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Abstract

A similarity measure for silhouettes of 2D objects is presented, and its properties are analyzed with respect to retrieval
of similar objects in image databases. To reduce in-uence of digitization noise as well as segmentation errors the shapes
are simpli.ed by a new process of digital curve evolution. To compute our similarity measure, we .rst establish the best
possible correspondence of visual parts (without explicitly computing the visual parts). Then the similarity between
corresponding parts is computed and summed. Experimental results show that our shape matching procedure gives an
intuitive shape correspondence and is stable with respect to noise distortions. ? 2001 Pattern Recognition Society.
Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

With the recent increase in image and multimedia
databases, there has been an acceleration of research in
developing and applying shape similarity measures, e.g.,
for shape-based retrieval of similar objects (see Ref. [1]).
In computer vision there is a long history of work on
shape representation and shape similarity. However, most
of the existing methods have only a very limited possi-
ble application to distributed image databases, since the
shape of objects must be restricted and known a priori.
These methods are based on the close word assumption,
which means that the application domain must be explic-
itly known, since prior knowledge of the application do-
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main is necessary for parameter adjustment. Moreover,
many of the existing approaches are very sensitive to
noise. To systematize our discussion, we .rst suggest
some necessary requirements for shape similarity mea-
sures that are used for retrieval of similar objects in dis-
tributed image databases. Then, we brie-y review some
of the existing approaches from the perspective of these
requirements.
A shape similarity measure useful for shape-based re-

trieval in image databases should be in accord with our
visual perception. This basic property leads to the fol-
lowing requirements:

(1) A shape similarity measure should permit recogni-
tion of perceptually similar objects that are not math-
ematically identical.

(2) It should not be eDected by distortions (e.g., digiti-
zation noise and segmentation errors).

(3) It should preserve signi.cant visual parts of objects.
(4) It should not depend on scale, orientation, and posi-

tion of objects.
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If we want to apply a shape similarity measure to dis-
tributed image databases, where the object classes are
generally unknown a priori (e.g., in the Internet), it is
necessary that:

(5) A shape similarity measure is universal, in the sense
that it allows us to identify or distinguish objects of
arbitrary shapes, i.e., no restrictions on shapes are
assumed.

Since requirements (1)–(3) are of a cognitive nature,
their satisfaction should be justi.ed by cognitive experi-
ments. Requirements (4) and (5) are of a purely mathe-
matical nature and their satisfaction should be shown by
mathematical arguments. A motivation for requirement
(3) is given in Ref. [2],

Part-based representations allow for recognition that
is robust in the presence of occlusion, movement,
growth, and deletion of portions of an object, and
play an important role in theories of object catego-
rization and classi.cation.

There is a strong evidence for part-based represen-
tations in human vision, see e.g. Refs. [2,3]. HoDman
and Richards [4] provide strong evidence that contours
are psychologically segmented into visual parts at neg-
ative curvature minima. However, computation of nega-
tive minima of curvature as well as other extremal points
is not robust in real digital images, since they are obtained
by local computation. Although remarkable progress has
been made on this matter, the robust computation of ex-
tremal points in real digital images is an open problem.
Due to requirement (5), methods based on vectors of

shape parameters like area, perimeter, elongation (major
axis=minor axis), etc., are, excluded. Vectors of shape
parameters may be very useful for shape classi.cation,
but not as a basis for shape similarity measures, since, as
argued in Ref. [5],

common shapes need hundreds of parameters to be
represented explicitly,

and most of these parameters are probably unknown. An
argument in this direction is also given in Ref. [6]:

In the last few years, researchers have made some
progress toward automatic shape indexing for im-
age databases. The general approach has been to
calculate some approximately invariant statistic like
shape moments, and use these to stratify the image
database ...
One problem with this general approach is that it
discards signi.cant perceptual and semantic infor-
mation. While indexing methods provide a means to
quickly narrow a search to a more manageable sub-
set, they often do not provide a method for closer,

direct comparison how they are related. Rather than
discarding useful similarity information by employ-
ing only invariants, we believe that one should use a
decomposition that preserves as much semantically
meaningful and perceptually important information
as is possible, while still providing an eGcient en-
coding of the original signal [7].

Also parametric methods that describe certain object
classes e.g., B-spline surface patches of car prototypes,
are excluded by requirement (5), since they require ex-
plicit assumptions about the category of curves to be rep-
resented.
Requirement (2) that a universal shape similarity mea-

sure must be unaDected by noisy distortions and irrele-
vant shape features excludes shape representations based
on global transformations like boundary curve descrip-
tion by Fourier coeGcients in Ref. [8] and moment fea-
tures in Ref. [9], since as argued in Ref. [10]:

However, there are the following drawbacks in using
these features:

(1) High-order features, i.e., high order-coeGcients
of Fourier expansions of closed curves or
high-order moments of two-dimensional im-
ages, are required for shape classi.cations,
leading to expensive computations.

(2) High-order features are sensitive to noise,
whereas only low-order ones are robust and
stable.

(3) Even if image patterns can be classi.ed with
these features, point correspondences or shape
transformation parameters cannot be obtained
explicitly.

In this paper we present a shape similarity measure
that satis.es requirements (1)–(5). We demonstrate this
by theoretical considerations as well as by experimental
results. We present here only a small fraction of our
experimental results. We develop a system for retrieval
of similar objects based on our measure, where a user
query can be given either by a graphical sketch or by
an example silhouette, see Fig. 1. We apply our system
to retrieve similar objects in various databases of object
contours.
In Sections 3 and 4 our shape similarity measure is

de.ned for object contours. Our approach of de.ning
a shape similarity measure is related to that of Arkin
et al. [11], where comparison of polygonal curves is
based on L2 distance of their turn angle representations
(which we call tangent functions). A more detailed
comparison is given at the beginning of Section 6. The
main diDerence is that our shape similarity measure is
based on a subdivision of objects into parts of visual
form.
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Fig. 1. Retrieval of similar objects based on our similarity measure.

In Sections 6 and 7 we give a cognitive justi.ca-
tion that our measure satis.es requirements (1)–(3). We
compare in Section 6 the performance of our measure
to well-known shape similarity measures that have been
justi.ed by cognitive experiments. In Section 7 we de-
scribe further experiments that yield results correspond-
ing to intuition.
Requirements (4) and (5) are of a purely mathemati-

cal nature and their satisfaction can be shown by simple
arguments. The satisfaction of requirements (5) follows
from the fact that we represent object boundaries as sim-
ple closed polygonal curves and that our shape similarity
measure allows us to compare any two such curves. We
simply obtain the polygonal curves from the boundary
chain code (without any smoothing or other preprocess-
ing) of segmented objects in digital images. Thus, ev-
ery object contour in a digital image, can be represented
as a simple closed polygonal curve (with a possibly
large number of vertices) without loss of information and
without any additional computation.
In Section 2 we overview our discrete curve evolu-

tion. Since the content of Sections 3–7 does not depend
on Section 2, the reader not interested in shape simpli-
.cation, can continue with the de.nition of our shape
similarity measure in Section 3.

2. Discrete curve evolution

Since contours of objects in digital images are dis-
torted by digitization noise and segmentation errors, it
is desirable to neglect the distortions while at the same
time preserving the perceptual appearance at a level suf-

.cient for object recognition. Therefore, in the context
of image databases our similarity measure is applied to
contours whose shape has been previously simpli.ed by
a discrete curve evolution. This allows us (see Fig. 2).

• to reduce the in-uence of noise, and
• to simplify the shape by removing irrelevant shape
features without changing relevant shape features,

which contributes in a signi.cant way to the fact that
the similarity measure satis.es requirements (1) and (2).
Observe that our discrete curve evolution is context sen-
sitive, since whether shape components are relevant or
irrelevant cannot be decided without context. Our dis-
crete curve evolution is brie-y presented in this section
(more detailed presentations are given in Refs. [12,13]).
Our curve evolution method does not require any con-

trol parameters to achieve the task of shape simpli.ca-
tion, i.e., there are no parameters involved in the process
of the discrete curve evolution. However, we clearly need
a stop parameter, which is the number of iterations the
evolution is to be performed. This parameter is automati-
cally determined in accord with our visual perception by
the procedure described in Section 5.
Since any digital curve can be regarded as a polygon

without loss of information (with possibly a large num-
ber of vertices), it is suGcient to study evolutions of
polygonal shapes. The basic idea of the proposed evolu-
tion of polygons is very simple:

• In every evolution step, a pair of consecutive line
segments s1; s2 is replaced by a single line segment
joining the endpoints of s1 ∪ s2.
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Fig. 2. A few stages of the discrete curve evolution. (a) is a distorted version of the contour in WWW-page
http:==www.ee.surrey.ac.uk=Research=VSSP=imagedb=demo.html.

The key property of this evolution is the order of the
substitution. The substitution is done according to a rel-
evance measure K given by

K(s1; s2) =
�(s1; s2)l(s1)l(s2)

l(s1) + l(s2)
; (1)

where �(s1; s2) is the turn angle at the common vertex
of segments s1; s2 and l is the length function normal-
ized with respect to the total length of a polygonal curve
C. The main property of this relevance measure is the
following:

• The higher the value of K(s1; s2) the larger is the
contribution to the shape of the curve of arc s1 ∪ s2.

A cognitive motivation of this property is given in
Ref. [12], where a detailed description of our discrete
curve evolution can also be found. Online demonstrations
can be viewed on our www-site [14].
It is a simple and natural observation that maximal

convex parts of objects determine visual parts. The fact
that visual parts are somehow related to convexity has
been mentioned in the literature, e.g., Ref. [15] state:

Parts generally are de.ned to be convex or nearly
convex shapes separated from the rest of the object
at concavity extrema, as in HoDman and Richards
[4], or at in-ections, as in Koenderink and Doorn
[16].

Although the observation that visual parts are “nearly
convex shapes” is very natural, the main problem is to
determine the meaning of “nearly” in this context. Many
signi.cant visual parts are not convex in the mathematical
sense, since a visual part may have small concavities, e.g.,
small concavities caused by .ngers in the human arm.
Thus, a natural and simple idea is to compute signi.cant
convex parts while neglecting small concavities.
Our solution is based on the discrete curve evolution

method in which a signi.cant visual part will become a

convex part at some level of the evolution. If a signi.cant
visual part contains concavities, then the corresponding
boundary arcs are concave arcs (with respect to the ob-
ject). Since the relevance measures of these concave arcs
are smaller than the relevance measure of the bound-
ary arc of the signi.cant visual part, the concavities will
disappear in an earlier stage of the boundary evolution.
Thus, there exists an evolution stage at which a signi.-
cant visual part is a convex part, i.e., it is enclosed by a
convex boundary arc (with respect to the object). A few
stages of our curve evolution are illustrated in Fig. 2. For
example, the two small .ns become convex in (d) and the
.sh tail becomes convex in (e). These parts are enclosed
by maximal convex boundary arcs. Due to an important
property of our curve evolution that the remaining ver-
tices do not change their position, we can identify visual
parts on the original contour as maximal convex bound-
ary arcs obtained in the course of the evolution. In par-
ticular, this means that the position of the endpoints of a
convex boundary arc obtained in the course of the evolu-
tion is exactly the same as the position of the endpoints
on the original contour. We base our approach to shape
decomposition into visual parts on the following rule:

• Hierarchical convexity rule: The maximal convex
arcs (of the object) obtained at various stages of the
contour evolution determine parts of the object bound-
ary that enclose visual parts of the object.

The parts of boundaries obtained by the hierarchical
convexity rule correspond for many objects to the parts
obtained using points of minimal negative curvature [4].
This is the case when the endpoints of convex arcs are lo-
cated near the points of minimal negative curvature. Also
for many objects, the resulting parts of objects correspond
to limbs and necks in the theory of Siddiqi and Kimia
[17]. For boundaries of continuous objects, the endpoints
of maximal convex arcs correspond to in-ection points
(e.g., in-ection points are used for shape description in
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Ref. [18]). The correspondence of the endpoints of max-
imal convex arcs to diDerent kinds of critical points (in
the sense of diDerential geometry) is possible, since we
work in a discrete space which does not exactly follow
the rules of diDerential geometry. The correspondence of
the visual parts obtained by our hierarchical convexity
rule to the well-known visual parts, which are justi.ed by
many psychological experiments [2–4], gives cognitive
motivation for the proposed rule.
In our approach, we do not need to decide which crit-

ical points have to be joined together in order to obtain
object parts. The object parts obtained by joining two
chosen negative curvature minima are called part cuts
[19]. As argued in Ref. [3], a separate theory is neces-
sary to determine the part cuts knowing the boundary
points of minimal negative curvature. In our approach,
the part cuts are simply the parts enclosed by maxi-
mal convex arcs. For further details see Ref. [12] or
our www-page [14], where some on-line demos are also
presented.

3. Shape similarity measure

In this section we de.ne our shape similarity measure.
In the context of image databases, this measure is applied
to contours which have been previously simpli.ed by
the discrete curve evolution described in Section 2. The
appropriate evolution stage is selected for each shape, and
then the similarity is computed for the resulting instances
of the shapes.
Our similarity measure pro.ts from the decomposition

into visual parts based on convex boundary arcs. The key
idea is to .nd the right correspondence of the visual parts.
We assume that a single visual part (i.e., a convex arc) of
one curve can correspond to a sequence of consecutive
convex and concave arcs of the second curve, e.g., part
number 0 of the top-left .sh contour in Fig. 3. This
assumption is justi.ed by the fact that a single visual part
should match to its noisy versions that can be composed
of sequences of consecutive convex and concave arcs,
or by the fact that a visual part obtained at a higher
stage of evolution should match to the arc it originates
from. Since maximal convex arcs determine visual parts,
this assumption guarantees preservation of visual parts
(without explicitly computing visual parts).
In this section, we assume that polygonal curves are

simple, i.e., there are no sel.ntersections, and they are
closed.We assume also that we traverse polygonal curves
in the counterclockwise direction.
Let convconc(C) denote the set of all maximal convex

or concave subarcs of a polygonal curve C. Then the or-
der of traversal induces the order of arcs in convconc(C).
Since a simple one-to-one comparison of maximal

convex=concave arcs of two polygonal curves is of little
use, due to the facts that the curves may consist of a dif-

ferent number of such arcs and even similar shapes may
have diDerent small features, we join together maximal
arcs to form groups:
A group g of curve C is a union of a (non-empty)

consecutive sequence of arcs in convconc(C). Thus, g is
also a subarc of C. We denote groups(C) the set of all
groups of C. We have convconc(C) ⊆ groups(C).
A grouping G for a curve C is an ordered set of con-

secutive groups G= (g0; : : : ; gn−1) for some n¿ 0 such
that

• gi ∩ gi+1(mod n) is a single line segment for i = 0; : : : ;
n− 1.

Since any two consecutive groups intersect in exactly
one line segment, the whole curve C is covered by G.
We denote the set of all possible groupings G of a curve
C as G(C). Fig. 3 shows sample groupings of the given
contours, where each group is assigned a diDerent num-
ber.
Given two curves C1; C2, we say that groupings G1 ∈

G(C1) and G2 ∈ G(C2) corresponds if there exists a
bijection f : G1 → G2 such that

1. f preserves the order of groups and
2. for all x ∈ G1 x ∈ convconc(C1) or f(x) ∈

convconc(C2).

We call the bijection f a correspondence between G1

and G2. We denote the set of all corresponding pairs
(G1; G2) in G(C1) × G(C2) by C(C1; C2). Two exam-
ple correspondences are shown in Fig. 3. The condition
that any f is a bijection means that both curves are de-
composed into the same number of groups. Condition
(2) means that at least one of the corresponding groups
x ∈ G1 or f (x) ∈ G2 is a maximal (convex or concave)
arc. The reason is that we want to allow mappings be-
tween one-to-many maximal arcs and many-to-one maxi-
mal arcs, but never betweenmany-to-manymaximal arcs.
Since maximal convex arcs determine visual parts, con-
dition (2) guarantees preservation of visual parts (with-
out explicitly computing visual parts). Condition (2) im-
plies also that every maximal (convex or concave) arc in
a higher stage of abstraction, will match to the sequence
of arcs it originates from.
A similarity measure for curves C1; C2 is de.ned as

Sc(C1; C2)

=min



∑
x∈G1

Sa(x; f(G1 ;G2)(x)): (G1; G2)∈C(C1; C2)


 ;

(2)

where f(G1 ;G2) is the correspondence between G1 and G2

and Sa is a similarity measure for arcs that will be de.ned
in the next section. To compute Sc(C1; C2) means to .nd
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Fig. 3. The corresponding arcs are labeled by the same numbers.

in the set C(C1; C2) of all corresponding groupings a pair
of groupings for which the sum of the diDerences between
the corresponding groups Sa(x; f(G1 ;G2)(x)) is minimal.
The task of computing the similarity measure de.ned

in Eq. (2) can be formulated as a global minimum prob-
lem:
Given a function

M(X; Y ) =
∑
x∈X

Sa(x; f(X;Y )(x))

that assigns a group matching value to every correspond-
ing pair (X; Y ) ∈ C(C1; C2) related by the correspon-
dence f(X;Y ), .nd a pair (G1; G2) ∈ C(C1; C2) for which
M(G1; G2) is minimal, i.e., M(G1; G2) 6 M(X; Y ) for
all elements (X; Y ) ∈ C(C1; C2).

The similarity measure de.ned in Eq. (2) is computed
using dynamic programming. Numerous experimental re-
sults show that it leads to intuitive arc correspondences,
e.g. see Fig. 3. We have applied a slightly modi.ed ver-
sion of the shape similarity measure in Eq. (2) to auto-
matic object indexing and searching in image databases.
The experimental results are described in Section 6.

4. Similarity of polygonal arcs

The goal of this section is to de.ne the similarity mea-
sure Sa for arcs that is part of the de.nition of the shape
similarity measure in Section 3. As mentioned in the in-
troduction, any digital curve C can be interpreted as a
polygonal curve with a possibly large number of vertices
without loss of information. We assign to every poly-
gonal curve a tangent function, which is a step function.
We use the tangent function as a basis for the proposed
similarity measure of simple polygonal arcs.
Let C be a polygonal curve. We treat it as a function

C : [0; 1] → R2, i.e., the length of C is rescaled to 1.
The tangent function of C (which is also called a turn-
ing function) is a multi-valued function T (C) : [0; 1] →
[0; 2�] de.ned by T (C)(s)=C′−(s) and T (C)(s)=C′

+(s),
where C′−(s) and C′

+(s) are left and right derivatives of

C. For example, see Figs. 4(a) and (b). Clearly, only if
C(s) is a vertex of the polygon, C′−(s) 
= C′

+(s). The
y-diDerence between two adjacent steps of the tangent
function represents the turn angle of the corresponding
pair of line segments.
Now we de.ne the similarity measure for arcs. Let c; d

be simple polygonal arcs that are parts of closed curves
C;D. We denote by T (c); T (d) their tangent functions
uniformly scaled so that their projections on the x-axis
�x(T (c)) and �x(T (d)) both have length one. The arc
similarity measure is given by (e.g. see Fig. 5)

Sa(c; d) =
(∫ 1

0
(T (c)(s)− T (d)(s) +  0)

2 ds
)

×max(l(c); l(d))max
(
l(c)
l(d)

;
l(d)
l(c)

)
; (3)

where l is the relative arclength of an arc with respect to
the boundary length of the curve it is part of and  0 is
de.ned below. The integral in Eq. (3) is weighted with
the arc length penalized by the diDerence in length of the
corresponding parts. For example, if l(c)¿l(d), then the
scaling term is equal to l(c)l(c)=l(d), where l(c) scales
the value of the integral by the relative arclength of arc c
with respect to the length of curve C and l(c)=l(d) is the
penalty for the relative length diDerence of arcs c and d.
The constant  0 is a translation of T (d) that minimizes

the integral, i.e.

∫ 1

0
(T (c)(s)− T (d)(s) +  0)

2 ds

= inf
 ∈[0;2�)

∫ 1

0
(T (c)(s)− T (d)(s) +  )2 ds:

The constant  0 exists and is given by Lemma 3 in
Ref. [11].
Observe that we apply measure (3) with the restriction

that c ∈ convconc(C) or d ∈ convconc(D).
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Fig. 4. A polygonal curve (a) and its tangent function (b). The similarity of (c) and (d) shows that the curve (a) is symmetric.

Fig. 5. DL2 (T (c); T (d)).

5. An optimal evolution stage

Now, we describe the procedure that determines the
stop parameter, i.e. a stage at which the curve evolution
halts. The evolved contours obtained at this stage are
used as input to our shape similarity measure.
Let P=P0; : : : ; Pm be polygons obtained from a poly-

gon P in the course of discrete curve evolution such that
Pm is the .rst convex polygon.

For i =m with a step −1 do:
The boundary of a high abstraction level Pi is seg-

mented into maximal convex=concave parts. These parts
are compared to their corresponding parts on the original
polygon P0, where the corresponding parts are the ones
having the same endpoints. The comparison is done us-
ing the Sa-measure. If the comparison of a single part in
Pi leads to a value higher than a given threshold s, the
shape Pi is abstracted too much, and the previous ab-
straction level Pi−1 is taken. The procedure repeats until
the stage i is reached such that the comparison of all parts
in Pi to all their corresponding parts is lower than s.
Fig. 6 shows some examples of automatic level ab-

straction. Notice that the comparison of the boundary

Fig. 6. Some examples of the automatic abstraction level that
is used as input to our shape similarity measure.

parts to their corresponding segments in diDerent abstrac-
tion levels uses the property of the evolution process,
that the set of vertices of a shape at abstraction level n
is a subset of all sets of vertices of the shape at abstrac-
tion levels 0; : : : ; n− 1, hence it is easy to .nd the corre-
sponding boundary parts. The computation time of this
procedure is not critical, since the level of abstraction is
computed oD-line for every shape in the database. Using
a .xed threshold s results in an intuitive correct abstrac-
tion level in most experiments (a few hundred shapes of
diDerent complexity), but cannot be the .nal solution.
Future work will take into account more statistical data
for a dynamic threshold adjustment.

6. Comparison to known similarity measures

We restrict our comparison to universal similarity mea-
sures that are translation, rotation, re-ection, and scal-
ing invariant. This excludes, for example, HausdorD dis-
tance [20], which is universal but does not satisfy these
requirements.
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Fig. 7. A shape and its locally distorted version.

As stated in the introduction, our approach to de.n-
ing a shape similarity measure is related to the one in
Ref. [11], where L2 distance of tangent functions is used
for comparing polygonal shapes. The main diDerence of
our approach is that we use L2 distance for comparing
parts of polygonal shapes, which makes our approach
more robust with respect to local distortions that result
in non-uniform stretching of boundary parts. This is il-
lustrated by comparing the two shapes in Fig. 7.
In Fig. 8 we see tangent functions of both shapes from

Fig. 7 scaled to the same length. The local distortions on
one side of the second shape result in stretching of the
tangent function of this side. The gray region in Fig. 8
shows the side of the .rst shape that should correspond
to the distorted side of the second shape.
In order to compute the distance between two shapes,

Arkin et al. translate one tangent function with respect
to the other so that their L2 distance is minimal, but
they do not allow the functions to be stretched. Conse-
quently, the part of the tangent function of the second
shape that represents the distorted side will correspond
to the part of the tangent function of the .rst shape
bounded with lines a and b in Fig. 8. This is illustrated
in Fig. 9, where both functions are shown. It can be
seen that there does not exist any translation of the
functions that yields the correct part correspondence.
In particular, the optimal translation determined by

Fig. 8. The gray region shows the side of the .rst shape that should correspond to the distorted side of the second shape.

Arkin et al. does not yield the correct part correspon-
dence. Thus, using the distance de.ned in Ref. [11], the
distorted side is compared to about half of the boundary
of the .rst shape, which clearly results in a very bad sim-
ilarity value. The same phenomenon will take place if
we do not scale the tangent functions to the same length,
i.e., if we compare them using their original lengths.
To compute our shape similarity measure, we .rst es-

tablish the best possible correspondence of the maxi-
mal convex=concave arcs. The corresponding maximal
convex=concave arcs are labeled with the same numbers
0–3 in Fig. 8. The maximal convex arc 3 of the .rst
shape will correctly correspond to the part 3 of the sec-
ond shape (which is the part between lines 2 and 3 on
the tangent functions).
In our approach the comparison of tangent functions

is done for each pair of corresponding parts separately.
We scale each corresponding pair to the same length
1, and .nally compute the distance of the local tangent
functions obtained in this way. This is shown in Fig. 10,
where the tangent functions for parts 0–3 are identical
and the L2 distance of the tangent functions for parts 2 is
relatively small. This results in a relatively small value
of our similarity measure for the two shapes. This exam-
ple also demonstrates that our similarity measure satis-
.es requirements (1)–(3) described in the introduction.
We want to stress that the shape of both objects in this
example was not simpli.ed before the comparison.
An interesting approach to establish desirable proper-

ties of shape similarity measures is given in Ref. [15].
The desirable properties are illustrated and tested on
three proposed similarity measures: spring model, linear
model, and continuous deformation model. These models
measure deformation energy needed to obtain one object
from the other. The calculation of deformation energy
is based on (best possible) correspondence of boundary
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Fig. 9. A comparison of tangent functions of two contours
based on Arkin et al.

points and local distortions of corresponding points as a
function of local curvature diDerences. Thus, the calcu-
lation of the three measures requires local computation
of curvature. The similarity measures in Ref. [15] are
obtained as the integral of local distortions between cor-
responding contour points. The authors themselves point
out a counter-intuitive performance of their measures
when applied to the objects like the ones the .rst row in
Fig. 11 (Fig. 17 in Ref. [15]). The H-shaped contour (a)
is compared to two diDerent distortions of it. Although
shape (b) appears more similar to (a) than shape (c), the
amount of local distortion to obtain (b) and (c) from (a)
is the same. Therefore, all three measures presented in
Ref. [15] imply that shapes (b) and (c) are equally similar
to (a). Basri et al. argue that this counter-intuitive perfor-
mance is due to the fact that their measures are based on
contour representation of shapes. We do not agree with

Fig. 10. In our approach the comparison of tangent functions of two contours is done for each pair of corresponding parts (0–3)
separately.

the fact that the counter-intuitive performance of mea-
sures in Ref. [15] is due to contour representation. The
performance of our measure clearly proves that this is
not the case:
Our similarity measure is based on contour represen-

tation and gives similarity values in accord with visual
perception. Our measure yields Sc((a); (b)) = 368 and
Sc((a); (c)) = 518, i.e., (b) is more similar than (c)–(a).
The main diDerence is that our measure is not based on
local properties, i.e., it is not based on correspondence
of contour points and their local properties, but on cor-
respondence of contour parts.
Among others, Basri et al. [15] argue that similarity

measures should be sensitive to structure of visual parts of
objects. To check this property, they suggest that bending
an object at a part boundary should imply less changes
than bending in the middle of a part. This property of our
measure is illustrated in Fig. 12. A more detailed com-
parison of our measure to the one presented in Ref. [15]
is given in Ref. [21], where we also show that our mea-
sure satis.es constrains on similarity functions presented
in Ref. [15].
The approach described in Ref. [6] is based on dis-

tance to object prototypes representing classes of shapes.
Shape similarity is computed in terms of the amount of
strain energy needed to deform one object into another.
Therefore, the above discussion of approaches based on
deformation energy in Ref. [15] applies also to Ref. [6].
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Fig. 11. Our similarity measure yields results in accord with
our visual perception: Sc((a); (b))=368 and Sc((a); (c))=518.

Additionally, the computation of the shape similarity in
Ref. [6] requires establishing a direct point correspon-
dence and shape alignment, which is a highly non-trivial
task. SclaroD uses HausdorD distance [20] to achieve this
task in his experiments.
We also compared the results of our approach with an

approach presented in Ref. [22] that is based on a hier-
archical structure of shocks in skeletons of 2D objects.
In this approach object shape is represented as a graph
of shocks. The similarity of objects is determined by a
similarity measure of the graphs of shocks. Although the
shape representation in Ref. [22] is not based on bound-
ary curves, the results of our similarity measure are very
similar to the results in Ref. [22]. This is demonstrated
in Fig. 18, whose objects are scanned from Table 1, p.
27, in Ref. [22]. To demonstrate that the performance
of our measure is in accord with intuition, we show in
Fig. 13 the most similar objects to objects from Fig. 18.
Further we compared our approach to retrieval of sim-

ilar objects through a similarity measure based on cur-
vature scale space in Ref. [5]. The curvature scale space
representation is obtained by curve evolution guided by
a diDusion equation [23]. The similarity measure in Ref.
[5] is applied to a database of marine animals in which
every image contains one animal. We applied our simi-
larity measure to the same database. The results of our
similarity measure applied to the same objects as in Ref.
[5] are presented in Fig. 19. The query objects (marked
with number one) are the same as objects in Figs. 4(a),
(d), 5(a), and 7(a) in Ref. [5]. The results are very sim-
ilar but not identical to the results in Ref. [5].

7. Experimental results

When comparing shapes in image databases we have
to deal not only with distortions caused by noise but
also with the change of object view due to change of
perspective and due to motion, e.g., bending of object
parts or change of a relative position among parts.
In this section, we present experimental results that

illustrate that our shape similarity measure is robust with
respect to all these distortions. This means that even a
substantial amount of these distortions will result in small
changes of the similarity values.
All .gures corresponding to the experiments of shape

comparison show abstracted shapes of original input im-

Fig. 12. The results of our similarity measure on shapes similar
to the ones in Table 2 in Ref. [15].

Fig. 13. The most similar objects (excluding self similarity) to
objects from Fig. 18.

ages at an automatically derived stage of abstraction. Ob-
serve that although the abstracted versions are used to
.nd the part correspondence and to compute the similar-
ity values, it is no problem to backtrace the correspond-
ing parts to the original shapes.
In all .gures the corresponding visual parts obtained in

the course of computation of our similarity measure are
indexed with the same numbers in the counter-clockwise
direction. For visual convenience the parts are drawn
slightly displaced.

7.1. Perspective distortion

The .rst experiment illustrates the behavior of our sim-
ilarity measure in the context of perspective distortion
which we simulate by three-dimensional rotation. The
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Fig. 14. Shapes B, C, and D are perspective distortions
of shape A. The similarity values are relatively small:
Sc(A; B) = 381; Sc(A; C) = 2309; Sc(A;D) = 4237.

left column in Fig. 14 shows three versions of the same
shape ‘hand ’ A.
The shapes in the right column are obtained by

three-dimensional rotation of shape A around the x-axis
followed by the orthogonal projection to the x–y-plane.
This results in a scaling in the vertical direction by the
cosine of each angle. The rotation angles used are: 45◦

for shape B; 70◦ for shape C, and 80◦ for shape D.
Observe that the correct correspondence of visual parts
is computed by our algorithm. The similarity values
obtained by our shape similarity measure are relatively
small: Sc(A; B)=381; Sc(A;C)=2309; Sc(A;D)=4237.
For comparison, the similarity value of hand A compared
to horse A in Fig. 16 is Sc(hand A, horse A) = 5068.

7.2. Part bending

The second experiment shows results of the compari-
son of three hands. Pairs A, B and A, C diDer by bending
of visual parts (i.e., .ngers) in space. Thus, here we ad-

Fig. 15. Similarity values by bending of visual parts:
Sc(A; B) = 1998; Sc(B; C) = 2080; Sc(B; C) = 519.

ditionally have partial occlusion resulting from the per-
spective projection. Shapes B, C diDer by relative po-
sition of .ngers. Observe again the correct correspon-
dence of visual parts. The similarity values obtained by
our shape similarity measure are also relatively small:
Sc(A; B) = 1998; Sc(A;C) = 2080; Sc(B;C) = 519 (see
Fig. 15).
The third experiment simulates movement of limbs

against the main shape by two dimensional part bending.
Shown are the comparisons of a horse in diDerent move-
ment steps (as a horse-lover will notice, the movements
are not taken from a real horse but computed with a in-
suGcient horse-simulation). The images diDer from each
other by non-perspective (two dimensional) bending of
head, tail and legs. Again the correspondence of parts is
correct and the resulting similarity values are relatively
small: Sc(A; B)=2188; Sc(A;C)=3471; Sc(B;C)=1156
(see Fig. 16).
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Fig. 16. Similarity values of part movement:
Sc(A; B) = 2188; Sc(A; C) = 3471; Sc(B; C) = 1156.

7.3. Distortions resulting from noise

In the puma-experiment, we compared shape A with
two diDerent distorted versions B and C. Version B has
many albeit small distortions (i.e. displacements of orig-

Fig. 17. Similarity values in the presence of noise: Sc(A; B) = 1458; Sc(A; C) = 1698; Sc(B; C) = 1650.

inal boundary points), version C has fewer distortions
but larger ones. Finally, we compared the two distorted
versions B and C. Again the correspondence of parts
is correct and the similarity values are relatively small:
Sc(A; B)= 1458; Sc(A;C)= 1698; Sc(B;C)= 1650 (see
Figs. 17–19).

8. Time complexity and processing speed

An important criterion for databases is the time com-
plexity and the processing speed in practice. For an anal-
ysis related to these topics, our algorithm must be divided
into two stages, the shape abstraction and the comparison
of the abstracted shapes.
Shape abstraction requires .rst sorting all vertices

according to their relevance measure, which results
in O(n log(n)) time complexity with n denoting the
number of vertices. Every single abstraction step is
done by deleting one point (linear complexity), com-
puting the new values of its neighbors and sorting
them into the list (complexity: log(n − s), where s de-
notes the number of previous abstraction steps). Hence
the complexity of the abstraction algorithm results in
O(n log(n) +O(n) +O(log(n− s)) =O(n log(n)).
Processing speed: The algorithm was implemented in

C on a 233 MHz Pentium PC-computer. For example, it
takes 5 ms to compute all abstraction stages down to three
vertices, using a shape boundary containing 290 vertices.
The computation of shape similarity measure is more

time expensive. First the optimal correspondence of
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Fig. 18. The similarity values computed by our similarity measure on test objects corresponding to Table 1, p. 27, in Ref. [22].

maximal convex=concave arcs is computed using dy-
namical programming, the complexity for two shapes
is O(mn2), where m; n denote the number of maximal
convex=concave arcs of each boundary and n6m. To
be invariant to rotation, one of the shapes must be rotated
modulo the starting points of the convex=concave arcs,
which is of order O(n). This leads to a total complexity
of O(mn3).
Processing speed: the algorithm was implemented in

C + + on a 233 MHz Pentium computer, the average
comparison time (including rotation) of two objects con-
sisting of about 15–20 maximal convex=concave arcs is
50 ms.
The processing time can be drastically reduced if some

pre-information about rotation is taken into account. The
database system was designed to detect similarity be-
tween arbitrary objects, hence no pre-information was
used for speed optimization.

9. Conclusions

We developed a shape similarity measure for con-
tours of 2D objects that satis.es necessary requirements
for cognitively motivated shape similarity measures. The
main strength of our shape similarity measure is that it es-
tablishes the best possible correspondence of visually sig-
ni.cant parts. A discrete evolution method that is used as
a pre-.lter for shape comparison yields signi.cant visual
parts as maximal convex arcs. We are presently working
on an extension of our approach to object surfaces.
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