

Definition. A set P-Z2 is called a digital half-plane if
there exists a real closed half-plane HP-R2 such
that SD(HP)"P. A set ¸-Z2 is called a digital
straight line if ¸"bd

4
P for some digital half-plane P.

¸-Z2 is a digital straight line if there exists a real
straight line M such that ¸"D

OBQ
(M). The black

points in Fig. 17(a) represent a digital half-plane, since
they are obtained by the subset digitization of the gray
half-plane. The black points in Fig. 17(b) represent
a digital line, since they are obtained by the digitiz-
ation D

OBQ
of the straight line which is the boundary

of the gray half-plane.
We can restate the definition of a (continuous)

supporting half-plane given in Section 2 in the follow-
ing way:

Let S be a subset of the plane, and p a point of S.
A closed half-plane P is a supporting half plane of S at
p if S-P and p3bdP, where bdP denotes the bound-
ary of P (i.e. its boundary line).

We use exactly this definition to define a supporting
half plane in the digital case:

Definition. Let S be a subset of Z2 and p a point of S.
A digital half-plane P is called a (digital) supporting
half-plane of S at p if S-P and p3bd

4
P. In this case,

point p belongs to the digital line ¸"bd
4
P. The

line ¸ is called a (digital) supporting line of S at p.
Thus if P is a (digital) supporting half plane, there

exists a real half-plane H(p) such that S-H (p) and
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Fig. 18. The set of black points is digitally supported in (a) but not in (b).

p3bd
4
P, where P"SD(H (p)). Similarly, we can dir-

ectly transform the definition of a supported set to the
digital domain:

Definition: A subset S of Z2 is (digitally) supported if,
for every p3S, there exists at least one digital sup-
porting half-plane of S at p.

For example, the set of black points in Fig. 18(a) is
digitally supported, but the set of black points in Fig.
18(b) is not, since there do not exist supporting half-
planes at points p and q.

The following theorem allows us to give a new
definition of a convex digital set as a digital set whose
4-boundary is digitally supported [e.g. see Fig. 18(a)].

¹heorem 7. A finite set S-Z2 is digitally supported
iff there exists a compact and convex set B-R2 with
nonempty interior such that S-bd

4
SD(B).

Proof. N : Let S-Z2 be digitally supported. For
every p3S, there exists a real half-plane H(p) such
that S-SD(H (p)) and p3bd

4
SD(H (p)). Note that

S-SD(H (p)) iff S-H(p).
Let B"YMH (p) :p3SN. B is a closed and convex

set as a finite intersection of real half-planes, and
S-B. Since S is finite, we can assume that B is
bounded. (If this is not the case, we can always find
a convex, closed, bounded subset of B that contains S.)

If the interior of B is empty, then B is a line segment,
since a bounded convex set with empty interior is
a line segment. In this case, we can replace B by
a compact and convex set with nonempty interior (e.g.
a rectangle) that contains exactly the same points of
Z2 as B. Therefore, we can assume that the interior of
B is nonempty.

Thus B is a compact and convex set with nonempty
interior such that S-B. Consequently, S-SD(B).
Since for every p3S, p3bd

4
SD(H (p)), there exists

q3Z2, a 4-neighbor of p, such that qNSD(H (p)), and
therefore qNSD (B). We obtain p3bd

4
SD (B) for every

p3S. Hence S-bd
4
SD (B).

=: Let S-bd
4
SD(B), where B is a compact and

convex set with nonempty interior. It is sufficient to

Fig. 19. HP is a (continuous) supporting half-plane at x.

show that D
OBQ

(bdB)"bd
4
SD(B) is digitally sup-

ported. If SD(B) is the empty set, then bd
4
SD(B) is

trivially digitally supported. Therefore, we assume
that SD(B) is non-empty.

Let p3bd
4
SD(B) be any point. Then there exists

a 4-neighbor q3Z2 of p such that qNSD(B), and
therefore qNB.

Let x be a closest point to q in B. Let ¸ be the
straight line through x perpendicular to line segment
xq, and let HP be the real closed half-plane of ¸ that
does not contain q (see Fig. 19).

Since no point of B is closer to q than x and B is
convex, B is contained in HP. Thus, HP is a support-
ing half-plane at x of B.

Since p3HP and qNHP, we have p3bd
4
SD(HP).

We also have SD(B)-SD (HP), and consequently
bd

4
SD (B)-SD(HP). Thus, SD (HP) is a digital sup-

porting half-plane of bd
4
SD(B) at p. K

We recall that C* denotes the closed bounded set
surrounded by a simple closed curve C in the plane. In
particular, we have C"bdC*. We define D

OBQ
(C)"

bd
4
SD (C*).

Corollary 1. A finite set S-Z2 is digitally supported
iff there exists a supported simple closed curve C-R2

such that S-D
OBQ

(C).

Proof. N : By Theorem 7, there exists a compact and
convex set B-R2 with nonempty interior such that
S-bd

4
SD(B). Since the boundary of a bounded con-

vex set with non-empty interior is a simple closed
curve [e.g., Theorem 32 of reference (8)], we see that
C"bdB is a supported simple closed curve. Since
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Fig. 20. Defining the left and right supporting rays.

C*"B, and consequently D
OBQ

(C)"bd
4
SD (B), we

obtain S-D
OBQ

(C).
= : This is a special case of Theorem 7. K

By Corollary 1, supported digital sets correspond
to supported continuous sets. Thus, we can extend
our theory of tame arcs to digital arcs.

9. CONCLUSIONS AND EXTENSIONS

The results of this paper can be summarized as
follows:

An arc (not necessarily simple) is called tame if it
is the concatenation of a finite set of supported
(simple) arcs; for example, a polygonal arc is tame.
For such arcs we have given simple definitions of
significant points that extend the classical definitions
in differential geometry. For example, a non-endpoint
of a tame arc which is not interior to any supported
subarc is called an inflection. If a tame arc is differenti-
able, its curvature must change sign at an infection.
Since a tame arc need not be differentiable at an
inflection, our definition extends the corresponding
definition in differential geometry. We have also
shown that a tame arc can have only finitely many
inflections.

Although we do not use the standard tools of differ-
ential geometry that are based on limits, we are able
to compute the total curvature [which we call the
(total) turn] of a tame arc, and we are able to show
that the total absolute turn of a tame arc must be
finite.

We have also extended our theory of tame arcs to
digital arcs. Since every digital arc contains a finite
number of points, it is tame. We can therefore use our
definition of total turn to calculate the total curvature
of a digital arc, by decomposing the arc into convex
subarcs and calculating the total curvature of each
subarc. The total curvature calculated in this way may
be more reliable than that calculated using local cur-
vature operators in digital image analysis, since we
use a global definition of total curvature which is not

based on local curvature operators. Our classification
of significant points of a tame arc can also be applied
to shape analysis of digital arcs.

The ideas in this paper can be further extended in
several ways; we plan to pursue these extensions in
future papers. In particular, we plan to extend our
results to three-dimensional (either Euclidean or
digital) space. We can define a supporting plane to a
set S at a point p as a plane P through p such that
S lies in one of the closed half-spaces bounded by P. It
is not hard to see that a set which has a supporting
half-plane at every point must be contained in the
boundary of its convex hull. There are still many
possibilities for such a set; even if we require it to be
closed, bounded, and connected, it can be arc-like,
surface-patch-like, or a combination. It would be of
considerable interest to develop a theory of supported
sets and digital supported sets in three dimensions,
analogous to the planar theory developed in this
paper.

APPENDIX

Here we give precise definitions of the left and right
supporting rays (see Section 3).

Let A : [a, b]PR2 be an arc. Let p"A(x) for some
point x3(a, b). Let r(min Md(A(x), A(a)), d (A(x),
A (b))N, where d is Euclidean distance in the plane.
Then the circle C(p, r) with center p and radius r inter-
sects arc A in at least two points [see Fig. 20(a)]. This
follows from the fact that a circle is a Jordan curve
and p is inside the bounded region enclosed by C(p, r)
while the arc endpoints A(a) and A (b) are outside of
this region. Let x

~
3(a, x) be a point such that

A(x
~
)3C(p, r)WA and A ((x

~
, x))WC(p, r)"0 (i.e.

x
~
"supMy3(a, x): A(y)3C(p, r)WAN; since the set

C(p, r)WA is compact, we have A(x
~
)3 C(p, r)WAN).

Similarly, let x
`
3(x, b) be a point such that

A(x
`
)3C(p, r)WA and A (x, x

`
)WC(p, r)"0.

Since A([x
~
, x

`
]) is a subarc of A, it is contained in

the sector p
A
(p). In particular, the points A(x

~
) and

A(x
`
) lie on C(p, r)Wp

A
(p).
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The ray bounding p
A
(p) that can be reached

from point A (x
~
) while traversing C (p, r)Wp

A
(p)

without going through A(x
`
) will be denoted by

lr
A

(p) and called the left supporting ray of A at p
[see Fig. 20 (a)]. Similarly, the ray bounding p

A
(p)

that can be reached from point A (x
`
) while traversing

C(p, r)Wp
A
(p) without going through A (x

~
) will be

denoted by rr
A
(p) and called the right supporting ray of

A at p.
We next show that if A is supported, lr

A
(p) and

rr
A
(p) do not depend on the radius of the circle C(p, r).

To see this, note that the subarc A([x
~
, x]) is con-

tained in the sector determined by the ray lr
A
(p) and

the line segment A(x) A (x
~
) [see Fig. 20(a)], since the

interior of triangle A(x
~
) A(x) A(x

`
) cannot contain

any points of arc A (Proposition 15, below). If r@(r,
the point A(x@

~
) determined with respect to circle

C(p, r@) must thus be contained in this sector; there-
fore, the ray lr

A
(p) can be reached from A (x@

~
) along

C(p, r@) without going through point A (x@̀ ). A similar
argument applies for rr

A
(p).

It remains to define the left and right supporting
rays at the endpoints of arc A. This can be done even if
A is equal to the line segment A(a) A(b) (where aOb);
the angle a

A
(p) is 0° if p"A(a) or A (b), and 180°

otherwise. In the latter case, p
A
(p) cuts off a semicircle

on C(p, r), and the subarcs A(x) A (x
~
), A (x) A(x#)

coincide respectively with rays lr
A
(p), rr

A
(p). In the

former cases, p
A
(p) is a ray, and it coincides with

lr
A
(p)"rr

A
(p) if p"A(a) or p"A (b).

Now suppose that A is different from line segment
A(a) A(b). As we see in Fig. 20(b), at A (a) one of the
bounding rays of p

A
(S(a)) is just the line segment A(a)

A(b) by Proposition 4. We define this ray to be
lr
A
(A(a)), and the other bounding ray of the sector

p
A
(A (a)) to be rr

A
(A(a)); and vice versa at A(b). The

foregoing discussion gives us

Proposition 12. Let A : [a, b]PR2 be a supported arc.
Let A@ be the subarc A([p, c]), where a4p(c4b.
The subarc A@ is contained in the sector defined by the
right supporting ray rr

A
(A(p)) and the line segment

A(p) A(c) (see Fig. 21). The analogous statement holds
for the left supporting ray.

As a consequence of Proposition 12 we have:

Proposition 13. Let A and A@ be as in Proposition 12.
Then rr

A
(A(p))9rr

A{
(A(p)). The analogous statement

holds for the left supporting ray.

Proof. Clearly, A (p)"A@ (p). Since A@ is a subarc of A,
supporting sector p

A{
(A (p)) of A@ is contained in

p
A
(A (p)). Suppose rr

A
(A (p))9rr

A{
(A(p)); then there

would be a point A(t) of A in p
A
(A (p))Cp

A{
(A(p)) which

lies between rr
A
(A (p)) and rr

A{
(A(p)). Consider the

triangle A(p) A(c) A(t) (see Fig. 22). Since A is sup-
ported, no point of A can lie in the interior of this
triangle (Proposition 15, below). But by Proposi-

Fig. 21. The subarc is contained in the sector.

Fig. 22. The subarc has the same supporting ray as the arc.

tion 12, A([p, c]) is contained in the angular sector
spanned by line segment A (p) A (c) and rr

A
(A (p));

hence there exist parts of A in the interior of the
triangle, contradiction. K

As a simple consequence of Proposition 13, we
obtain:

Proposition 14. Let A be a supported arc and A@
a proper subarc of A. If p is not an endpoint of A@, then
p
A{

(p)"p
A
(p). If p is an endpoint of A, then p

A{
(p) is

a proper subset of p
A
(p).

The following simple but general characterization
of supporting lines was used in proving the above
results.

Proposition 15. A planar set S has a supporting line at
p3S iff there do not exist three points q, r, s3S such
that p lies in the interior of the triangle spanned by
q, r, and s.

Proof. N : If p is in the interior of such a triangle, any
line l through p must intersect an interior point of at
least one side if the triangle, so that the endpoints of
that side cannot lie in the same closed half-plane
defined by l [see Fig. 23(a)].

=: Conversely, the set of rays joining p to all the
other points of S is contained in some closed angular
sector with vertex p, possibly with vertex angle 360°.
The intersection of all such sectors is also a closed
angular sector with vertex p, say with vertex angle a.
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Fig. 23. A criterion for the existence of a supporting line at P.
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If a4180°, there is a supporting line of S at p. If
a'180° [see Fig. 23(b)], then there exist three points
q, r, s3S such that p is in the interior of the triangle
spanned by q, r, and s. K
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