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Abstract

Due to distortion, noise, segmentation errors, overlap, and occlusion of objects in digital images, it is usually impossible to extract complete
object contours or to segment the whole objects. However, in many cases parts of contours can be correctly reconstructed either by performing
edge grouping or as parts of boundaries of segmented regions. Therefore, recognition of objects based on their contour parts seems to be a
promising as well as a necessary research direction.

The main contribution of this paper is a system for detection and recognition of contour parts in digital images. Both detection and recognition
are based on shape similarity of contour parts. For each contour part produced by contour grouping, we use shape similarity to retrieve the
most similar contour parts in a database of known contour segments. A shape-based classification of the retrieved contour parts performs then
a simultaneous detection and recognition.

An important step in our approach is the construction of the database of known contour segments. First complete contours of known objects
are decomposed into parts using discrete curve evolution. Then, their representation is constructed that is invariant to scaling, rotation, and
translation.
� 2008 Elsevier Ltd. All rights reserved.
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1. System overview

We begin with an overview of the system for contour-based
object recognition. Based on psychophysical evidence [1], we
can derive the following stages of contour-based object recog-
nition (see Fig. 1):

(1) Edge detection ((a) → (b)).
(2) Contour grouping ((b) → (c)).
(3) Contour detection ((c) → (d)).

We do not discuss edge detection here, since it is an obvious
step in image analysis that is also known to be performed by the
human visual system. We view contour grouping as grouping
of edge pixels to contour parts. It is a local process based on
rule of good continuation (see Ref. [1]). As can be seen by
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comparing (b) and (c) in Fig. 1, contour grouping also means
contour simplification and removal of small irrelevant features
in our approach. We describe it in Section 5.

In the proposed system contour grouping is followed by
contour detection, described in Section 6. For each contour part
produced by contour grouping [32], the most similar contour
parts in a database of known contour segments are retrieved
using shape similarity. Therefore, contour detection also yields
preliminary recognition results of contour parts, which can be
viewed as recognition hypothesis. This fact is illustrated in
Fig. 2. The second column shows most significant contour parts
detected in images shown in first column. The contour part sig-
nificance ranking is based on shape similarity to know contour
parts, which are shown in columns 3–7. If we use first nearest
neighbor classifier (1NN), then column 3, which shows the most
similar database contour segments, illustrates the recognition
results. Thus, contour part detection and recognition are based
on shape similarity to know contour parts. Observe that the ob-
jects in all three query images are correctly recognized based
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Fig. 1. (a) The original input image; (b) the edge map; (c) edge pixels group to line segments; (d) the most significant contour segment obtained by shape-based
contour detection is marked in red.

Fig. 2. Shape-based object recognition in images. After grouping of edge pixels (shown in Fig. 3) to contour parts, each contour part is compared to known
contour segments using shape similarity. Column 2 shows contour parts extracted from images in column 1 that are most similar to know contour segments
shown in Column 3. Columns 4–7 show further most similar known contour segments for the segments in column 2.

on the detected and recognized most significant contour parts
shown in column 2. The edge maps of the three query images
are shown in Fig. 3. The shape similarity measure we use is
described in Section 4.

The performance of the proposed system is evaluated in
Section 7. We used the MPEG-7 Shape 1 Part B dataset [2]
for building the database of known contour parts (Section 3).
The MPEG-7 dataset is composed of 70 object classes with
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Fig. 3. Edges of color images in Fig. 2.

20 shapes in each class. We used shapes 1–10 in each class to
construct the database. Based on the 700 complete contours,
we generated nearly 58,000 contour segments. They represent
the contour segments of objects known to our system. Thus,
for each query contour part in the second column in Fig. 2,
columns 3–7 show the most similar contour segments extracted
from 58,000 contour segments. The objects in the three query
images are different form the objects in the MPEG-7 Shape 1
Part B dataset, since the query images were not used in the
construction of this database.

The main challenges of the proposed approach are contour
grouping, detection of significant (grouped) contour parts, and
similarity of contour parts. In this paper we address these chal-
lenges.

They belong to unsolved problems in computer vision,
although they have received a substantial consideration in the
literature. A brief overview of existing approaches is provided
in Section 2.

2. Motivation and background

Given a relatively small object part, humans can recognize
the object if the part is sufficiently unique. For example, it is
obvious to us that Fig. 1 shows a horse. Moreover, the ease
with which humans recognize articulated objects suggests that
shape recognition in humans may solely be based on parts
(See Fig. 4).

The cognitive importance of parts of visual form in human
perception has been theoretically and experimentally veri-
fied, see e.g., Refs. [3,4,27–29]. However, identification of
shapes given their parts is still an unsolved problem. Fig. 5
demonstrates the difficulties we may encounter in partial shape
matching.

Given a significant part of visual form as a query, e.g., the
fish tail shown in Fig. 5(a), our goal is to find similar shapes
containing the query part; this means that we need to find the
tail as a part of some other fish contours, e.g., it could be a part
of the contours shown in Fig. 2(b) or (c). At least three serious
problems arise:

(1) length problem,
(2) scale problem, and
(3) distortion problem.

Let us denote the query contour segment in Fig. 5(a) as q.
Our goal is to find out that q is similar to parts of contours in
Fig. 5(b and c). However, the corresponding parts have different

Fig. 4. Contour part.

Fig. 5. (a) A fish tail contour; (b) a contour of a partially occluded fish; (c)
a distortion led to a spike on the fish tail contour.

contour lengths and they are at different scales. Observe that
problems (1) and (2) can be easily solved for complete contours
by normalizing the contour lengths to be equal to one. The
length normalization of contour segments does not solve the
problems for the query part, since q corresponds only to parts
of the segments in Fig. 5(b and c). We would need first to find
parts of these segments that correspond to q, and then normalize
them. However, in order to do this, we need to know the proper
length and scale of q with respect to segments in Fig. 5(b and
c), which leads to a chicken and egg problem. In addition,
finding a part corresponding to q in Fig. 5(c) is complicated by
the spike on the fish tail. This illustrates the third problem of
distortions (it affects whole contours as well). Distortions may
arise from segmentation errors (segmentation artifacts) or from
occlusions.

Problems 1, 2, and 3 make it very difficult to develop practi-
cally relevant similarity measure of contour parts. None of the
current shape matching techniques provides solutions to these
problems. Many approaches tolerate some minor occlusions or
distortions, but most of the presented approaches require the
whole contour or the whole object to be considered. This state-
ment applies to all shape descriptors of whole contours, e.g.,
Refs. [5–8,33], in that they cannot be easily extended to handle
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similarity of contour parts. Only a small number of approaches
address the issue of partial shape similarity [9–11,30,31]. The
existing partial shape similarity measures (e.g., Ref. [9]) require
that the query part is nearly identical to the corresponding part
of the target contour. This is clearly an unrealistic assumption
because of the noise distortions, and due to perspective pro-
jection changes. The approach in Ref. [9] is based on a matrix
representation of pairwise distances between contour feature
points. A matrix of a query contour part must match a submatrix
of the target contour. Given the best match, an affine transfor-
mation is computed, and finally the Hausdorff distance of the
transformed query part to the target contour is computed. Thus,
this approach does not tolerate any distortions on the target part,
and consequently, does not provide any solution to problem
(3). Veltkamp and Tanase [10] proposed to use an extended dy-
namic programming approach directly on the turn angle func-
tion (also known as � function) representation of object con-
tours. Their approach is not scale invariant, e.g., if part of the
target contour similar to the query part is twice longer (due to a
different scale) it is not recognized as similar. Observe that the
� function itself is scale invariant (i.e., corresponding contour
points have the same tangent directions), but its domain, which
is the arc length contour parameterization, changes when the
scale changes. Hence, it is a nontrivial problem to find the cor-
responding contour points. Consequently, this approach does
not provide any solutions to problems (1) and (2). The approach
in Ref. [10] also does not provide any solution to problem (3),
since the distance of two � functions is the integral of their dif-
ferences, which may be large in the presence of distortions on
the target part, i.e., the matching of segments is not sufficiently
elastic.

There exist a large number of approaches to contour group-
ing beginning with the work of Wertheimer [12] through the
theory of visual interpolation in object perception of Kellman
and Shipley [13] to the recent approaches that involve learn-
ing of contours from prior knowledge [14,15]. Stahl and Wang
use geometric properties such as covexity [16] and symme-
try [17] for contour grouping in a globally optimal fashion.
Although closed contours are easier to group than open con-
tour parts [18], this statement is only true if all edges that form
a given close contour are present, which is seldom the case,
e.g., due to occlusion or due to the performance of edge detec-
tors. Therefore, we focus here on grouping open contour parts.
We use a simple grouping approach based on a greedy strategy
that includes good continuation and proximity. It is motivated
by the approach in Ref. [13]. However, the main strength of
our approach is evaluation of grouping hypotheses by using
shape similarity to known contour parts. To our best knowledge
none of the existing grouping approaches includes evaluation
of grouping hypotheses.

3. Building a database of known contour parts

Our first goal is to build a representation of shapes that is
suitable for shape-based recognition of contour parts. We as-
sume that a set of complete contours of known shapes are given.

Fig. 6. (a) An elephant contour; (b) a DCE simplified polygon; (c) the
common vertices of polygons in (a) and (b).

Fig. 7. Some contour parts between pairs of vertices in Fig. 6(c).

We face the following problems:

(1) How to extract meaningful contour parts?
(2) How to represent the contour parts so that they are invariant

to scaling, translation, and rotation?

We provide answers to these questions in Sections 3.1 and
3.2, correspondingly.

3.1. Extraction of significant contour segments

It is shown in Ref. [19] that discrete curve evolution (DCE)
yields a decomposition of complete contours that is in accord
with human visual perception and is stable even in the presence
of substantial contour deformations. DCE simplifies contour
curves so that the main visual parts are preserved. For example,
a DCE simplified polygon in Fig. 6(b) with only 13 vertices
is still similar to the original contour in Fig. 6(a). In Fig. 6(c),
the small circles illustrate the vertices of the simplified poly-
gon on the original contour. The vertices of simplified polygon
correspond to significant maxima and minima of the contour
curvature, which are known to be important to decompose the
contour into parts of visual form [3,4]. We use vertices of the
simplified polygon to decompose the original complete con-
tour into meaningful visual parts, which are defined as contour
segments between each pair of the vertices. In Fig. 7, some vi-
sual part segments are shown in red. They are determined by
vertices in Fig. 6(c).

DCE differs significantly form standard curve evolution ap-
proaches that are based on curve deformation guided by partial
differential equations or their discrete analogs as presented in
Bruckstein et al. [20]. DCE does not displace the contour points
in the process of simplification. However, a key advantage of
DCE in our context is the fact that it reduces the number of
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polygon vertices so that the remaining vertices represent signif-
icant contour points. The standard curve evolution approaches,
including the approach in Ref. [20], keep the number of polygon
vertices constant. They would therefore require an additional
step after simplification to find significant contour points.

To summarize, for any contour polygon w, DCE yields a
set of critical points �(w) = {ui}ni=1, e.g., the small circles in
Fig. 6(c). The contour segments of w are defined as contour
segments between all ordered pairs of points (ui, uj ) from �(w)

such that ui and uj are not adjacent. We will call them visual
segments, since they are significant for shape recognition.

Now we briefly describe the process of DCE. Since any
digital curve can be regarded as a polygon without loss of
information (with possibly a large number of vertices), it is
sufficient to study evolutions of polygonal shapes. Given the
input boundary polygon P with n vertices, DCE produces a
sequence of simpler polygons P =P n, P n−1, . . . , P 3 such that
P n−(k+1) is obtained by removing a single vertex v from P n−k

whose shape contribution measured by K is the smallest. The
order of removed vertices is determined by a relevance measure
K given by

K(s1, s2) = �(s1, s2)l(s1)l(s2)

l(s1) + l(s2)
, (1)

where line segments s1, s2 are the polygon sides incident to
a common vertex v, �(s1, s2) is the turn angle at the common
vertex v, l is the length function. The main property of the
relevance measure K is that the higher value of K(s1, s2), the
larger is the contribution of the arc s1 ∪s2 to the polygon shape.
The vertex removal idea of the DCE can be also expressed as
segment replacement. In every evolution step, a pair of consec-
utive line segments s1, s2 is replaced by a single line segment
joining the endpoints of s1 ∪ s2. A stop condition that is ade-
quate for shape similarity is given for DCE in Ref. [21]. It is
based on the shape difference of the DCE simplified contour
to the original input contour.

3.2. Normalization of visual segments

We use the method proposed in Ref. [22] to achieve invari-
ance to planar similarity transformations (2-D translation, rota-
tion, and uniform scaling) for the visual segments. Each visual
segment s is sampled with n equidistant points {x1, . . . , xn}.
Then s is transformed to a segment s′ in an invariant refer-
ence frame. The transformation is obtained by mapping x1 to
x′

1 = (0, 0) and xn to x′
n = (1, 0), which allows us to compute

the planar similarity transform mapping the remaining points
to x′

2, . . . , x′
n−1 in the normalize reference frame. In Fig. 8, the

contour segment ab is mapped to an invariant representation.

3.3. Database of known contour segments

Following the steps described in Sections 3.1 and 3.2, we
constructed a database of nearly 58,000 known contour seg-
ments. They represent the contour segments of objects known
to our system. We used the MPEG-7 Shape 1 Part B dataset for
building this database [2]. The MPEG-7 dataset is composed of

Fig. 8. (b) Shows an invariant segment representation of segment ab in (a).

70 object classes with 20 shapes in each class. We used shapes
1–10 in each class to construct the database of contour parts.
We did not include in the database contour segments with too
small y variance in their invariant representation (Section 3.2),
since such segments are nearly linear, and therefore bare no
relevant shape information.

Although the contour segments in the contracted database
are normalized with respect to planar similarity transforma-
tions, they still provide a significant challenge to shape simi-
larity measures. We may still face the problems described in
Section 2 due to the instability of position of the critical points.
For example, the position of the critical point a on the com-
plete contour in Fig. 8(a) is unstable. Even small noise or a
small change in the perspective may displace point a signifi-
cantly. This implies that two similar contour segments may not
necessarily match completely, but only parts of them may be
similar. In other words, it may be impossible to correctly align
two contour segments but only their parts.

The proposed approach is based on the assumption that the
instability of the position of critical points is marginal. We as-
sume that the displacement of most of the critical points is
small. More precise, we assume that for each query contour part
there exist a similar contour segment in our database. The large
number of contour segments in our database clearly increases
the probability that our assumption is correct. Moreover, criti-
cal points are known to be stable to view point changes [3,4].
Our experimental results presented in Section 6 verify the cor-
rectness of our assumption.

Due to our assumption, we need a shape similarity mea-
sure that can perform robustly in the presence of only small
misalignment of parts of contour segments. Such a measure is
described in Section 4.

4. Shape similarity of contour parts

The shape similarity measure used in our system is based
on shape context [6]. We selected shape context, since it is
robust to small misalignment of contour parts. Shape contexts
are log-polar histograms of contour sample points relative to a
given point on the shape [6,23]. A related representation was
introduced in Ref. [8] as shape histograms. Every segment is
represented by sample points: P = {p1, . . . , pn}, pi ∈ R2.
For a point pi on the contour, the shape context of pi is the
histogram: hi(k) = #{q �= pi : (q − pi) ∈ bin(k)}, where bins
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bin(k) are defined using a uniform partition of directions in log-
polar space and partition of distances from the point pi , hi(k)

is the number of contour points in the kth bin bin(k) and K is
the total number of histogram bins. The bins are constructed
by dividing the image plane into K partitions (in a log-polar
coordinate system) with p as the origin. In this study, we use
5 intervals for the log distance r and 12 intervals for the polar
angle �, so K = 60, see Ref. [6] for details.

Consider a point pi on the first shape and a point qi on the
second shape. Their similarity is measured as

Cij = C(pi, qj ) = 1

2

K∑

k=1

[hi(k) − hj (k)]2

hi(k) + hj (k)
. (2)

To match and classify the query part accurately, we compute
the shape contexts of all the points on the part. Since all the
parts in our part segment database are normalized, we can skip
the shape normalization in Ref. [6], and can directly compute
the shape context distance:

DSC(Q, P ) = 1

n

∑

p∈P

arg min
q∈Q

C(p, q)

+ 1

n

∑

q∈Q

arg min
p∈P

C(p, q), (3)

where p and q denote the points on query part Q and target part
P separately, and n denotes the number of sample points on Q
and P.

Due to the size of the database of contour segments, for a
given query contour part, we first use the shape contexts of
center points to filter out clearly dissimilar segments. For each
segment s′ = {x′

1, . . . , x′
n} in an invariant frame, we compute

its center of mass point

x′
m = 1

n

n∑

i=1

x′
i ,

and the mass shape context (MSC) for s′ as the histogram
h′

m : h′
m (k) = #{(x′

i − x′
m) ∈ bin(k)}, where i = 1, . . . , n. We

use formula (2) to compute the matching cost of MSC of a
query segment to all segments in the database. Then we use a
threshold to construct a short list of candidate part segments.
In our experiments described in Section 6, we used T1 = 20 as
a threshold to filter out the candidate part segments with MSC.
These segments are then matched with formula (3) considering

Fig. 9. We fit line segments to nonparametric pdf induced by a gray level edge map.

the shape contexts of all their points. The target part that has
the minimal shape context distance to query part is considered
as the most similar part, and the class that it belongs to is
the classification result of the query part. Thus, we use 1-NN
classification rule.

5. Extracting contour parts from images

We first group edge pixels to linear structures by applying
an extended expectation maximization (EM) algorithm pre-
sented in Ref. [24]. This process is illustrated in Fig. 9. First a
gray level edge map is computed, which is then approximated
with a nonparametric probability density function (PDF). Then
the extended EM algorithms fit line segments interpreted as a
parametric PDF that minimizes Kullback–Leibler divergence
(KLD) to the nonparametric PDF. This approach automatically
determines the minimal number of model components, which
are line segments in our applications. Four stages of line seg-
ment approximation computed this way are shown in Fig. 9.

The obtained line segments are then grouped to contour parts.
The line segment grouping is based on two principles of per-
ceptual grouping: proximity and good continuation [12]. We in-
tegrated these principles to a simple formula that measures the
connectivity of two line segments as the weighted sum of the
distance of their closest endpoints and their turn angle. We then
iteratively connect line segments with the smallest connection
value until the desired connection threshold is met. This is a
simple grouping approach that is based only on a local heuris-
tics. Definitely more sophisticated grouping methods are possi-
ble, e.g., a globally optimal usage of symmetry [17]. However,
we stress that this simple rule was sufficient to group line seg-
ments to contour parts in our experiments. An example contour
segment obtained by the line segment grouping is show in red
color in Fig. 1(d). Clearly, this rule is not sufficient to group line
segments to complete contours, since we only group adjacent
line segments following the rule of good continuation. Here,
we again benefit from the fact that we work with contour parts.

Our main contribution is evaluation of grouping hypotheses
using shape similarity to known contour parts, which allows us
to detect known contour parts as described in Section 6.

6. Contour detection

Let I be a given digital image. We first extract all contour
parts in I using the contour grouping approach (Section 5).
Then we compute their invariant representations (Section 3.2),
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and eliminate the parts with too small y variance (as we did
for the database parts). Let p1, . . . , pk be the obtained con-
tour parts in I. The parts p1, . . . , pk are compared to the
contour segments in the database using the shape similarity
DSC described in Section 4. Let d(pi) be the DSC distance to
the database segment most similar to part pi . We define now a
significance relation of the grouped contour parts that is based
on their similarity to known contour segments. Contour part p
is more significant than part q if

d(p)
max(l(p), l(q))

l(p)
< d(q)

max(l(p), l(q))

l(q)
, (4)

where l(p) is the length of part p. Formula (4) panelizes shorter
parts. For example, if part q is two times shorter than part
p, then the shape distance value d(q)is multiplied by 2. This
relation is justified by the fact that the longer is the contour
part obtained by contour grouping, the more likely it is part of
a real contour in the image I. This is in accord with the theory
of visual interpolation in object perception [13]. Finally, part p
is most significant if it is more significant than any other part
in its image I.

Observe that the significance relation is based on 1-NN (first
nearest neighbor) classifier. For each grouped contour part we
only consider its dissimilarity value to the most similar seg-
ment in the database of known contour segments. Although
1-NN classifier is the simplest one [25], in many applications
it outperforms more sophisticated classifiers. Xi et al. [26] note
that “1NN is an exceptionally competitive classifier, in spite
of a massive research effort on time series/shape classifica-
tion problems”. They compared 1-NN classifier to decision
trees, Bayesian classifiers, neural networks, SVM, and rule-
based methods and found that 1-NN has the best classification
accuracy.

7. Performance evaluation

The goal of the proposed system is detection and recognition
of contour parts extracted from images. We illustrated perfor-
mance of our system on real images in Section 1. In order to
perform more objective performance evaluation, we generated
test images that contain one ground truth contour part and sev-
eral distractor contour parts.

As the database of known contour segments, we used the
database described in Section 3.3. We recall that it was con-
structed using contours of shapes with indices 1–10 of the 70
object classes in the MPEG-7 Shape 1 Part B dataset [2]. Each
of the 70 object classes is composed of 20 shapes. Each of our
test images contains one true contour part taken from shapes
with indices 11–20 in one of the 70 classes plus 15 distrac-
tors, which are noisy contour parts. This way we assure that
the query contour parts are known to our system.

Ten query test images are shown in the first column in Fig. 10.
The second column in Fig. 10 shows the most significant con-
tour parts detected in these images. The query part shown in
column 2 was obtained by contour grouping in the query im-
age shown in column 1. Since the query image is composed of
several segments, the contour grouping did not extract the part

identical to the part used to generate the query images. This is
the reason why our query contour parts are not identical, the
parts used to generate the images, and therefore, the query parts
are not identical, to any parts in the database.

For each detected contour part in column two, its most similar
database segment is shown in column three overlaid over its
original contour. Columns 4 to 7 show further most similar
segments. The shape dissimilarity values are shown under each
database contour segment. Thus, we see for each query contour
segment (column 2) the five most similar segments retrieved
from 58,000 contour segments using shape similarity. The most
significant contour part (column 2) is the one with the smallest
shape dissimilarity value d(pi) scaled by the contour length as
defined in Section 6.

All 10 most significant parts shown in column 2 in Fig. 10
are correctly classified. We classify them to the class of the
most similar database segment (shown in column 3), i.e., we
use 1-NN classifier.

Observe that the detection of most significant parts is closely
link to their classification. In our framework, the detected con-
tour part minimizes the dissimilarity to one of the contour seg-
ments in the database, and we assign it to the class of this
database segment. We stress that the contour part detection may
not necessary mean correct object classification but it is closely
related. However, the class of the most similar database seg-
ment can be used as a classification hypothesis, which can then
be verified, e.g., by fitting the whole original contour to the
edge image. The verification is needed, because a given im-
age may contain more than one signal contour and because it
is possible that the detected contour is not correct in that its
similarity to a database contour is accidental. This is illustrated
in Fig. 10 by the fact that not all five most similar database
segments (shown in columns 3 to 7) are from the class of the
signal contour. Although some of the five most similar segments
are in different classes, they are visually similar to the query
parts. The only counterintuitive result is in third row and fourth
column, which was the part of the bird contour is matched to a
spiral. This result illustrates a drawback of the shape contexts.
All corresponding points found by shape context have similar
neighborhoods, but the global appearance of matched segment
is different.

We evaluated the performance of proposed method using
the 10 queries in Fig. 10. For each query part we counted the
number of shapes from the same class among the first 10 most
similar shapes. The overall retrieval rate is 52%. The rates for
each query part are given in Table 1.

From the statistic in Table 1, we can observe that some query
parts can get very good retrieval results but some cannot. There
are two main reasons for this. The first one is if the part is too
simple, it will be not unique and there will be a lot of parts
accidentally similar to it. For example, the query part of the
cattle is simple (20%). The second reason is if the part is too
unique, the system cannot find the other parts except the part
which is exactly the same with it. The query part of the elephant
is too unique (10%).

Fig. 11 illustrates in the first column the second most sig-
nificant part detected in the 10 query images. Columns 2 to
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Fig. 10. Our retrieval results on 10 test images shown in column 1. Column 2 shows detected most significant contour parts. Columns 3–7 show most similar
database segments to the detected contour parts.

6 show the most similar database segments to the second
most significant parts. Observe that the retrieval results are
significantly worse that in Fig. 10, which reflects the fact
that the query parts in Fig. 11 are not true contour parts but
distractors.

Some of our experimental results performed on real images
are illustrated in Fig. 2 (Section 1). It is very interesting that
the most similar database segment for the contour part of a
horse in Fig. 2 belongs to the MPEG-7 class called carriage.
This shows the limitations of keyword indexing of images, and
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Table 1
The retrieval rates for 10 query shapes in Fig. 10

Bat Beetle Bird Butterfly Cattle Deer Elephant Guitar Horse(1) Horse(2)

70% 70% 30% 100% 20% 70% 10% 60% 40% 50%

Fig. 11. The first column shows the second most significant contour parts extracted in the 10 test images. Columns 2–6 show the most similar database
segments. The numbers following “C.” indicate the MPEG-7 shape class.

it proves that our method can be useful for recognizing objects
that due to an overlap were merged with other objects, i.e., the
horse and carriage have one joint contour.

Some details in our experiment should be mentioned: our
method is tested with n = 100 sample points on each con-
tour segment. Usually the start point and end point of the part
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segments extracted from images may not be critical points, so
we trimmed the segments to start and end with DCE critical
points. Therefore, the detected contour parts shown in column
2 are subsegments of the signal contour segment. The average
time for part retrieval is approximately 2 s, using Matlab 6.5
on a 1.5 GHz Xeon-based PC. The time required to set up the
part segment database and MSC database is about 30 min.

8. Conclusions

The proposed approach applies a mixture of bottom-up and
top-down processing to shape-based object recognition. After
each bottom-up edge grouping step, top-down evaluation is ap-
plied to select the most promising grouping constellations. A
promising grouping constellation is defined using cognitively
motivated constraints. In accord with the cognitive simplicity
principle known from Gestalt psychology [12], we propose to
use partial shape similarity as a primary building block of such
constraints. In accord with the newest results in human per-
ception [1], grouping of edges to parts of object contours and
recognition of the parts using shape similarity play a key role in
object recognition. This means that object recognition is possi-
ble if only part of a contour is constructed, and the construction
of the whole contour is not necessary for recognition. In par-
ticular, object recognition works in the presence of occlusion
and segmentation errors.

Our experimental results demonstrate that the proposed sys-
tem provides a good solution to the three problems described
in Section 2. We conclude with the justification why this is
the case.

Our method solves the length problem by keeping contour
parts of different lengths in the database of known parts. We
do not need to keep all possible parts of different lengths, since
the shape context is tolerant for small length variations.

By normalizing the contour parts, following the method of
Sun and Super [22], we have solved the problem of scale. The
images in MPEG-7 dataset have a large variation of different
sizes.

We do not provide a complete solution to the distortion prob-
lem, although our retrieval results are good in the presence
of minor distortions. However, as shape context is sensitive to
larger distortions, the proposed method cannot deal with sig-
nificantly distorted shapes.

Another limitation of the proposed method is the usage of
single contour parts as queries. Our future work will focus on
using multiple contour parts as queries.
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